用户名: 密码: 验证码:
汽车排气系统用铁素体不锈钢耐蚀性能和成形性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁素体不锈钢具有良好的耐腐蚀性能,线膨胀系数低,同时成本低廉,被广泛应用于汽车排气系统。近年来,随着汽车使用寿命要求和排气温度的不断升高,对汽车排气系统冷端耐局部腐蚀性能和热端高温抗氧化性提出了更高的要求。排气系统冷端用不锈钢主要通过合金元素铬、钼和铜的添加来提高其耐局部腐蚀性能,代表材料为00Cr19NbTi。汽车排气歧管用不锈钢提高高温抗氧化性能的方式主要为两种,一是在铬含量较高的情况下添加钼和稀土元素铈,二是通过硅含量来增加其高温抗氧化性,代表材料分别为00Cr18NbTi和00Cr14Nb。由于排气歧管加工形状复杂,且硅添加量的增加会对铁素体不锈钢的成形性不利,所以提高00Cr14Nb铁素体不锈钢的成形性能成为研究的关键。本文借助于扫描电镜(SEM)、透射电镜(TEM)、X射线光电子谱(XPS)、电子背散射衍射技术(EBSD)、X-ray技术以及力学性能检测等分析技术和测试设备,研究了铜和钼对铁素体不锈钢在氯离子腐蚀介质中的局部腐蚀能力的影响,并且优化了铜的加入量。另外,在汽车排气系统高温端材料00Cr18NbTi的基础上通过合金元素钼和稀土铈的添加,研究了其对高温氧化的作用机理,同时还研究了合金元素和工艺条件对低铬高硅00Cr14Nb铁素体不锈钢成品板成形极限曲线的影响,其主要结论如下:
     在汽车排气系统用00Cr19NbTi铁素体不锈钢的基础上单独加入一定量的铜和钼能提高其抗点蚀性能,研究结果表明单独添加铜和钼铁素体不锈钢在氯离子腐蚀介质中具有良好的耐应力腐蚀性能,铜和钼同时添加会增加铁素体不锈钢的应力腐蚀敏感性,最佳铜和钼的添加量分别为0.2%和1.63%。因为铜在铁素体中的固溶量~0.20%,铜的电位高,能提高不锈钢表面钝化膜的耐点蚀能力。继续添加铜含量至0.50%,由于过饱和铜的析出,不锈钢点蚀抗力和耐应力腐蚀性能明显下降。同时研究了含铜0.50%和钼1.63%的铁素体不锈钢在600℃下的时效行为,结果表明:随着时效时间的增加,ε-Cu相不断析出和长大,促进了其周围基体的优先腐蚀,钼的快速腐蚀促进了点蚀坑尖端腐蚀沟槽的产生,在应力的作用下应力腐蚀裂纹萌生。时效时间较短时,ε-Cu析出相小且主要分布在晶内,点蚀沿晶内扩展容易,应力腐蚀开裂方式主要以穿晶型开裂为主;随着时效时间的增加,ε-Cu相的尺寸明显长大,并且在晶界的分布明显,裂纹在晶界上的扩展比晶内更容易,应力腐蚀开裂方式以沿晶开裂为主。
     在汽车排气管热端用铁素体不锈钢00Cr18NbTi的基础上添加1.90%的合金元素钼可提高不锈钢的高温抗氧化性,研究表明合金元素钼促进了Fe_2(Nb, Mo)Laves相的析出,且主要在晶界富集,尤其是其钉扎在三叉晶界阻止了基体中铁和锰离子由晶界向外扩散,从而有效的抑制了快速氧化。Fe_2(Nb, Mo) Laves相在氧化膜和不锈钢基体界面处富集,能有效的降低不锈钢的氧化速率,同时Fe_2(Nb, Mo) Laves相硬而脆,与氧化膜结合力不强,导致了氧化膜的剥落。
     另外,通过改变铈和铌的含量分析了铌和铈在高温氧化中的作用机理,研究结果表明:铌和铈的最佳添加量分别为0.26%和0.11%,其抗氧化性的提高主要是由于铌含量的降低增加了基体和氧化膜界面的结合强度,稀土铈的氧化物促进了Cr_2O_3膜的形成并且其氧化物沉积在不锈钢基体形成的空腔里并快速在其周围生成Cr_2O_3膜,阻止了空腔的形成,提高了氧化膜与不锈钢基体的粘附性,从而增加了不锈钢的高温抗氧化性能。
     以经济型排气歧管用00Cr14Nb铁素体不锈钢为基础,研究了成分和工艺对铁素体不锈钢成形极限曲线的影响规律,研究结果表明:铁素体不锈钢中微合金化和工艺对其应变硬化指数n值变化很小,其表现在成形极限曲线平面应变条件下FLD0的变化也很小;随着强度系数K值的增加,拉-拉区(胀形区)曲线有所增加;成形极限曲线拉-压区(压延区)主要受塑性应变比r值的影响,随着r值的增加曲线高度也在增加。
     铌钛双稳定有效固定了基体里固溶的碳氮原子,可以获得强度高的{111} α织构,有利于再结晶γ织构的形成。热轧不退火直接进行冷轧时,冷轧织构表现出强烈的α织构,织构取向主要集中在{001}<110>~{112}<110>之间。经热轧退火后冷轧时,冷轧态织构逐渐偏向{111}<110>且强度较高,{111}晶粒具有较高的形变储存能,获得了优先生长。热轧退火后冷轧成品板中∑13b重位点阵晶界较多,说明了{111}<112>取向晶粒的长大是选择性长大的结果。再结晶γ织构的形成主要是“定向形核”和“选择性生长”综合作用的结果。随着退火温度的增加,晶粒尺寸也在不断增加,再结晶织构逐渐回到了{111}轴,{111}<112>取向强度最高,平均塑性应变比r值最大,成品板在成形极限曲线拉-压区获得了最高的极限应变值。
Ferritic stainless steel (FSS) has good resistance of corrosion, lower linearexpansion coefficient and low-cost, which is widely used as the automotive exhaustsystem. In recent years, the higher service life requirements and emission temperatureof automobile exhaust system put forward the higher requirements for local corrosionresistance of cold end and high temperature oxidation resistance of hot end. Thelocalized corrosion resistance of ferritic stainless steels used as cold end of exhaustsystem was mainly improved by adding alloy elements such as chromium,molybdenum and copper, the representative material was00Cr19NbTi. The mainmeans to improve the performance of high temperature oxidation resistance ofautomobile exhaust manifold were as follow, the first was adding molybdenum andrare earth cerium with higher chromium and another was to increase the amount ofsilicon, the representative material are00Cr18NbTi and00Cr14Nb. Due to thecomplicated processing and high content silicon is detrimental to the formability,improve the formability of00Cr14Nb ferritic stainless steel becoming the keyresearch. Based on the above issues, the effect of copper and molybdenum on thelocalized corrosion in chloride of00Cr19NbTi FSS was studied, the content of copperwas optimized, while the effect of molybdenum and rare earth cerium additions on themechanism of increasing the high temperature oxidation resistance of00Cr18NbTiFSS, and the effect of alloy element and processing technology on the forming limitcurves of FSS with lower chromium and higher silicon00Cr14Nb FSS wereinvestigated by means of scanning electron microscopy, transmission electronmicroscopy, X-ray Photoelectron Spectroscopy, electron backscatter diffractiontechnology, X-ray diffraction technique, and mechanical properties testing and testequipment, the main conclusions are as follows:
     Based on the00Cr19NbTi FSS used as cold end of automobile exhaust system, acertain content of the copper and molybdenum added individually could improve thepitting corrosion resistance. No stress corrosion cracking (SCC) was observed in thisFSS with the copper or molybdenum single added, the SCC susceptibility increased with both of copper and molybdenum additions, the optimum content of copper andmolybdenum are0.20wt%and1.63wt%. The solid solution content of copper inferrite is~0.20%and the pitting potential of copper is higher than the matrix, whichimproves the pitting corrosion resistance of the surface passive film. Continue to addthe copper content to0.50wt%, the pitting corrosion resistance and stress corrosionresistance decreased rapidly because of the over-saturated copper precipitations. Theaging behavior of the ferritic stainless steel with0.50wt%copper and1.63wt%molybdenum added at600℃indicated that the ε-Cu phases continuously precipitatedand grew which promoted the preferential pitting corrosion of the surrounding matrix.Meanwhile, the selective dissolution and repassivation of Mo element in the matrixpromoted the second corrosion grooves parallel to stress and the initiation of SCC wascreated. When the aging time was short, ε-Cu phases was small and mainly distributedin the ferrite grain, the propagation of pitting corrosion was easy along the ferritegrain and the SCC fracture mode was mostly transgranular. With the increasing ofaging time, the size of ε-Cu precipitations increased and mostly dispersed to the grainboundaries. So, pitting corrosion at ε-Cu precipitations in grain boundaries was easierthan in the matrix of ferrite, the SCC fracture mode changed from mostlytransgranular to mostly intergranular.
     Based on00Cr18NbTi FSS used as the high temperature end of automotiveexhaust system,1.90%molybdenum added improved the high temperature oxidationresistance of FSS, the result showed that alloying element molybdenum facilities theprecipitation of Fe_2(Nb, Mo) Laves phases, and mainly concentrated in the grainboundaries, especially the Fe_2(Nb, Mo) Laves phases pinning to the triple boundaries,inhibited the bulk diffusion of iron and chromium cations from the matrix andeffectively avoided the rapid oxidation. Fe_2(Nb, Mo) Laves phases enriched in theinterface between the scale and matrix which could effectively reduce the oxidationrate of the stainless steel, while Fe_2(Nb, Mo) Laves phase were hard and brittle,resulting in the spallation of oxide scale.
     The mechanism of niobium and cerium on the high temperature oxidation wasanalyzed by changing the content of niobium and cerium, the results showed that theoptimum content of niobium and cerium were0.26wt%and0.11wt%, respectively.The improvement of high temperature oxidation resistance was attributed to thesolution strengthening of niobium which increases the bonding strength of theinterface between the substrate and the oxide film. The cerium oxide promotes theformation of Cr_2O_3films, deposited in the cavities surrounding the matrix and rapidlyformed the Cr_2O_3films to prevent the formation of large cavities, which couldimprove the adhesion between the oxide film and substrate and finally increases thehigh temperature resistance of investigated stainless steels.
     Based on low cost00Cr14Nb FSS used as exhaust manifold, the effect ofcomposition and process conditions on the forming limit curves of FSS was investigated. The results showed that small change of strain hardening value n withthe micro-alloying and processing changing, so the FLD0changed on the plane straincondition was negligible. With the increasing of strength coefficient K value, theforming limit curves of the bulging area increased. Forming limit curves in thetensile-compression area was mainly depended on the plastic strain ratio r value, theheight of curve in the tensile-compression area increases with the r value increasing.
     Because the interstitial atoms carbon and nitride could be totally fixed by dualstabilized niobium and titanium, the high intensity {111} α texture was obtained andconducived to the formation of γ recrystallization texture. Cold rolling texture withouthot band annealing exhibited a strong α texture, the texture orientation was mainlybetween in {001}<110>~{112}<110>. When cold rolled after hot band annealing,cold rolling texture gradually tended to {111}<110> and had a strong intensity.{111}crystal grains had a higher deformation stored energy and the nucleis appeared in the{111} region. The Σ13b coincidence site lattice grain boundaries were higher in thefinal sheet with hot band annealing showed the growth of {111}<112> orientation wasthe result of selective growth. The formation of γ fiber texture was attributed to thecombined effect of “oriented nucleation” and “selective growth”. With the increasingof annealing temperature, the grain size was also increased, the maximum texture wasclose to {111} pixel and the {111}<112> orientation intensity was the highest, whilethe r value came up to the highest and the final sheets obtained the maximum limitstrain value in the tensile-compression area.
引文
[1] Thum E.E., The Book of Stainless Steels, Ohio: ASM,1933.
    [2]张孝福,汽车用不锈钢—我国急待开发的不锈钢市场,太钢科技,2000,10:9-14.
    [3]张孝福,汽车用不锈钢,上海金属,2000,22(4):3-8.
    [4]卫星,铁素体不锈钢在汽车排气系统的应用日益广泛,上海金属,2005,27:63.
    [5]朱双春,王宝森,许轲,汽车排气管用铁素体不锈钢的性能发展,金属加工,2009:12:33-35.
    [6]陆世英,张延凯,康喜范,等,不锈钢,北京:原子能出版社,1995.
    [7]陆世英,不锈钢概论,北京:中国科学技术出版社,2007.
    [8]王丽新,镍市将高位运行,中国有色金属,2008,8:66-67.
    [9]宋丹娜,白艳英,于秀玲,浅谈中国不锈钢产业的现状及可持续发展,四川有色金属,2009,4:1-5.
    [10]范润泽,镍:守得云开见月明-2009年镍市场回顾及2010年展望,中国有色金属,2010,4:64-65.
    [11]丁志强,陈红星,齐慧滨,燃油箱用无铅表面处理钢板材料的发展,表面技术,2006,35(1):5-10.
    [12]韩冬生译,张志仁校,汽车排气系统用不锈钢的现状及今后发展动向,太钢译文,2004,2:66-73.
    [13]戴相全,毕洪运,王可,宝钢汽车排气系统用不锈钢国产化的应用,汽车工艺与材料,2011,26(4):54-61.
    [14] Ha T.K., Jeong H.T., Sung H.J., High temperature bending fatigue behavior of stainless steels forautomotive exhaust, J. Mater. Process. Technol.,2007,187-188:555-558.
    [15] Manabu Oku,日新制钢汽车排气系统用耐热铁素体不锈钢的开发,2011,33(5):10-18.
    [16] James B.H., Meeting north Ameriacan demands for stainless exhaust systems. Steel Times Int.,1993,4:35-41.
    [17]沈其脂,铁素体不锈钢的进展,上海金属,1978,9:17-24.
    [18]陈德和,不锈钢的性能与组织,北京:机械工业出版社,1977:64-67.
    [19] Ogwu A.A., Davies T.J., Improve the sensitization resistance of ferritic stainless steels, ScriptaMater.,1997,37:259-263.
    [20]张文茹.铁素体不锈钢00Cr12Ti冷成型性及影响因素研究,北京:北京科技大学,2001.
    [21]孟繁茂,付俊岩,现代含铌不锈钢,北京:冶金工业出版社,2004:67-71.
    [22]肖纪美,不锈钢的金属学问题(第2版),北京:冶金工业出版社,2006:85-88.
    [23] Cleiton C.S., Jesualdo P.F., Helio C.M., et al, Microstructural characterization of the HAZ inAISI444ferritic stainless steel welds, Mater. Charact.,2008,59:528-533.
    [24]颜海涛,含铌超低碳铁素体不锈钢的微观组织与高温腐蚀性能研究,上海:上海交通大学,2009.
    [25] Kawasaki T., Stainless steel production technologies at kawasaki steel-features of productionfacilities and material developments, Kawasaki Steel Tech. Rep.,1999,40:5-15.
    [26] Shin H.J., An J.K., Park S.H., et al, The Effect of Texture on Ridging of Ferritic Stainless Steel,Acta Mater.,2003,51(16):4693-4706.
    [27] Yazawa Y., Muraki M., Kato Y., Effect of chromium content on relationship between r-value and{111} recrystallization texture in ferritic steel, ISIJ Inter.,2003,43(10):1647-1653.
    [28] Chan J.W., Fracture toughness of304stainless steel in an8tesla field, Acta Metall. et Mater.,1990,38(3):479-487.
    [29] Atsushi MIYAZAKI, Kenji TAKAO, Osamu FURUKIMI. Effect of Nb on the Proof Strength ofFerritic Stainless Steels at Elevated Temperatures. ISIJ Inter.,2002,42:916-920.
    [30] Emad EL-KASHIF, Kentaro ASAKURA, Toshihiko KOSEKI, et al., Effects of Boron, Niobiumand Titanium on Grain Growth in Ultra High Purity18%Cr Ferritic Stainless Steel. ISIJInternational,2004,44:1568-1575.
    [31] Kuzucu V., Aksoy M., Korkut M.H., The effect of strong carbide-forming elements such as Mo,Ti, V and Nb on the microstructure of ferritic stainless steel. J. Mater. Process. Technol.,1998,82:165-171.
    [32] Aksoy M., Yilmaz O., Korkut M.H., The effect of strong carbide-forming elements on theadhesive wear resistance of ferritic stainless steel. Wear,2001,249:639-646.
    [33] Kuzucu V., Aksoy M., M.H. Korkut. et al, The effect of niobium on the microstructure of ferriticstainless steel, Mater. Sci. Eng. A,1997,230:75-80.
    [34] Sousa A.C., Kuri S.E., Relationship between niobium content and pitting corrosion resistance inferritic stainless steels. Mater. Lett.,1995,25:57-60.
    [35] Gyu M.S., Jae C.A., Seung C.H., et al, Effect of Nb precipitate coarsening on the hightemperature strength in Nb containing ferritic stainless steels. Mater. Sci. Eng. A,2005,396:159-165.
    [36] Yan H.T., Bi H.Y., Li X., Precipitation and mechanical properties of Nb-modified ferriticstainless steel during isothermal aging, Mater. Charact.,2009,60:204-209.
    [37] Aksoy M., Kuzucu V., Korkut M.H., The effect of niobium and homogenization on the wearresistance and some mechanical properties of ferritic stainless steel containing17-18wt.%chromium. J. Mater. Process. Technol.,1999,91:172-177.
    [38] Aksoy M., Karamis B., Evin E., An evaluation of the wear behaviour of a dual-phase low-carbonsteel,Wear,1996,193:248-252.
    [39] Yazawa Y., Kato Y., Kobayashi M., Development of Ti bearing high performance ferritic stainlesssteels R430XT and RST-1, Kawasaki Steel Technical Report,1999,40:23-29.
    [40] Hashimoto K., Asami K., Teramoto K., An X-ray photo-electron spectroscopic study on the roleof molybdenum in increasing the corrosion resistance of ferritic stainless steels in HC1, Corros.Sci.,1979,19(1):3-14.
    [41] Cvijovic Z., Radenkovic G., Microstructure and pitting corrosion resistance of annealed duplexstainless steel, Corros. Sci.,2006,48:3887-3906.
    [42] Sinclair C.W., Mithieux J.D., Schmitt J.H., et al., Recrystallization of Stabilized Ferritic StainlessSteel Sheet. Metall. Mater. Trans. A,2005,36:3205-3215.
    [43] Masahiro Seo, Gunnar Hultquist, Christofer Leygraf, et al., The influence of minor alloyingelements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acidsolution. Corros. Sci.,1986,26:949-955.
    [44] Jacek Banas, Andrzej Mazurkiewicz, The effect of copper on passivity and corrosion behaviourof ferritic and ferritic-austenitic stainless steels. Mater. Sci. Eng. A,2000,277:183-191.
    [45] Pardo A., Merino M.C., Carboneras M., et al, Pitting corrosion behaviour of austenitic stainlesssteels with Cu and Sn additions. Corros. Sci.,2007,49:510-525.
    [46] Gonzalez B.M., Castro C.S.B., Buono V.T.L., et al, The influence of copper addition on theformability of AISI304stainless steel, Mater. Sci. Eng. A,2003,343:51-56.
    [47] Bohni H., Breakdown of Passivity and Localized Corrosion Process, Langmuir,1987,3(6):924-930.
    [48] Franks G.S., Electrochemical Techniques in Corrosion: Status, Limitations, and Needs, J. ASTMInter.,2008,5(2):1-27.
    [49] Frankel G.S., Pitting Corrosion of Metals, Journal of the Electrochemical Society,1998,145:2186-2198.
    [50]中国腐蚀与防护学会主编,金属的局部腐蚀,北京:化学工业出版社,1995.
    [51]何业东,齐慧滨,材料腐蚀与防护概论,北京:机械工业出版社,2005.
    [52] Levbare G. O., Burstein G. T., The inhibition of pitting corrosion of stainless steels by chromateand molybdate ions, Corros. Sci.,2003,45:1545-1569.
    [53] Cvijovi Z., Radenkovi G., Microstructure and pitting corrosion resistance of annealed duplexstainless steel, Corros. Sci.,2006,48:3887-3905.
    [54] Yusuke T., Atsushi N., Tooru T., Pitting corrosion mechanism of Type304stainless steel under adroplet of chloride solutions, Corros. Sci.,2007,49:1394-1407.
    [55] Suresh Kumar M., Sujata M., Venkataswamy M.A., Failure analysis of a stainless steel pipeline,Eng. Fail. anal.,2008,15:497-504.
    [56]魏宝明,金属腐蚀理论及应用,北京:化学工业出版社,1984.
    [57]刘秀晨,安成强,崔作兴,等,金属腐蚀学,北京:国防工业出版社,2002.
    [58]天华化工机械及自动化研究设计院,腐蚀理论、试验及监测第1卷,北京:化学工业出版社,2009.
    [59] Pardo A., Merino M. C., Coy A. E., Effect of Mo and Mn additions on the corrosion behaviour ofAISI304and316stainless steels in H2SO4, Corros. Sci.,2008,50:780-794.
    [60] Qvarfort R., Some observations regarding the influence of molybdenum on the pitting corrosionresistance of stainless steels, Corros. Sci.,1998,40:215-223.
    [61] Kaneko M., Isaacs H.S., Effects of molybdenum on the pitting of ferritic and austenitic-stainlesssteels in bromide and chloride solutions, Corros. Sci.,2002,44:1825-1834.
    [62] Szklarska-Smialowska Z., Pitting Corrosion of Metals, National Association of CorrosionEngineers, Houston,1986.
    [63] Sugimoto K., Sawada Y., The role of molybdenum additions to austenitic stainless steels in theinhibition of pitting in acid chloride solutions, Corros. Sci.,1977,17:425-437.
    [64] Ogawa H., Omata H., I. Itoh, et al, Auger electron spectroscopic and electrochemical analysis ofthe effect of alloying elements on the passivation behavior of stainless steels, Corros.,1978,34:53-65.
    [65] Newman R.C., The dissolution and passivation kinetics of stainless alloys containingmolybdenum-1.Coulometric studies of Fe-Cr and Fe-Cr-Mo alloys, Corros. Sci.,1985,25:331-342.
    [66] Asawa M., Devasenapathi A., Effect of corrosion product layer on SCC susceptibility of coppercontaining type304stainless steel in1M H2SO4, Mater. Sci. Eng. A,2004,366:292-298.
    [67] Hermas A.A., Ogura K., Yakagi S., et al, Effects of alloying additions on corrosion andpassivation behaviors of Type304stainless steel, Corros.,1995,51:3-10.
    [68] Ujiro T., Satoh S., Staehle R.W., et al, Effect of alloying Cu on the corrosion resistance ofstainless steels in chloride media, Corros. Sci.,2001,43:2185-2200.
    [69] Zhang Z.X., Lin G., Xu Z., Effects of light pre-deformation on pitting corrosion resistance ofcopper-bearing ferritic antibacterial stainless steel, J. Mater. Process. Techno.,2008,205:419-424.
    [70] Kazior J., Karwan-Baczewska J., Banas J., Metalurgia (Proszkow),1996,3-4:70-86.
    [71] Banas J., Kazior J., Stypula B., Metalurgia i Odlewnictwo1997,23(2):169-175.
    [72] Kazior K., Banas J., Korozja i pasywacja spiekanych austenitycznych stali nierdzewnych.Materialy konferencji KOROZJA93, Wydawnictwo ICHF PAN, Warszawa1993.
    [73] Sourisseau T, Chauveau E, Baroux B, Mechanism of copper action on pitting phenomenaobserved on stainless steels in chloride media, Corros. Sci.,2005,47:1097-1117.
    [74] Hultquist G., Seo M., Leitner T., et al, The dissolution behaviour of iron, chromium, molybdenumand copper from pure metals and from ferritic stainless steels, Corros. Sci.,1987,27:937-946.
    [75] B. Postrach, I. Garz, H.H. Stehblow, The influence of copper on corrosion and passiviation ofiron-chromium-alloys Part I: Electrochemical behavior in sulfuric acid solutions, Werkst. Korros.,1994,45:508-516.
    [76] M. Seo, G. Hultquist, C. Leygraf, et al, The influence of minor alloying elements (Nb, Ti and Cu)on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution, Corros. Sci.,1986,26:949-960.
    [77] Yuan J.N., Wen. L.C., Sun. W.H., The effect of copper on the anodic dissolution behaviour ofaustenitic stainless steel in acidic chloride solution, Corros. Sci.,1992,33:851-859.
    [78] Yamamoto A., Ashiura T., Kamisaka E., Mechanism of improvement on corrosion resistance bycopper addition to ferritic stainless steels, Boshoku Gijutsu,1986,35:448-454.
    [79] Kim S.T., Park Y.S., Effect of Copper Addition on Corrosion Behavior of High-PerformanceAustenitic Stainless Steel in Highly Concentrated Sulfuric Acid, Corros,2007,63:114-126.
    [80] Ohashi H., Adachi T., Maekita K., Tetsu to Hagane,1980,66: S1309.
    [81] Watanabe H., Yoshii T., Fujii A., et al, Tetsu to Hagane,1983,69: S1502.
    [82] Abo H., Noguchi S., Hayashi N., et al, Boshoku Gijutsu,1974,23:303-314.
    [83] Hermas A.A., Ogura K., Adachi T., Accumulation of copper layer on a surface in the anodicpolarization of stainless steel containing Cu at different temperatures, Electrochim. Acta,1995,40:837–844.
    [84]柯伟,中国腐蚀调查报告,北京:化学工业出版社,2003.
    [85]李铁藩,金属高温氧化和热腐蚀,北京:化学工业出版社,2003.
    [86]隋晓红,陈昕, Nb、Ti、Al多元微合金化对低碳锰钢抗氧化性能的影响,鞍钢技术,2003,40:23-25.
    [87] Mukherjee S.K., Upadhyaya G.S., Oxidation behavior of sintered434L ferritic stainlesssteel-Al2O3compoaites with ternary additions, Oxid. Met.,1985,23:177-189.
    [88] Buscail H., EI Messki S., Riffard F., et al, Characterization of the oxides formed at1000℃on theAISI316L stainless steel-Role of molybdenum, Mater. Chem. Phys.,2008,111:491-496.
    [89] Pfeil L.B., Improvements in heat resistant alloys, UK Patent:459848,1937.
    [90]杜晓健,王龙妹,刘晓,等,稀土在耐热钢高温氧化中的作用机制,稀土,2010,31:73-79.
    [91] Stringer J., Hou P.Y., in V. Srinivasan and K. Vedula (eds.), Proc. Symp. on Corrosion andParticle Erosions at High Temperatures, TMS Annual Meeting, Las Vegas, NV, Feb.27-Mar.3,1989.
    [92] Wagner C, Passivity during the oxidation of silicon at elevated temperatures, Journal of AppliedPhysics,1985,29(9):1295-1297.
    [93]李碚,稀土金属在耐热钢和耐热合金中的应用,稀土,1985,6(5):45-52.
    [94]李碚,王嘉敏,胥继华,稀土元素对耐热金属材料高温腐蚀行为的改善作用,稀土在钢铁中的应用,北京:冶金工业出版社,1987.
    [95] Davis H.H., Graham H.C., Kvernes I.A., Oxidation behavior of Ni-Cr-1ThO2alloys at1000and1200℃, Oxid. Met.,1971,3:431-451.
    [96] Stringer J., Wright I.G., The high-temperature oxidation of cobalt-21wt.%chromium-3vol.%Y2O3alloys, Oxid. Met.,1972,5:59-88.
    [97] Ecer G.M., Meier G.H., The effect of cerium on the oxidation of Ni-50Cr alloys, Oxid. Met.,1979,13:159-180.
    [98] Przybylski K., Garratt-Reed A.J., Yurek G.J., Grain Boundary Segregation of Yttrium in ChromiaScales, J. Electrochem. Soc.,1988,135:509-517.
    [99] Rapp R.A., Pieraggi B., Chromia scale growth in alloy oxidation and the reactive element effect,J. Eleetroehem. Soc.,1993,140:2844-2850.
    [100] Kofstad P., High Temperature Corrosion, Elsevier Applied Science, London, New York,1988.
    [101] Atkinson A., Taylor R.K., in G. Simkovich and V.S. Stubican (eds.), Transport inNon-stoichiometric Compounds, New York, Plenum Press,1985.
    [102] Skeldon M., Calvert J.M., Lees D.G., An Investigation of the growth-mechanism of Cr2O3onpure chromium in1atm oxygen at950℃, Oxid. Met.,1987,28:109-125.
    [103] Kofstad P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxide,Wiley and Sons,1972.
    [104] P.Y. Hou, J. Stringer, The effect of reactive additions on the selective oxidation, growth andadhesion of chromia scales. Mater. Sci. Eng. A,1995,202:1-10.
    [105] Yurek G.J., Przybylski K., Garratt-Reed A.J., Segregation of Y to grain boundaries in the Al2O3scale formed on an ODS alloy, Journal of the Electrochemical Society,1987,134(12):3207-3208.
    [106] Pint B.A., Hobbs L.W., The formation of α-A1203scales at1500℃, Oxidation of Metals,1994,41(34):203-233.
    [107]俞方华,杨国华,韩荣典,等,活性元素Y和Ce对Fe-25Cr-40Ni合金高温氧化的影响,金属学报,1992,28(4):145-153.
    [108] Versaci R.A., Clemens D., Quadakkers W.J., Distribution and transport of yttrium in aluminascales on iron-base ODS alloys, Solid State Ionics,1993,(59):235-242.
    [109] Lnstman B., The intermittent oxidation of some nickel—chromium base alloys, Tram AIME,1950,(8):995-996.
    [110] Tien J.K., Pettit F.S., Mechanism of oxide adherence on Fe-25Cr-4A1(Y or Sc) alloys, Met.Tram.,1972,(3):1587-1599.
    [111] Smialek J.L., Jayne D.T., Schaeffer J.C., et a1, Effects of hydrogen annealing,sulfur segregationand diffusion on the cyclic oxidation resistance of super alloys:a review. Thin Solid Films,1994,253(1):285-292.
    [112] Grabke H.J., Kurbatov G., Schmutzler H.J., Segregation beneath oxide scales, Oxidation ofMetals,1995,43(1):97-114.
    [113] Strawbridge A., Evans H.E., Ponton C.B., Spallation of oxide scales from NiCrAlY overlaycoatings, Materials Science Forum,1997,251(4):365-372.
    [114] Wilber J.P., Bennett M.J., Nicholls J.R., Lifetime extension of alumina forming FeCrAl-REAlloys:influence of alloy thickness, Materials at High Temperatures,2000,17(1):125-132.
    [115]朱京希,陈徳香,戚国平,等,430铁素体不锈钢抗高温氧化性能和高温氧化产物在稀土作用下的改变,中国稀土学报,2006,24:490-496.
    [116]李亚波,王福明,李长荣,等,铈对Cr12铁素体不锈钢抗高温氧化性能的影响,北京科技大学学报,2009,31(11):1406-1413.
    [117]张辉,崔文芳,王建军,等,铈对00Cr17铁素体不锈钢高温抗氧化性的影响,中国稀土学报,2010,28(3):366-371.
    [118] Bunge H.J., Determination of the orientation distribution function from isolated axis densityvalues, Tex. Crystal. Sol.,1977,2(3):169-174.
    [119] Bunge H.J., Esling C., Non-random orientation distribution functions with random pole figures,Tex. Crystal. Sol.,1979,3(3):169-190.
    [120]毛卫民,金属材料的晶体学织构与各向异性,北京:科学出版社,2002.
    [121]杨平,电子背散射衍射技术及其应用,北京:冶金工业出版社,2007.
    [122] Yazawa Y., Ozaki Y., Kato Y., Development of ferritic stainless steel sheets with excellent deepdrawability by {111} recrystallization texture control, JSAE Rev.,2003,24:483-488.
    [123] Ray R.K., Jonas J.J., Hook R.E., Cold rolling and annealing textures in low carbon and extralow carbon steels, Int. Mater. Rev.,1994,39:129-172.
    [124] Rajib S., Ray R.K., Bhattacharjee D., Attaining deep drawability and non-earing properties in Ti+Nb interstitial-free steels through double cold rolling and annealing, Scripta Mater.,2007,57:257-260.
    [125] Rajib S., Ray P.K., Microstructural and textural changes in a severely cold rolled boron-addedinterstitial-free steel, Scripta Mater.,2007,57:841-844.
    [126] Raabe D., Lücke K., Texture of ferritic stainless steels, Mater. Sci. Technol.,1993,9:302-312.
    [127] Tikhovskiy I., Raabe D., Roters F., Simulation of earing of a17%Cr stainless steel consideringtexuture gradients, Mater. Sci. Eng. A,2008,488:482-490.
    [128] Sakai T., Saito Y., Matsuo M., et al, Inhomogeneous texture formation in high speed hot rollingof ferritic stainless steel, ISIJ Inter.,1991,31:86-94.
    [129] Abreu H.F.G., Bruno A.D.S., Tavares S.S.M, et al, Effect of high temperature annealing ontexture and microstructure on an AISI-441ferritic stainless steel, Mater. Charact.,2006,57:342-347.
    [130] Huh M.Y., Engler O., Effect of intermediate annealing on texture, formability and ridging of17%Cr ferritic stainless steel sheet, Mater. Sci. Eng. A,2001,308:74-87.
    [131] Yan H.T., Bi H.Y., Li X., Microstructure and texture of Nb+Ti stabilized ferritic stainless steel,Materials Charac.,2008,59:1741-1746.
    [132] Yan H.T., Bi H.Y., Li X., Effect of two-step cold rolling and annealing on texture, grainboundary character distribution and r-value of Nb+Ti stabilized ferritic stainless steel, MaterialsCharac.,2009,60:65-68.
    [133] Raabe D., Hlscher M., Dubke M., et al, Texture development of strip cast ferritic stainless steels,Steel Res.,1993,64(7):359-363.
    [134]谭红,刘新民,连建设,板材成形极限的预测研究,农业机械学报,1997,28(4):157-161.
    [135] Goodwin, G.M., Application of strain analysis to sheet metal forming problems in the pressshop, Metall. Ital.1968,60:764-774.
    [136] Keeler S.P., Determination of forming limits in automotive stampings, Sheet Met. Ind.1965,42:683-691.
    [137] Siegfried, Hecker S., Simple Technique for Determining Forming Limit Curves, Sheet Metal.Indus.,1975,9:671-676.
    [138]于燕,车畅,赵洪运,成形极限曲线与板材成分及性能指标关系的探讨,汽车工艺与材料,2005,4:20-23.
    [139] Tang C.Y., Tai W.H., Material damage and forming limits of textured sheet metals, J. Mater.Process. Technol.,2000,99:135-140.
    [140] Narayanasamy, R., Sathiya Narayanan, C., Report of FLD on IF steels submitted to TISCO,National Institute of Technology, Tamilnadu, India,2004.
    [141] Narayanasamy, R., Sathiya Narayanan, C., Forming, fracture and wrinkling limit diagram for ifsteel sheets of different thickness. Mater. Des.2008,29:1467-1475.
    [142] Ahn D.C., Yoon J.W., Kim K.Y., Modeling of anisotropic plastic behavior of ferritic stainlesssteel sheet, Inter. Mech. Sci.,2009,51:718-725.
    [143] Philip Eyckens, Albert Van Bael, Paul Van Houtte, Marciniak-Kuczynski type modelling of theeffect of Through-Thickness Shear on the forming limits of sheet metal, Inter. J. Plast.,2009,25:2249-2268.
    [144] Safaeirad M., Toroghinejad M.R., Ashrafizadeh F., Effect of microstructure and texture onformability and mechanical properties of hot-dip galvanized steel sheets, J. Mater. Process.Technol.,2008,196:205-212.
    [145] Shena W., Peng L.H., Tang C.Y., An anisotropic damage-based plastic yield criterion and itsapplication to analysis of metal forming process, Inter. J. Mech. Sci.,2005,47:1897-1922.
    [146] Hagbart S. Alsos, Odd S. Hopperstad, Rikard T rnqvist, et al., Analytical and numericalanalysis of sheet metal instability using a stress based criterion, Inter. J. Sol. Struct.,2008,45:2042-2055.
    [147] Kjell Mattiasson, Mats Sigvant, An evaluation of some recent yield criteria for industrialsimulations of sheet forming processes, Inter. J. Mech. Sci.,2008,50:774-787.
    [148] Butuca M.C., Barata da Rocha A., Gracio J.J., et al., A more general model for forming limitdiagrams prediction, J. Mater. Process. Technol.,2002,125-126:213-218.
    [149] Butuc M.C., Gracio J.J., Barata da Rocha A., A theoretical study on forming limit diagramsprediction, J. Mater. Process. Technol.,2003,142:714-724.
    [150] Chakrabarty J., Lee W.B., Chan K.C., A new theoretical model for predicting limit strains in thepunch stretching of sheet metals, J. Mater. Process. Technol.,1999,91:257-263.
    [1]梁志德,王福,织构材料的三维取向分析术,沈阳:东北工学院出版社,1986.
    [2]毛卫民,张新明,晶体材料织构定量分析,北京:冶金工业出版社,1995.
    [3]毛卫民,金属材料的晶体学织构与各向异性,北京:科学出版社,2002.
    [4] Narayanasamy, R., Sathiya Narayanan, C., Report of FLD on IF steels submitted to TISCO,National Institute of Technology, Tamilnadu, India,2004.
    [5] Narayanasamy, R., Sathiya Narayanan, C., Forming, fracture and wrinkling limit diagram for ifsteel sheets of different thickness. Mater. Des.2008,29:1467-1475.
    [6]天华化工机械及自动化研究设计院,腐蚀理论、试验及监测第1卷,北京:化学工业出版社,2009.
    [1]陆世英,张延凯,康喜范,等,不锈钢,北京:原子能出版社,1995.
    [2]毕洪运,李鑫,欧响波,等,汽车尾气排放系统低温端用铁素体不锈钢开发,宝钢技术,2007,(4):1-4.
    [3] Fujita N., Ohmura K., Yamamoto A., Changes of microstructures and high temperature propertiesduring high temperature service of Niobium added ferritic stainless steels, Mater. Sci. Eng. A,2003,351:272-281.
    [4] Sim G.M., Ahn J.C., Hong S.C., Effect of Nb precipitate coarsening on the high temperaturestrength in Nb containing ferritic stainless steels, Mater. Sci. Eng. A,2005,396:159-165.
    [5] Yan H.T., Bi H.Y., Li X., et al., Microstructure and texture of Nb+Ti stabilized ferritic stainlesssteel, Mater. Charact.,2008,59:1741-1746.
    [6] Kuzucu V., Aksoy M., Korkut M.H., The effect of niobium on the microstructure of ferriticstainless steel, Mater. Sci. Eng. A,1997,230:75-80.
    [7] Aksoy M., Kuzucu V., Korkut M.H., The influence of strong carbide-forming elements andhomogenization on the wear resistance of ferritic stainless steel, Wear,1997,211:265-270.
    [8] Aksoy M., Kuzucu V., Korkut M.H., The effect of niobium and homogenization on the wearresistance and some mechanical properties of ferritic stainless steel containing17-18wt.%chromium, J. Mater. Process. Technol.,1999,91:172-177.
    [9] Cavazos J. L., Characterization of precipitates formed in a ferritic stainless steel stabilized with Zrand Ti additions, Mater. Charact.,2006,56:96-101.
    [10] ASM speciality handbook stainless steels. Metals Park, OH: American Society for Metals,1994.
    [11] Practical guidelines for the fabrication of duplex stainless steels. London, England: InternationalMolybdenum Association;1999.
    [12] Newman R.C., Shahrabi T., The effect of alloyed nitrogen or dissolved nitrate ions on the anodicbehaviour of austenitic stainless steel in hydrochloric acid, Corros. Sci.,1987,27(8):827-838.
    [13] Nilsson J.O., Kangas P., Karlsson T., et al., Mechanical properties, microstructural stability andkinetics of (alpha)-phase formation in29Cr-6Ni-2Mo-0.38N superduplex stainless steel, Metall.Mater. Trans. A,2000,31A(1):35-45.
    [14] Jacek Banas, Andrzej Mazurkiewicz, The effect of copper on passivity and corrosion behaviourof ferritic and ferritic-austenitic stainless steels. Mater. Sci. Eng. A,2000,277:183-191.
    [15] Metals Handbook, Vol.8, Metals Park, Ohio,1973.
    [16]雍岐龙,钢铁材料中的第二相,北京:冶金工业出版社,2006.
    [17] Kazior K., Banas J., Korozja i pasywacja spiekanych austenitycznych stali nierdzewnych.Materialy konferencji KOROZJA93, Wydawnictwo ICHF PAN, Warszawa,1993.
    [18] Kazior J., Karwan-Baczewska J., Banas J., Metalurgia (Proszkow),1996,3-4:70-86.
    [19] Banas J., Kazior J., Stypula B., Metalurgia i Odlewnictwo1997,23(2):169-175.
    [20] ASM speciality handbook stainless steels. Metals Park, OH: American Society for Metals,1994.
    [21] Practical guidelines for the fabrication of duplex stainless steels. London, England: InternationalMolybdenum Association,1999.
    [22]陈四红,抗菌不锈钢的研究与开发[学位论文].沈阳:中科院沈阳金属研究所,2004.
    [23]魏宝明,金属腐蚀理论及应用,北京:化学工业出版社,2004.
    [24]田昭武,电化学研究方法,北京:科学出版社,1984.
    [25]张志霞,含铜(氮)抗菌不锈钢的组织与性能研究[学位论文],上海:上海交通大学,2007.
    [26] Pardo A., Merino M.C., Coy A.E., et al., Effect of Mo and Mn additions on the corrosionbehaviour of AISI304and316stainless steels in H2SO4, Corros. Sci.,2008,50:780-794.
    [27] Sourisseau T., Chauveau E., Baroux B., Mechanism of copper action on pitting phenomenaobserved on stainless steels in chloride media, Corros. Sci.,2005,47:1097-1117.
    [28] Tan M.W., Akiyama E., Kawashima A., et al., The effect of air exposure on the corrosionbehaviour of amorphous Fe–8Cr–Mo–13P–7C alloys in1M HCl, Corros. Sci.,1995,37:1289-1301.
    [29] Mathieu H.J., Landolt D., An investigation of thin oxide films thermally grown in situ onFe-24Cr and Fe-24Cr-11Mo by auger electron spectroscopy and X-ray photoelectronspectroscopy, Corros. Sci.,1986,26:547-559.
    [30] Olefjord I., Wegrelius L., Surface analysis of passive state, Corros. Sci.,1990,31:89-98.
    [31] Qvarfort R., Some observations regarding the influence of molybdenum on the pitting corrosionresistance of stainless steel, Corros. Sci.,1998,40:215-223.
    [32] Kodama T., Ambrose, J.R., Effect of molybdate ion on the repassivation kinetics of iron insolutions containing chloride ions, Corrosion,1977:155-161.
    [33] Sugimoto K., Sawada Y., The role of molybdenum additions to austenitic stainless steels in theinhibition of pitting in acid chloride solutions, Corros. Sci.,1977,17,425.
    [34] Asawa M, Devasenapathi A, Fujisawa M. Effect of corrosion product layer on SCC susceptibilityof copper containing type304stainless steel in1M H2SO4. Mater. Sci. Eng. A,2004,366:292-298.
    [35] Ujiro T., Satoh S., Staehle R.W., et al, Effect of alloying Cu on the corrosion resistance ofstainless steels in chloride media, Corros. Sci.,2001,43:2185-2200.
    [36] Soon-Hyeok Jeon, Soon-Tae Kim, In-Sung Lee, et al., Effects of copper addition on theformation of inclusions and the resistance to pitting corrosion of high performance duplexstainless steel, Corros. Sci.,2011,53:1408-1416.
    [1]游香米,姜周华,李花兵,等,超纯铁素体不锈钢的开发与应用现状,中国冶金,2006,16:16-19.
    [2]毕洪运,潘国强,李鑫,宝钢汽车排气系统用铁素体不锈钢产品开发,宝钢技术,2011,26:6-11.
    [3]戴相全,毕洪运,王可,宝钢汽车排气系统用不锈钢国产化的应用,汽车工艺与材料,2011,26:54-61.
    [4]藤田展弘,大村圭一,佐藤荣次,自动车排气部品用高耐热钢开发,新日铁技报,1996,361:20-24.
    [5]李实,池和冰,江来珠,超纯铁素体不锈钢精练技术的进步与发展,钢铁研究学报,2011,23:1-4.
    [6]李博,王堂伟,刘湃,等,新型国产不锈钢材料在汽车排气系统中的应用,汽车工艺与材料,2012,27:64-68.
    [7]万仁芳,汽车排气歧管材料现状及发展趋势,现代铸铁(增刊),2011,31:15-22.
    [8]薛春霞,朱云龙,我国汽车用超纯铁素体不锈钢的应用与发展,山西冶金,2011,34:7-9.
    [9]赵朴,钼在不锈钢中的应用,中国钼业,2004,28:3-10.
    [10]王德英,周建辉,张恒华,等,钼含量与环境因素对超纯铁素体不锈钢抗点蚀影响研究,功能材料(增刊),1998,29:809-813.
    [11] Newman R.C., The dissolution and passivation kinetics of stainless alloys containingmolybdenum-1.Coulometric studies of Fe-Cr and Fe-Cr-Mo alloys, Corros. Sci.,1985,25:331-342.
    [12] Pardo A., Merino M. C., Coy A. E., Effect of Mo and Mn additions on the corrosionbehaviour of AISI304and316stainless steels in H2SO4, Corros. Sci.,2008,50:780-794.
    [13] Qvarfort R., Some observations regarding the influence of molybdenum on the pittingcorrosion resistance of stainless steels, Corros. Sci.,1998,40:215-223.
    [14] Kaneko M., Isaacs H.S., Effects of molybdenum on the pitting of ferritic andaustenitic-stainless steels in bromide and chloride solutions, Corros. Sci.,2002,44:1825-1834.
    [15] Szklarska-Smialowska Z., Pitting Corrosion of Metals, National Association of CorrosionEngineers, Houston,1986.
    [16] Sugimoto K., Sawada Y., The role of molybdenum additions to austenitic stainless steels inthe inhibition of pitting in acid chloride solutions, Corros. Sci.,1977,17:425-437.
    [17]李美栓,金属的高温腐蚀,北京:冶金工业出版社,2001.
    [18] Buscail H., EI Messki S., Riffard F., et al., Characterization of the oxides formed at1000℃on the AISI316L stainless steel-Role of molybdenum, Mater. Chem. Phys.,2008,111(2-3):491-496.
    [19]李铁藩,金属高温氧化和热腐蚀,北京:化学工业出版社,2003.
    [20] Saeki I., Konno H., Furuichi R., et al, The effect of the oxidation atmosphere on the initialoxidation of type430stainless steel at1273K, Corr. Sci.,1998,40:191-200.
    [21] Hansson A.N., Somers M.A.J., Influence of the oxidation environment on the scalemorphology and the oxidation rate of Fe–22Cr, Mater. High Temp.,2005,22:223-229.
    [22] Yang Z., Xia G., Singh P., et al, Effects of water vapor on oxidation behavior of ferriticstainless steels under solid oxide fuel cell interconnect exposure conditions, Solid StateIonics,2005,176:1495-1503.
    [23] Jian P., Jian L., Bing H., et al, Oxidation kinetics and phase evolution of a Fe-16Cr alloy insimulated SOFC cathode atmosphere, J. Power Sourc.,2006,158:354-360.
    [24] Huntz A.M., Reckmann A., Haut C., et al, Oxidation of AISI304and AISI439stainlesssteels, Mater. Sci. Eng. A,2007,447:266-276.
    [25] Grabke H.J., Meier G.H., Accelerated oxidation, internal oxidation, intergranular oxidation,and pesting of intermetallic compounds, Oxid. Met.,1995,8:147-176.
    [26] Mukherjee S.K., Upadhyaya G.S., Oxidation behavior of sintered434L ferritic stainlesssteel-Al2O3composites with ternary additions, Oxid. Met.,1985,23:177-189.
    [27] Pérez F.J., Otero E, Hierro M.P., High temperature corrosion protection of austeniticAISI304stainless steel by Si, Mo and Ce ion implantation, Surf. Coat. Technol.,1998,108-109:127-131.
    [28] Sttot F.H., Wood G.C., Stringer J., The influence of alloying elements on the developmentand maintenance of protective scales, Oxid. Met.,1995,8:113-145.
    [29] Fujita N., Ohmura K., Yamamoto A., Changes of microstructures and high temperatureproperties during high temperature service of Niobium added ferritic stainless steels, Mater.Sci. Eng. A,2003,351:272-281.
    [30] Fujita N., Kikuchi M., Ohmura K.,Expressions for solubility products of Fe3Nb3C carbideand Fe2Nb laves phase in Niobium alloyed ferritic stainless steels, ISIJ Inter.,2003,43:1999-2006.
    [31] Yan H.T., Bi H.Y., Li X., et al., Microstructure and texture of Nb+Ti stabilized ferriticstainless steel, Mater. Charact.,2008,59:1741-1746.
    [32] Aksoy M., Kuzucu V., Korkut M.H., The effect of niobium and homogenization on the wearresistance and some mechanical properties of ferritic stainless steel containing17-18wt.%chromium, J. Mater. Process. Technol.,1999,91:172-177.
    [33] Aksoy M., Kuzucu V., Korkut M.H., The influence of strong carbide-forming elements andhomogenization on the wear resistance of ferritic stainless steel, Wear,1997,211:265-270.
    [34]颜海涛,含铌超低碳铁素体不锈钢的微观组织与高温腐蚀性能研究[学位论文],上海:上海交通大学,2009.
    [35] Yang Z.G., Xia G.G., Wang C.M., Investigation of iron–chromium–niobium–titanium ferriticstainless steel for solid oxide fuel cell interconnect applications, J. Power Sources,2008,183:660-667.
    [36]王龙妹,杜挺,卢先利,微量稀土元素在钢中的作用机理及应用研究,稀土,2001,22(4):37-40.
    [37]周庆华,王萍辉,60Si21VMnRE钢中夹杂物、微观组织和本质晶粒度的研究,长沙电力学院学报,2001,16(2):77-80.
    [38]冯海波,430铁素体不锈钢中稀土作用机理的研究[学位论文],沈阳:东北大学,2008.
    [39]李亚波,王福明,李长荣,等,铈对Cr12铁素体不锈钢抗高温氧化性能的影响,北京科技大学学报,2009,31(11):1406-1413.
    [40]李铁藩,金属晶界在高温氧化中的作用,中国腐蚀与防护学报,2002,22(3):180-183.
    [41] Wagner C., Passivity during the oxidation of silicon at elevated temperatures, J. Appl. Phy.,1958,29(9):1295-1297.
    [42] Hossain M.K., Effect of alloy microstructure on the high temperature oxidation of Fe-10%Cr alloy, Corros. Sci.,1979,19(12):1031-1045.
    [43] Pfeil L.B., Improvements in heat resistant alloys, UK Patent:459848,1937.
    [44]杜挺,韩其勇,王常珍,稀土碱土等多元素的物理化学及在材料中的应用,北京,科学出版社,1995.
    [45]林勤,郭峰,朱兴元,碳锰洁净钢中镧和铈在晶界的行为,中国稀土学报,2006,24:729-733.
    [46] Pint B.A., Hobbs L.W., The formation of α-A1203scales at1500℃, Oxidation of Metals,1994,41(34):203-233.
    [47]张辉,崔文芳,王建军,铈对00Cr17铁素体不锈钢高温抗氧化性的影响,2010,28(3):365-371.
    [48] Tien J.K., Pettit F.S., Mechanism of oxide adherence on Fe-25Cr-4A1(Y or Ce)alloys, Met.Tram,1972,(3):1587-1599.
    [1] Keeler S.P., Determination of forming limits in automotive stampings, Sheet Met. Ind.1965,42:683-691.
    [2] Goodwin, G.M., Application of strain analysis to sheet metal forming problems in the pressshop, Metall. Ital.1968,60:764-774.
    [3] Eyckens P., Bael A.N., Houtte P.V., Marciniak-Kuczynski type modeling of the effect ofThrough-Thickness Shear on the forming limits of sheet metal, Inter. J. Plast.,2009,25:2249-2268.
    [4] Shena W., Peng L.H., Tang C.Y., An anisotropic damage-based plastic yield criterion and itsapplication to analysis of metal forming process, Inter. J. Mech. Sci.,2005,47:1897-1922.
    [5] Kjell Mattiasson, Mats Sigvant, An evaluation of some recent yield criteria for industrialsimulations of sheet forming processes, Inter. J. Mech. Sci.,2008,50:774-787.
    [6] Utica M.C., Baraga ad Rocha A., Gracie J.J., et al., A more general model for forming limitdiagrams prediction, J. Mater. Process. Technol.,2002,125-126:213-218.
    [7] Butuc M.C., Gracie J.J., Baraga ad Rocha A., A theoretical study on forming limit diagramsprediction, J. Mater. Process. Technol.,2003,142:714-724.
    [8] Chakrabarty J., Lee W.B., Chan K.C., A new theoretical model for predicting limit strains inthe punch stretching of sheet metals, J. Mater. Process. Technol.,1999,91:257-263.
    [9] Shen K., Duggan B.J., Microbands and crystal orientation metastability in cold rolledinterstitial-free steel, Acta Mater.,2007,55(4):1137-1144.
    [10] Sinclair C.W., Robaut F., Maniguet L., et al., Recrystallization and texture in a ferriticstainless steel: an EBSD study, Adv. Eng. Mater.,2003,5(8):570-574.
    [11] Sinclair C.W., Mithieux J.D., Schmitt J.H., et al., Recrystallization of stabilized ferriticstainless steel sheet, Metall. Mater. Trans.,2005,6A(11):3205-3215.
    [12]梁炳文,陈孝戴,王志恒,钣金成形性能,北京:机械工业出版社,1999.
    [13] Mishra S., Darmann C., Role of texture in deep-drawing steels, Inter. Met. Rev.,1982,27:307-320.
    [14] Hutchinsion W. B., Development and control of annealing textures in low-carbon steels,Inter. Met. Rev.,1984,29:25-42.
    [15] Gilomini P., Bacroix B., Jonas J. J., Theoretical analysis of <111> pencil glide in B. C. C.crystals, Acta Metall.,1988,36:231-256.
    [16] Ray R.K., Jonas J.J., Hook R.E., Cold rolling and annealing textures in low carbon and extralow carbon steels, Int. mater. Rev.,1994,39:129-172.
    [17] Inagaki H., Fundamental aspect of texture formation in low carbon steel, ISIJ Inter.,1994,34:313-321.
    [18] Samajdar I., Verlinden B., Van Houtte P., et al., γ-fiber recrystallization texture in IF-steel:an investigation on the recrystallization mechanisms, Mater. Sci. Eng. A,1997,238:343-350.
    [19] Hutchinsion B., Artymowicz D., Mechanisms and modeling of microstructure/textureevolution in interstitial free steel sheets, ISIJ Inter.,2001,41:533-541.
    [20] Rajib S., Ray P.K., Microstructural and textural changes in a severely cold rolledboron-added interstitial-free steel, Scripta Mater.2007,57:841-844.
    [21] Rajib S., Ray R.K., Bhattacharjee D., Attaining deep drawability and non-earing propertiesin Ti+Nb interstitial-free steels through double cold rolling and annealing. Scripta Mater.,2007,57:257-260.
    [22] Narayanasamy, R., Sathiya Narayanan, C., Report of FLD on IF steels submitted to TISCO,National Institute of Technology, Tamilnadu, India,2004.
    [23] Narayanasamy, R., Sathiya Narayanan, C., Forming, fracture and wrinkling limit diagramfor if steel sheets of different thickness. Mater. Des.,2008,29:1467-1475.
    [24]杨新娥,氮化钛细化钢凝固组织工艺理论研究,北京:北京科技大学,2003.
    [25]刘战英,提高IF钢深冲性能的工艺与机理研究[学位论文],沈阳:东北大学,2004.
    [26] Bate P S, Quinta J. Texture development in the cold rolling of IF steel, Mater. Sci. Eng. A,2004,380:365-377.
    [27] Raabe D., Lücke K., Influence of particles on recrystallization textures of ferritic stainlesssteels, Steel Res.,1992,63:457-464.
    [28] Raabe D., Lücke K., Texture of ferritic stainless steels, Mater. Sci. Technol.,1993,9:302-312.
    [29] Robert G. Nooning,Effect of stabilizing elements on the precipitation behavior and phasestability of type409ferritic stainless steels[thesis paper], Pittsburgh, University ofPittsburgh,1999.
    [30]杜伟,冶金工艺对超低碳铁素体不锈钢微观组织和成形性的影响,沈阳:东北大学,2004.
    [31] Subramanian S.V., Priktyl M., Gaulin B., et al., Effect of precipitate size and dispersion onlankford values of titanium stabilized interstitial-free steels, ISIJ Inter.,1994,34(1):61-69.
    [32] Shi J., Wang X., Comparison of precipitate behaviors in ultra-low carbon,titanium-stabilized interstitial free steel sheets under different annealing processes, Mater.Eng. Perf,1999,8:641-646.
    [33] Shi J., Liu C.R., Role of nanoscale TiC particles in batch annealing of Ti stabilisedinterstitial free steels, Mater. Sci. Technol.,2004,20:1192-1198.
    [34] Kawasaki T., Stainless steel production technologies at kawasaki steel-features ofproduction facilities and material developments, Kawasaki Steel Technical Report,1999,40:5-15.
    [35] Jonas J.J., Urabe T., Oriented nucleation and selective growth during the annealing of IFsteels, Proc Int Forum on Physical Metallurgy of IF Steel, Tokyo: ISIJ,1994,77-94.
    [36] Toth L.S., Jonas J.J., Daniel D., et al., Development of ferrite rolling textures in low andextra low carbon steels, Metal. Trans.,1990,21A(11):2985-3000.
    [37] Vatne H E, Daaland O. On the formation of cube texture in aluminum, Mater. Sci. Forum,1994,157-162:1087-1094.
    [38]毛卫民,赵新兵,金属的再结晶与晶粒长大,北京:冶金工业出版社,1994.
    [39] Yan H.T., Bi H.Y., Li X., Microstructure and texture of Nb+Ti stabilized ferritic stainlesssteel, Materials Charac.,2008,59:1741-1746.
    [40] Yan H.T., Bi H.Y., Li X., Effect of two-step cold rolling and annealing on texture, grainboundary character distribution and r-value of Nb+Ti stabilized ferritic stainless steel,Materials Charac.,2009,60:65-68.
    [41]张海兵,冷轧铁素体不锈钢的表面条纹缺陷和再晶界织构的研究[学位论文],上海:上海大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700