用户名: 密码: 验证码:
基于表面和界面作用构筑聚多糖功能材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生和生物医用材料已成为国际前沿领域之一。仿荷叶和蝉翅微结构制备的自清洁材料、仿洋葱结构多层凝胶以及仿高硬度骨骼的组织工程支架已日益引人注目。这些性能卓越的材料往往与它们表界面独特微观结构以及表、界面相互作用有关。纤维素和甲壳素是地球上最丰富的生物质资源,属于碳水聚合物,统称为天然聚多糖。它们具有安全、无毒、生物相容和生物降解等特点,是构筑仿生及生物医用功能材料理想的原料。
     本工作利用纤维素和甲壳素为原料,分别经碱/尿素水溶液低温溶解后通过非共价键力并基于表、界面相互作用创建出新型功能材料。同时,通过固体核磁共振碳谱(13CNMR)、红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TCA)、示差扫描量热(DSC)、水接触角测试仪、流变仪、紫外-可见光谱仪(uv)、荧光光谱仪(FL)和力学性能测试等表征材料的结构和性能,并研究了它们结构与功能之间构效关系以及表面界面相互作用。同时,通过生物试验评价它们在生物医用领域的应用前景。由此,为利用聚多糖构建一系列生物质大分子功能性材料开辟新途径。
     本工作的主要创新点包括:(1)基于羟基磷灰石与纤维素界面间氢键相互作用,构建出生物相容纤维素/羟基磷灰石纳米复合膜,并使纳米粒子均匀分散;(2)通过两相间界面相互作用构建出纤维素/Si02纳米复合膜,并揭示其湿气响应性机理;(3)基于亲水-疏水界面相互作用,首次利用纤维素凝胶膜微米及亚微米级孔洞作为基底,实现硬脂酸、羟基硬脂酸(HOA)等疏水性晶体有序可控的生长,创建出高疏水性纤维素膜以及仿毛发生长“自清洁”荧光膜;(4)利用固液界面快速接触,成功制备出高强度和生物相容多层纤维素水凝胶;(5)基于甲壳素与聚乙烯醇(PVA)及羟基磷灰石的界面相互作用构建出高强度甲壳素/PVA复合凝胶以及甲壳素/HAP复合塑料,并证明它们具有优良生物相容性。
     本论文的主要研究内容和结论包括以下七部分。
     通过一种简便、价廉的方法在NaOH[/尿素水溶剂体系中将羟基磷灰石纳米粒成功引入纤维素基体。TEM和FTIR结果证明纤维素和羟基磷灰石间存在强氢键力,导致羟基磷灰石纳米粒(20-40nnm)牢固地固定和均匀分散在纤维素膜中,并保持纳米尺寸,形成有机/无机纳米复合膜。复合膜中羟基磷灰石粒子呈现很好的结晶性。这种杂化膜的力学强度和热稳定性随羟基磷灰石的加入而提高。尤其,293T细胞培养实验证明这种无机/有机杂化膜具有无毒和良好的生物相容性。因此,它们在生物医学领域具有作为骨骼修复材料的应用前景。
     基于SiO2与水和纤维素间的氢键相互作用,在预冷的LiOH/汞素水溶剂体系中成功地引入SiO2纳米粒子到纤维素基体,经凝固、再生后形成无机/有机纳米复合膜。实验结果证明纤维素和Si02纳米粒子间强氢键相互作用导致Si02纳米粒子均匀分散在纤维素基底,使复合膜显示良好的相容性。透光率和力学性能证明Si02纳米粒子明显提高了纤维素凝胶的力学性能和透光性以及纤维素膜的力学性能。尤其,纤维素/Si0:纳米复合膜在干态时为乳白色,然而浸入水中则变为透明膜。结构分析证明:在大量水分存在下,SiO2与水和纤维素之间形成氢键并产生均匀的网络结构,致使相容性和透光率明显提高。这种纤维素/Si02智能复合膜显示对湿气的响应性,它在湿度和溶剂检测方面具有应用前景。
     硬脂酸是一种天然产物,具有生物可降解性。利用再生纤维素凝胶的孔洞结构,通过溶剂挥发诱导结晶,实现硬脂酸晶体在纤维素膜表面可控生长。这些硬脂酸微晶体能够牢固嵌入纤维素孔洞,同时纤维素孔壁诱导硬脂酸形成具有微纳二级结构片状微晶体,导致表面高粗糙度。XRD、SEM和水接触角测试结果证明硬脂酸以竖立微晶片均匀分布在纤维素膜表面,微晶片间大量空隙可捕获大量空气导致纤维素膜高疏水性。实验证明,复合膜具有高疏水性、生物降解性、安全和价廉,可望用于环境友好的防水包装材料。
     基于亲水-疏水界面相互作用,羟基硬脂酸晶体能够在纤维素亚微米孔洞中实现可控的有序及竖立生长,模仿“毛发生长”。多孔纤维素基体不仅为羟基硬脂酸晶体固定提供了孔洞基底,而且其亲水性外壳与疏水羟基硬脂酸间不相容性诱导羟基硬脂酸晶体纵向独立地生长,形成有序的类似“短毛”晶体。羟基硬脂酸尾端的羟基与纤维素形成氢键从而固定在纤维素基底,同时亲水-疏水界面相互作用导致羟基硬脂酸晶体沿亲水性纤维素孔壁上向上生长,并形成光滑表面。通过改变溶剂挥发温度和羟基硬脂酸浓度可以调控晶体形貌和尺寸,而且在适宜实验条件可制备出完美的蠕虫状羟基硬脂酸晶体。纤维素/羟基硬脂酸亚微米复合膜具有高疏水性和自清洁性。尤其,4-(1,2,2-三苯乙烯)苯甲酸(TPE-COOH)可以和羟基硬脂酸一起通过疏水作用结合并迁移到纤维表面而产生聚集激发荧光,进而得到纤维素/HOA/TPE-COOH荧光、疏水双功能复合膜。由此,开辟了利用天然产物和一步法在纤维素多孔基底上设计仿生材料的新途径,并可模拟自然界动物毛发生长。
     基于附着醋酸琼脂球或棒与纤维素溶液间快速固/液界面接触,成功制备出洋葱状和多层管状纤维素凝胶。通过琼脂芯表面醋酸与纤维素溶液快速接触导致纤维素包合物迅速破坏而引起纤维素链快速自聚集,形成凝胶层。同时,调节纤维素溶液浓度、凝胶芯直径和固/液界面接触时间可以控制多层纤维素凝胶层厚和层间空隙。由于凝胶中纤维素链束紧密堆积,致使多层纤维素凝胶具有较高压缩强度。此外,多层纤维素凝胶具有良好的结构稳定性,它对乙醇、丙酮、N,N-二甲基乙酰胺(DMAc)和NaOH水溶液等具有优异抗性。生物实验证明小鼠成纤维细胞(L929)在纤维素凝胶层上以及层间黏附和增殖,表现出无毒性和良好的生物相容性。这种具有可控结构和尺寸的多层纤维素凝胶在生物医用领域具有应用前景。
     基于部分化学交联以及冷冻-解冻过程诱导聚乙烯醇(PVA)结晶以及分子间氢键连接,构建出高强度甲壳素/PVA复合凝胶。当PVA含量为25%时(RCP75凝胶),通过甲壳素和PVA链密集堆积以及分子取向和连接形成有序排列而具有类似海蜇凝胶状结构。固体13CNMR、XRD、SEM结果说明反复冷冻-解冻过程可诱导甲壳素和PVA链紧密堆积及分子间氢键键接增强,同时由冰晶和PVA晶体产生微相分离导致复合凝胶层状多孔结构形成。这种双交联层状网络多孔结构能在屈服点附近很好地分散应力,因而RCP75凝胶的压缩强度迅速增加,远高于其它RCP凝胶。此外,甲壳素/PVA复合凝胶具有优异的生物相容性和安全无毒性,可以满足组织工程材料的要求。因而这种复合凝胶在生物医用领域具有应用前景。
     基于甲壳素水凝胶在真空干燥过程中甲壳素链上羟基裸露导致其分子间氢键键合引起凝聚,于是分子重新排列,并沿平面各个方向取向和紧密堆积形成新的聚集态结构,从而改变材料材料形状和尺寸,构建出新一类甲壳素塑料。同时,基于甲壳素水凝胶具有多孔结构和对金属离子强吸附作用,在甲壳素孔洞中原位合成羟基磷灰石粒子。羟基磷灰石和甲壳素间存在着强相互作用,从而明显提高甲壳素复合塑料力学性能。尤其,小鼠胚胎成骨细胞(MC3T3-E1)培养实验证明羟基磷灰石的引入显著增强甲壳素塑料对成骨细胞的粘附能力。因此,该复合塑料作为骨骼修复材料具有应用前景。
     本学位论文利用碱/尿素水溶液作为溶剂低温溶解难溶性的纤维素和甲壳素,并且成功创建出一系列纤维素和甲壳素功能材料。同时阐明了表、界面相互作用以及材料结构与性能之间的关系。由此,为设计高疏水纤维素膜、“自清洁”纤维素荧光膜、高强度生物相容多层纤维素凝胶、高强度甲壳素/无机物复合凝胶以及甲壳素复合塑料等功能材料提供了新思路和新方法。这些基础研究结果具有明显创新性和学术价值,同时符合可持续发展战略。因此本论文具有重要的科学意义和应用前景。
Biomimetic and biomedical materials have become one of the international frontiers. Lotus leaf and cicada wing inspired self-cleaning materials, onion inspired multi-layered hydrogels and tough bone inspired tissue engineering scaffolds have attracted more and more attentions. Such extraordinary biomimetic and biomedical materials are associated with their unique micro structures on the surface and interface as well as the interaction. Cellulose and chitin are the most abundant bio mass resources on earth, and they belong to carbohydrate polymers, generally known as the natural polysaccharides. They exhibit characteristics of safe, nontoxic, biocompatible and biodegradable, so they are ideal raw materials for the construction of biomimetic and biomedical functional materials.
     Utilizing cellulose and chitin as raw materials, novel functional materials were fabricated directly from solutions through non covalent bond interaction as well as surface and interface interaction in this work, which were dissolved in alkli/urea aqueous solutions at low temperature, respectively. Meanwhile, the structure and properties of materials were characterized by solid state13C NMR, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), water contact angle measurement, rheological measurements, thermogravimetric analysis (TGA), UV-vis spectroscopy(UV), photoluminescence spectra (PL) and mechanical testing. The correlation between structure and properties as well as surface and interface interaction was also studied. Meanwhile, the potential application in biomedical fields was also evaluated by biological experiments. Thus, it could develop novel pathways by using polysaccrides for the construction of a series of biopolymer-based functional materials.
     The innovation of this work was listed as follows:(1) Biocompatible cellulose/hydroxyapatite nanocomposite films were constructed and nano hydroxyapatite particles (nHAP) were dispersed evenly as a result of the interfacial hydrogen bonding interaction between hydroxyapatite and cellulose;(2) Cellulose/SiO2nanocomposite films were constructed through two-phase interfacial interaction, and the corresponding moisture responsive mechanism was clarified;(3) Based on the hydrophilic-hydrophobic interfacial interaction, the micro and submicron pores of cellulose gel sheets were used for the first time to control the stearic acid and12-Hydroxyoctadecanoic acid (HOA) crystals grow orderly for the fabrication of high hydrophobic cellulose films and hair growth inspired "self-cleaning" fluorescent cellulose films;(4) High strength and biocompatible multi-layered cellulose hydrogels were successfully constructed by the fast contact of solid-liquid interface;(5) Based on the interfacial interaction between chitin and poly(vinyl alcohol)(PVA) as well as hydroxyapatite, high strength chitin/PVA composite hydrogels and chitin/HAP plastics with excellent biocompatibility were constructed.
     The primary contents and conclusions of this work can be divided into seven parts.
     The nHAP were successfully incorporated into the cellulose matrix in NaOH/urea aqueous solvent through a simple and low cost method. The TEM and FTIR results demonstrated that the strong hydrogen bonding force induced the tight fixation and homogenous dispersion of nHAP (20-40nm) in the cellulose film, forming organic/inorganic hybrid films with primary hydroxyapatite size. The nHAP exhibited good crystallinity in the cellulose film. The mechanical strength and thermal stability increased with the incorporation of nHAP. Especially, the293T cell culture experiment demonstrated that the hybrid films exhibited nontoxicity and good biocompatibility. Therefore, they would have potential application as bone repairing materials in the biomedical field.
     Based on the hydrogen bonding interaction among SiO2, water and cellulose, SiO2nanoparticles were introduced into the cellulose matrix, forming organic/inorganic hybrid films through coagulation and regeneration. The strong hydrogen bonding interaction induced the homogenous dispersion of SiO2in the cellulose matrix, displaying good compatibility. The results of transmittance and mechanical property revealed that the SiO2nanoparticles increased the mechanical property and transparency of cellulose hydrogels as well as the mechanical property of cellulose film. Especially, the cellulose/SiO2nanocomposite film displayed milky color at dry state and changed to transparent film when it was soaked into water. The structure analysis demonstrated that the SiO2, water and cellulose could form hydrogen bonding with the existence of abundant water to create uniform network structure, resulting in the increase of compatibility and transmittance. This kind of cellulose/SiO2smart composite film exhibited moisture responsive property, showing potential application in moisture and solvent detection.
     Stearic acid is a natural product, and it is biodegradable. Stearic acid crystals could grow controllably on the cellulose film by using the porous structure of regenerated cellulose gels through the solvent-vaporized induced crystallization method. The stearic acid crystals were fixed in the pores of the cellulose matrix tightly, and the controllable stearic acid crystallization was induced by the pore wall to form plate-like micro crystals with a micronano binary structure, resulting in high surface roughness. The results of XRD、SEM and water contact angle measurements demonstrated that vertical microplate-like stearic acid crystals could distribute evenly on cellulose film surface, the interspaces among the crystals could trap abundant air for the improvement of hydrophobicity. Therefore, the cellulose/stearic acid films were highly hydrophobic, biodegradable, safe, and inexpensive, showing potential applications in biodegradable waterproof packaging.
     Based on hydrophilic-hydrophobic interfacial interaction, HOA crystals could grow orderly and vertically in the submicron cavities of cellulose, resembling "hair growth" The porous cellulose matrix supplied not only cavities for the HOA crystals fixation, but the incompatibility between hydrophilic shells and hydrophobic HOA also favored the longitudinal and isolated growth of the HOA crystals, forming orderly "short hair" like crystals. The HOA with a few hydroxyls on the tail end could form hydrogen bonds with cellulose to be fixed in the cellulose matrix. The hydrophobic-hydrophilic interfacial interaction could induce the growth of the relatively hydrophobic HOA crystals along the pore wall of the hydrophilic cellulose separately, which exhibited a smooth surface. The HOA crystal morphologies can be controlled by changing the temperature and HOA concentration, and the perfect wormlike crystals could be fabricated at the suitable experimental conditions. The cellulose/HOA submicron composite films exhibited high hydrophobicity with self-clean ability. Especially,4-(1,2,2-triphenylethenyl) benzoic acid,(TPE-COOH) could interact with HOA through hydrophobic interaction to migrate onto the cellulose film surface and aggregate to emit, so the bifunctional photoluminescent and hydrophobic cellulose/HOA/TPE-COOH films were constructed. Thus, it would open up a novel one-step pathway to facilely design bio-inspired materials in the porous cellulose matrix by utilizing natural products, to resemble "hair growth" on the animal skin in the nature.
     Onion-like and multi-layered tubular cellulose hydrogels were constructed successfully through a fast contact of the solid-liquid interface between the gel spheres and rods loaded with acid and the cellulose solution. Due to the instant destruction of the cellulose inclusion complex (IC) by contact with acid on the surface of the gel core, the cellulose hydrogel layer could be constructed rapidly along the gel surface through the quick self-aggregation between cellulose chains. The layer thickness and inter-layer space could be controlled by adjusting the cellulose concentrations, the gel core diameter and the contacting time of the solid-liquid interface. Meanwhile, the multi-layered cellulose hydrogels exhibited relative high compressive strength, as a result of the relatively close packing of the cellulose chain bundles. The hydrogels had good architectural stability and solvent resistance against ethanol, acetone, Dimethylacetamide (DMAc) and NaOH aqueous solution. The biological experiment demonstrated that the L929cells could adhere and proliferate on the surface of the layers and in the inter-layer space, showing non-cytotoxicity and good biocompatibility. The controllable architecture and layer size of the multi-layered cellulose hydrogels are important in the application as biomedical materials.
     Novel chitin/PVA gels with high strength and excellent biocompatibility were fabricated by partially chemical crosslinking and treating with freezing-thawing process to induce the formation of PVA crystals and the intermolecular hydrogen bonds. When PVA content was25wt%for RCP75hydrogel, a regular jellyfish gel-like structure occurred, as a result of the formation of a dense packing pore wall consisted of chitin and PVA chains as well as the intermolecular hydrogen bonds to form oriented arrangement. The results of solid13C NMR、XRD and SEM revealed that the repeated freezing/thawing cycles induced a dense packing of physically and chemically crosslinked chains between chitin and PVA, enhanced intermolecular hydrogen bonding as well as a phase separation caused by the crystalline ice and the PVA crystals of the composite gels, leading to the layered porous structure. The mechanical properties of RCP75were improved rapidly and much higher than the other RCP gels and pure chitin gels, as a result of the broadly dispersed stress near a crack tip caused by the layered porous structure with bi-crosslinked networks. Furthermore, the chitin/PVA hydrogel had excellent biocompatibility and safety. The chitin/PVA hydrogels will be of considerable interest for utilizations in the biomedical field, because its biocompatibility and biodegradability could appropriately meet the requirement of tissue engineering.
     Based on hydrogen bonding interaction among chitin chains with exposed hydroxyl groups during the vacuum drying process, condensation occured and chitin molecules rearranged along the plane in all directions and packed tightly to create new aggragation states, so a new class of chitin plastic was constructed successfully by changing the shape and size. Meanwhile, hydroxyapatite particles were in situ synthesized in chitin matrix on the basis of its porous structure and good metal ions adsorption ability. There was strong interaction between chitin and hydroxyapatite, thus the mechanical property of chitin composite plastic was improved by the introduction of hydroxyapatite. Especially, MC3T3-E1cell culture experiments proved that the introduction of hydroxyapatite significantly improved the cell adhesion ability and promoted the proliferation ability. Therefore, the composite plastic had application prospect as bone repairing material in biomedical field.
     This thesis developed a series of cellulose and chitin functional materials by using alkali/urea aqueous solvents at low temperature, and the relationships between the structure and properties of materials as well as the surface and interface interaction were clarified. Thus, it could provide novel ideas and methods for the construction of high hydrophobic cellulose film,"self-cleaning" fluorescent cellulose film, high strength and biocompatible multi-layered cellulose hydrogels, high strength chitin composite hydrogels as well as chitin/inorganic composite plastic. These basic researches exhibit obvious creativity and academic value, and are in accordance with national sustainable strategy. Therefore, this thesis exhibits scientific significance and application prospect.
引文
[l]张俐娜,天然高分子科学与材料,科学出版社,北京,2007.
    [2]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A., Cellulose:fascinating biopolymer and sustainable raw material, Angew Chem Int Ed2005,44,3358-3393.
    [3]Nishiyama, Y.; Langan, P.; Chanzy, H., Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc.2002,124,9074-9082.
    [4]Kennedy, J. F.; Phillips, G. O.; Wedlock, D.; Williams, P., Cellulose and its derivatives:chemistry, biochemistry, and applications. E. Horwood Chichester:1985.
    [5]Braconnot, H., Sur la nature des champignons, Ann. Chi. Phys 1811,79,265-304.
    [6]Amass, W; Amass, A.; Tighe, B., A review of biodegradable polymers:uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies, Polym. Int.1998,47,89-144.
    [7]Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J., Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials:A review, Carbohydr. Polym.2012,90,735-764.
    [8]Ravi Kumar, M. N., A review of chitin and chitosan applications, React Funct Polym.2000,46,1-27.
    [9]Peng, L.; Kawagoe, Y.; Hogan, P.; Delmer, D., Sitosterol-β-glucoside as primer for cellulose synthesis in plants, Science 2002,295,147-150.
    [10]Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J., Cellulose nanomaterials review:structure, properties and nanocomposites, Chem. Soc. Rev. 2011,40,3941-3994.
    [11]Shi, Z.; Li, Y; Chen, X.; Han, H.; Yang, G., Double network bacterial cellulose hydrogel to build a biology-device interface, Nanoscale 2014,6,970-977.
    [12]Petersen, N.; Gatenholm, P., Bacterial cellulose-based materials and medical devices:current state and perspectives, Appl. Microbiol. Biotechnol.2011,91, 1277-1286.
    [13]朴光哲;张丽红;李健荣,海鞘纤维素纳米晶体溶致手性向列相液晶的研究进展,2012年两岸三地高分子液晶态与超分子有序结构学术研讨会(暨第十二届全国高分子液晶态与超分子有序结构学术论文报告)会议论文集,2012.
    [14]蒋挺大;甲壳素,第一版.北京:化学工业出版社:2003.
    [15]施晓文;李晓霞;杜予民,甲壳素基新材料研究进展,高分子学报 2011,1-11.
    [16]Varma, A.; Deshpande, S.; Kennedy, J., Metal complexation by chitosan and its derivatives:a review, Carbohydr. Polym.2004,55,77-93.
    [17]Mohanty, A.; Misra, M.; Drzal, L., Sustainable bio-composites from renewable resources:opportunities and challenges in the green materials world, J. Polym. Environ.2002,10,19-26.
    [18]Habibi, Y.; Lucia, L. A.; Rojas, O. J., Cellulose nanocrystals:chemistry, self-assembly, and applications, Chem. Rev.2010,110,3479-3500.
    [19]Kroon-Batenburg, L.; Kroon, J.; Northolt, M., Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers, Polym. commun.1986, 27,290-292.
    [20]Aulin, C; Ahola, S.; Josefsson, P.; Nishino, T.; Hirose, Y.; Osterberg, M.; Wagberg, L., Nanoscale Cellulose Films with Different Crystallinities and Mesostructures-Their Surface Properties and Interaction with Water, Langmuir 2009, 25,7675-7685.
    [21]Sehaqui, H.; Liu, A.; Zhou, Q.; Berglund, L. A., Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures, Biomacromolecules 2010,11,2195-2198.
    [22]Siqueira, G.; Bras, J.; Follain, N.; Belbekhouche, S.; Marais, S.; Dufresne, A., Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals, Carbohydr. Polym.2013,91,711-717.
    [23]Abe, K.; Yano, H., Cellulose nanofiber-based hydrogels with high mechanical strength, Cellulose 2012,19,1907-1912.
    [24]陈玉和;黄文豪;常德龙;胡伟华,氢氧化钠预处理对木材漂白促进作用的研究,林产化学与工业 2000,20,52-56.
    [25]Anitha, A.; Sowmya, S.; Kumar, P.; Deepthi, S.; Chennazhi, K.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R., Chitin and Chitosan in Selected Biomedical Applications, Prog. Polym. Sci.2014, doi.org/10.1016.
    [26]Rinaudo, M., Chitin and chitosan:properties and applications, Prog. Polym. Sci. 2006,31,603-632.
    [27]Khor, E.; Lim, L. Y., Implantable applications of chitin and chitosan, Biomaterials 2003,24,2339-2349.
    [28]Fabritius, H. O.; Sachs, C; Triguero, P. R.; Raabe, D., Influence of Structural Principles on the Mechanics of a Biological Fiber-Based Composite Material with Hierarchical Organization:The Exoskeleton of the Lobster Homarus americanus, Adv. Mater.2009,21,391-400.
    [29]Minke, R.; Blackwell, J., The structure of a-chitin, J. Mol. Biol.1978,120, 167-181.
    [30]Bouligand, Y., Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue and Cell 1972,4,189-217.
    [31]Giraud-Guille, M.-M.; Chanzy, H.; Vuong, R., Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy, J. Struct. Biol.1990,103,232-240.
    [32]Nikolov, S.; Petrov, M.; Lymperakis, L.; Friak, M.; Sachs, C; Fabritius, H. O.; Raabe, D.; Neugebauer, J., Revealing the Design Principles of High-Performance Biological Composites Using Ab initio and Multiscale Simulations:The Example of Lobster Cuticle, Adv. Mater.2010,22,519-526.
    [33]Jang, M. K.; Kong, B. G.; Jeong, Y. I.; Lee, C. H.; Nah, J. W., Physicochemical characterization of a-chitin, p-chitin, and y-chitin separated from natural resources, J. Polym. Sci., Part A:Polym. Chem.2004,42,3423-3432.
    [34]Saito, Y.; Okano, T.; Gaill, f.; Chanzy, H.; Putaux, J.-L., Structural data on the intra-crystalline swelling of β-chitin, Int. J. Biol. Macromol.2000,28,81-88.
    [35]Pillai, C; Paul, W.; Sharma, C. P., Chitin and chitosan polymers:Chemistry, solubility and fiber formation, Prog. Polym. Sci.2009,34,641-678.
    [36]Mourya, V.; Inamdar, N. N., Chitosan-modifications and applications: opportunities galore, React Funct Polym.2008,68,1013-1051.
    [37]Muzzarelli, R. A., Chitin nanostructures in living organisms. In Chitin, Springer: 2011; pp 1-34.
    [38]Chang, C; Chen, S.; Zhang, L., Novel hydrogels prepared via direct dissolution of chitin at low temperature:structure and biocompatibility, J. Mater. Chem.2011,21, 3865-3871.
    [39]Ding, B.; Cai, J.; Huang, J.; Zhang, L.; Chen, Y.; Shi, X.; Du, Y.; Kuga, S., Facile preparation of robust and biocompatible chitin aerogels, J. Mater. Chem.2012,22, 5801-5809.
    [40]Tang, H.; Chang, C; Zhang, L., Efficient adsorption of Hg2+ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway, Chem. Eng J.2011,173,689-697.
    [41]Tang, H.; Zhou, W.; Zhang, L., Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels, J Hazard Mater.2012,209,218-225.
    [42]Liu, T.; Liu, Z.; Song, C; Hu, Y; Han, Z.; She, J.; Fan, F.; Wang, J.; Jin, C.; Chang, J., Chitin-induced dimerization activates a plant immune receptor, Science 2012,336,1160-1164.
    [43]Friedman, A. J.; Phan, J.; Schairer, D. O.; Champer, J.; Qin, M.; Pirouz, A.; Blecher-Paz, K.; Oren, A.; Liu, P. T.; Modlin, R. L., Antimicrobial and Anti-Inflammatory Activity of Chitosan—Alginate Nanoparticles:A Targeted Therapy for Cutaneous Pathogens, J Invest Dermato.2013,133,1231-1239.
    [44]Foster, L. J. R; Thomson, K.; Marcal, H.; Butt, J.; Watson, S. L.; Wakefield, D., Chitosan-Vancomysin Composite Biomaterial as a Laser Activated Surgical Adhesive with Regional Antimicrobial Activity, Biomacromolecules 2010,11,3563-3570.
    [45]CROSS, C. F., Plastic Compound of Cellulose. Google Patents:1894.
    [46]Kroschwitz, J. I., Concise encyclopedia of polymer science and engineering. Wiley NY etc.:1990.
    [47]Nada, A.-A.; Kamel, S.; El-Sakhawy, M., Thermal behaviour and infrared spectroscopy of cellulose carbamates, Polym. Degrad. Stab.2000,70,347-355.
    [48]Diamantoglou, M.; Platz, J.; Vienken, J., Cellulose carbamates and derivatives as hemocompatible membrane materials for hemodialysis, Artifical Organs.1999,23, 15-22.
    [49]Eklund, V.; Ekman, K.; Fors, J.; Huttunen, J.; Selin, J.-F.; Turunen, O., Method of producing cellulose carbamate fibers or films. Google Patents:1985.
    [50]Eklund, V.; Ekman, K.; Huttunen, J.; Selin, J.; Turunen, O., Cellulose carbamate solutions. Google Patents:1985.
    [51]Wang, Z.; Liu, S.; Matsumoto, Y; Kuga, S., Cellulose gel and aerogel from LiCl/DMSO solution, Cellulose 2012,19,393-399.
    [52]Xu, A.; Zhang, Y; Zhao, Y; Wang, J., Cellulose dissolution at ambient temperature:Role of preferential solvation of cations of ionic liquids by a cosolvent, Carbohydr. Potym.2013,92,540-544.
    [53]Jia, B.; Dong, Y.; Zhou, J.; Zhang, L., Constructing flexible cellulose-Cu nanocomposite film through in situ coating with highly single-side conductive performance, J. Mater. Chem. C 2014,2,524-529.
    [54]Jia, B.; Mei, Y; Cheng, L.; Zhou, J.; Zhang, L., Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction, ACSAppl. Mater. Interfaces 2012,4,2897-2902.
    [55]Abe, Y.; Mochizuki, A., Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. IV. Comparative studies on the surface morphology of membranes prepared from N-methylmorpholine-N-oxide and cuprammonium solutions, J. Appl. Polym. Sci.2010,116,3040-3046.
    [56]Fink, H.-P.; Weigel, P.; Purz, H.; Ganster, J., Structure formation of regenerated cellulose materials from NMMO-solutions, Prog. Polym. Sci.2001,26,1473-1524.
    [57]Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P., The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process), Prog. Polym. Sci.2001,26,1763-1837.
    [58]Devarayan, K.; Hanaoka, H.; Hachisu, M.; Araki, J.; Ohguchi, M; Behera, B. K.; Ohkawa, K., Direct Electrospinning of Cellulose-Chitosan Composite Nanofiber, Macromol Mater Eng.2013,298,1059-1064.
    [59]Shafiei, M.; Karimi, K.; Taherzadeh, M. J., Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol, Bioresource technol.2010,101,4914-4918.
    [60]Gao, Q.; Shen, X.; Lu, X., Regenerated bacterial cellulose fibers prepared by the NMMO-H2O process, Carbohydr. Polym.2011,83,1253-1256.
    [61]Casarano, R.; Pires, P. A.; Borin, A. C; Seoud, O. A. E., Novel solvents for cellulose:Use of dibenzyldimethylammonium fluoride/dimethyl sulfoxide (DMSO) as solvent for the etherification of the biopolymer and comparison with tetra (1-butyl) ammonium fluoride/DMSO,Ind Crop Prod.2014,54,185-191.
    [62]Cai, J.; Zhang, L., Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions, Macromol Biosci.2005,5,539-548.
    [63]Cai, J.; Zhang, L., Unique gelation behavior of cellulose in NaOH/urea aqueous solution, Biomacromolecules 2006,7,183-189.
    [64]Cai, J.; Zhang, L.; Chang, C.; Cheng, G; Chen, X.; Chu, B., Hydrogen-Bond-Induced Inclusion Complex in Aqueous Cellulose/LiOH/Urea Solution at Low Temperature, ChemPhysChem 2007,8,1572-1579.
    [65]Zhang, L.; Ruan, D.; Gao, S., Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution, J. Polym. Sci., Part B:Polym. Phys.2002,40, 1521-1529.
    [66]Santiago Cintron, M., Professor Lina Zhang wins the 2011 Anselme Pay en award of the Division of Cellulose and Renewable Materials, Cellulose 2011,18,857-858.
    [67]Austin, P. R., Chitin solution. Google Patents:1977.
    [68]Austin, P. R., Solvents for and purification of chitin. Google Patents:1977.
    [69]Noishiki, Y.; Takami, H.; Nishiyama, Y; Wada, M.; Okada, S.; Kuga, S., Alkali-induced conversion of p-chitin to a-chitin, Biomacromolecules 2003,4, 896-899.
    [70]Teng, W. L.; Khor, E.; Tan, T. K.; Lim, L. Y; Tan, S. C., Concurrent production of chitin from shrimp shells and fungi, Carbohydrate research 2001,332,305-316.
    [71]Chen, B.; Sun, K.; Zhang, K., Rheological properties of chitin/lithium chloride, N, N-dimethyl acetamide solutions, Carbohydr. Polym.2004,58,65-69.
    [72]Lee, S. B.; Kim, Y. H.; Chong, M. S.; Lee, Y. M., Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen, Biomaterials 2004,25, 2309-2317.
    [73]Zhong, C; Cooper, A.; Kapetanovic, A.; Fang, Z.; Zhang, M.; Rolandi, M, A facile bottom-up route to self-assembled biogenic chitin nanofibers, Soft Matter 2010, 6,5298-5301.
    [74]Dutaa, P.; Ravi Kumar, M. In Waste Utilization:Chitosan Fibres by Direct Dissolution, Indian Chemist Convention, New Delhi,1997; pp 17-20.
    [75]Barber, P. S.; Griggs, C. S.; Bonner, J. R.; Rogers, R. D., Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells, Green Chem.2013, 15,601-607.
    [76]Singh, N.; Koziol, K. K; Chen, J.; Patil, A. J.; Gilman, J. W.; Trulove, P. C.; Kafienah, W.; Rahatekar, S. S., Ionic liquids-based processing of electrically conducting chitin nanocomposite scaffolds for stem cell growth, Green Chem.2013, 75,1192-1202.
    [77]Xie, H.; Zhang, S.; Li, S., Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO 2, Green Chem.2006,8,630-633.
    [78]Tamura, H.; Nagahama, H.; Tokura, S., reparation of chitin hydrogel under mild conditions, Cellulose 2006,13,357-364.
    [79]Win, N.; Stevens, W., Shrimp chitin as substrate for fungal chitin deacetylase, Appl. Microbiol Biotechnol.2001,57,334-341.
    [80]Cai, J.; Zhang, L.; Zhou, J.; Li, H.; Chen, H.; Jin, H., Novel fibers prepared from cellulose in NaOH/urea aqueous solution, Macromol. Rapid Commun.2004,25, 1558-1562.
    [81]Hu, X.; Du, Y.; Tang, Y.; Wang, Q.; Feng, T.; Yang, J.; Kennedy, J. F., Solubility and property of chitin in NaOH/urea aqueous solution, Carbohydr. Polym.2007,70, 451-458.
    [82]Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 2007,8, 2485-2491.
    [83]Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H., Optically transparent nanofiber paper, Adv. Mater.2009,21,1595-1598.
    [84]Isogai, A.; Saito, T.; Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale 2011,3,71-85.
    [85]Heath, L.; Thielemans, W., Cellulose nanowhisker aerogels, Green Chem.2010, 12,1448-1453.
    [86]Eichhorn, S. J., Cellulose nanowhiskers:promising materials for advanced applications, Soft Matter 2011,7,303-315.
    [87]Dash, R.; Li, Y.; Ragauskas, A. J., Cellulose nanowhisker foams by freeze casting, Carbohydr. Polym.2012,88,789-792.
    [88]Ifuku, S.; Saimoto, H., Chitin nanofibers:preparations, modifications, and applications, Nanoscale 2012,4,3308-3318.
    [89]Jayakumar, R.; Prabaharan, M.; Nair, S.; Tamura, H., Novel chitin and chitosan nanofibers in biomedical applications, Biotech.nol.Adv.2010,28,142-150.
    [90]Ma, H.; Burger, C.; Hsiao, B. S.; Chu, B., Ultrafine polysaccharide nanofibrous membranes for water purification, Biomacromolecules 2011,12,970-976.
    [91]Ingersoll, H., Fine structure of viscose rayon, J. Appl.Phys.2004,17,924-939.
    [92]Hindeleh, A.; Johnson, D., Crystallinity and crystallite size measurement in cellulose fibres:Viscose rayon, Polymer 1974,15,697-705.
    [93]Aaserud, O.; Hommeren, O. J.; Tvedt, B.; Nakstad, P.; Mowe, G; Efskind, J.; Russell, D.; Jorgensen, E. B.; Nyberg-Hansen, R.; Rootwelt, K., Carbon disulfide exposure and neurotoxic sequelae among viscose rayon workers, Am. J. Ind. Med 1990,18,25-37.
    [94]Vanhoorne, M.; De Rouck, A.; De Bacquer, D., Epidemiological study of eye irritation by hydrogen sulphide and/or carbon disulphide exposure in viscose rayon workers, Ann. Occu. Hyg.1995,39,307-315.
    [95]Gamper, C; Thompson, K.; Quye, A., Viscose rayon:an absorbing problem. An investigation into the impact conservation wet cleaning treatments have on historic woven viscose rayon fabrics, In:The 9th Biennial North American Textile Conservation Conference-Conserving Modernity:The Articulation of Innovation 2013.
    [96]Jia, B.; Yu, L.; Fu, F.; Li, L.; Zhou, J.; Zhang, L., Preparation of helical fibers from cellulose-cuprammonium solution based on liquid rope coiling, RSC Adv.2014,4, 9112-9117
    [97]康永;柴秀娟;艾罡, 铜氨纤维的性能特质以及应用,河北纺织2011,10-12.
    [98]Fujioka, R.; Inamasu, Y.; Manabe, S.; Imada, K., Evaluation of fine structure of cuprammonium regenerated cellulose hollow fibers revealed by interference colors with polarizing microscope, SEN-I GAKKAISHI 1998,54,516-519.
    [99]丁红运,纤维素纤维纺丝技术发展,科技资讯2009,6-7.
    [100]徐静,铜氨纤维筒子纱染色工艺,针织工业2013,9,015.
    [101]Davies, S., Courtaulds Tencel-a new fibre for the mass market, Textile Outlook Int.1993,44,8-18.
    [102]Chavan, R.; Patra, A., Development and processing of lyocell, INDIAN J FIBRE TEXT.2004,29,483.
    [103]Walther, A.; Timonen, J. V.; Diez, I.; Laukkanen, A.; Ikkala, O., Multifunctional High-Performance Biofibers Based on Wet-Extrusion of Renewable Native Cellulose Nanofibrils, Adv. Mater.2011,23,2924-2928.
    [104]Laus, G; Bentivoglio, G.; Schottenberger, H.; Kahlenberg, V.; Kopacka, H.; Roder, T.; Sixta, H., Ionic liquids:current developments, potential and drawbacks for industrial applications, Lenzinger Berichte 2005,84,71-85.
    [105]Kosan, B.; Michels, C; Meister, F., Dissolution and forming of cellulose with ionic liquids, Cellulose 2008,15,59-66.
    [106]Wendler, F.; Kosan, B.; Krieg, M.; Meister, F. In Possibilities for the physical modification of cellulose shapes using ionic liquids, Macromolecular symposia, Wiley Online Library:2009; pp 112-122.
    [107]张金明;张军,基于纤维素的先进功能材料,高分子学报2010,1376-1398.
    [108]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B., Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties, Adv. Mater.2007,19,821-825.
    [109]Ruan, D.; Zhang, L.; Zhou, J.; Jin, H.; Chen, H., Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution, Macromol Biosci.2004,4,1105-1112.
    [110]Ruan, D.; Zhang, L.; Lue, A.; Zhou, J.; Chen, H.; Chen, X.; Chu, B.; Kondo, T., A Rapid Process for Producing Cellulose Multi-Filament Fibers from a NaOH/Thiourea Solvent System, Macromol. Rapid Commun.2006,27,1495-1500.
    [111]Li, R.; Chang, C; Zhou, J.; Zhang, L.; Gu, W.; Li, C.; Liu, S.; Kuga, S., Primarily industrialized trial of novel fibers spun from cellulose dope in NaOH/urea aqueous solution, Ind. Eng. Chem. Res.2010,49,11380-11384.
    [112]Mao, Y; Zhang, L.; Cai, J.; Zhou, J.; Kondo, T., Effects of coagulation conditions on properties of multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution, Ind. Eng. Chem. Res.2008,47,8676-8683.
    [113]Qi, H.; Cai, J.; Zhang, L.; Nishiyama, Y.; Rattaz, A., Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution, Cellulose 2008,15,81-89.
    [114]Liu, S.; Zhang, L.; Zhou, J.; Wu, R, Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway, J. Phys. Chem. C 2008,112, 4538-4544.
    [115]Liu, S.; Zhang, L.; Zhou, J; Xiang, J.; Sun, J.; Guan, J., Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers, Chem. Mater.2008,20,3623-3628.
    [116]Zeng, J.; Li, R.; Liu, S.; Zhang, L., Fiber-like TiO2 nanomaterials with different crystallinity phases fabricated via a green pathway, ACS Appl. Mater. Interfaces 2011, 3,2074-2079.
    [117]Li, R; He, M.; Li, T.; Zhang, L., Preparation and properties of cellulose/silver nanocomposite fibers, Carbohydr. Polym.2014, Revised.
    [118]Nachman, R. L., Endothelium:from cellophane to orchestral maestro, J. Clin. Invest.2012,122,796.
    [119]Tome, L. C; Goncalves, C; Boaventura, M.; Brandao, L.; Mendes, A. M.; Silvestre, A. J.; Neto, C. P.; Gandini, A.; Freire, C. S.; Marrucho, I. M., Preparation and evaluation of the barrier properties of cellophane membranes modified with fatty acids, Carbohydr. Polym.2011,83,836-842.
    [120]Campo, M.; Magalhaes, F.; Mendes, A., Carbon molecular sieve membranes from cellophane paper, J. Membr. Sci.2010,350,180-188.
    [121]Wang, Q.; Cai, J.; Zhang, L.; Xu, M.; Cheng, H.; Han, C. C.; Kuga, S.; Xiao, J.; Xiao, R., A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure, J. Mater. Chem. A 2013,1,6678-6686.
    [122]Qi, H.; Chang, C; Zhang, L., Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process, Green Chem.2008,11,177-184.
    [123]Shi, X.; Zhang, L.; Cai, J.; Cheng, G; Zhang, H.; Li, J.; Wang, X., A facile construction of supramolecular complex from polyaniline and cellulose in aqueous system, Macromolecules 2011,44,4565-4568.
    [124]Zeng, J.; Liu, S.; Cai, J.; Zhang, L., TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation, J. Phys. Chem. C 2010,114,7806-7811.
    [125]Chang, C; Zhang, L., Cellulose-based hydrogels:Present status and application prospects, Carbohydr. Polym.2011,84,40-53.
    [126]Hoepfner, S.; Ratke, L.; Milow, B., Synthesis and characterisation of nanofibrillar cellulose aerogels, Cellulose 2008,15,121-129.
    [127]Liu, Z.; Wang, H.; Liu, C; Jiang, Y.; Yu, G; Mu, X.; Wang, X., Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions, Chem. Commun.2012,48,7350-7352.
    [128]Zhou, J.; Chang, C; Zhang, R.; Zhang, L., Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution, Macromol Biosci.2007,7, 804-809.
    [129]Chang, C; He, M.; Zhou, J.; Zhang, L., Swelling Behaviors of pH-and Salt-Responsive Cellulose-Based Hydrogels, Macromolecules 2011,44,1642-1648.
    [130]Chang, C; Peng, J.; Zhang, L.; Pang, D. W, Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.2009,19, 7771-7776.
    [131]Shi, X.; Hu, Y.; Tu, K.; Zhang, L.; Wang, H.; Xu, J.; Zhang, H.; Li, J.; Wang, X.; Xu, M., Electromechanical polyaniline-cellulose hydrogels with high compressive strength, Soft Matter 2013,9,10129-10134.
    [132]Cai, J.; Liu, S.; Feng, J.; Kimura, S.; Wada, M.; Kuga, S.; Zhang, L., Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel, Angew. Chem.Int. Ed 2012,124,2118-2121.
    [133]Chang, C.; Duan, B.; Cai, J.; Zhang, L., Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery, Eur. Polym. J.2010,46, 92-100.
    [134]Liu, Z.; Wang, H.; Li, B.; Liu, C; Jiang, Y; Yu, G.; Mu, X., Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization, J. Mater. Chem.2012,22,15085-15091.
    [135]Angadi, S. C.; Manjeshwar, L. S.; Aminabhavi, T. M., Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid, Int. J. Biol. Macromol.2010,47,171-179.
    [136]Luo, X.; Zhang, L., Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications, J. Chromatogr. A 2010,1217,5922-5929.
    [137]Gericke, M.; Trygg, J.; Fardim, P., Functional cellulose beads:preparation, characterization, and applications, Chem. Rev.2013,113,4812-4836.
    [138]Wilkes, E. D.; Phillips, S. D.; Basaran, O. A., Computational and experimental analysis of dynamics of drop formation, Phys. Fluids 1999,11,3577-3598.
    [139]Luo, X.; Liu, S.; Zhou, J.; Zhang, L., In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery, J. Mater. Chem.2009,19, 3538-3545.
    [140]Wu, J.; Zhao, N.; Zhang, X.; Xu, J., Cellulose/silver nanoparticles composite microspheres:eco-friendly synthesis and catalytic application, Cellulose 2012,19, 1239-1249.
    [141]Luo, X.; Zhang, L., Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities, Biomacromolecules 2010,11,2896-2903.
    [142]Luo, X.; Zhang, L., High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon, J Hazard Mater.2009,171,340-347.
    [143]裴莹;汤克勇;张俐娜,尺寸分布均一的纤维素微球的制备及结构,2013年全国高分子学术论文报告会论文摘要集——主题Ⅰ:生物高分子与天然高分子2013.
    [144]裴莹.基于纤维素的生物医用材料构建,结构与性能.武汉大学,2013.
    [145]Min, B.-M.; Lee, S. W.; Lim, J. N.; You, Y.; Lee, T. S.; Kang, P. H.; Park, W. H., Chitin and chitosan nanofibers:electrospinning of chitin and deacetylation of chitin nanofibers, Polymer 2004,45, 7137-7142.
    [146]Qin, Y.; Lu, X.; Sun, N.; Rogers, R. D., Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers, Green Chem.2010,12,968-971.
    [147]Rejinold N, S.; Chennazhi, K. P.; Tamura, H.; Nair, S. V.; Rangasamy, J., Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing,ACS Appl. Mater. Interfaces 2011,3,3654-3665.
    [148]Heath, L.; Zhu, L.; Thielemans, W., Chitin Nanowhisker Aerogels, ChemSusChem 2013,6,537-544.
    [149]Huang, Y.; Zhong, Z.; Duan, B.; Wang, Y.; Zhang, L. Novel Fibers Fabricated Directly from Chitin Solution and Their Application as Wound Dressing, J. Mater. Chem. B 2014, DOI:10.1039/C4TB00098F.
    [150]Duan, B.; Liu, F.; He, M.; Zhang, L., Ag—Fe3O4 Nanocomposites @ Chitin Microspheres Constructed by in Situ One-pot synthesis for Rapid Hydrogenation Catalysis, Green Chem.2014,16,2835-2845.
    [151]Duan, B.; Chang, C.; Ding, B.; Cai, J.; Xu, M.; Feng, S.; Ren, J.; Shi, X.; Du, Y.; Zhang, L., High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature, J. Mater. Chem. A 2013,1,1867-1874.
    [152]Tang, H.; Zhang, L.; Hu, L.; Zhang, L., Application of chitin hydrogels for seed germination, seedling growth of rapeseed, J. Plant Growth Regul.2013,1-7.
    [153]Cunha, A. G.; Gandini, A., Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose, Cellulose 2010,17,875-889.
    [154]Cunba, A. G.; Freire, C.; Silvestre, A.; Neto, C. P.; Gandini, A.; Belgacem, M. N.; Chaussy, D.; Beneventi, D., Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas-solid reaction, J. Colloid Interface Sci.2010, 344,588-595.
    [155]Cunha, A. G.; Freire, C. S.; Silvestre, A. J.; Neto, C. P.; Gandini, A.; Orblin, E.; Fardim, P., Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates, Biomacromolecules 2007,8, 1347-1352.
    [156]Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 1997,202,1-8.
    [157]Gao, X.; Jiang, L., Biophysics:water-repellent legs of water striders, Nature 2004,432,36-36.
    [158]Lee, W.; Jin, M.-K.; Yoo, W.-C; Lee, J.-K., Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability, Langmuir 2004,20,7665-7669.
    [159]Zheng, Y; Bai, H.; Huang, Z.; Tian, X.; Nie, F.-Q.; Zhao, Y; Zhai, J.; Jiang, L., Directional water collection on wetted spider silk, Nature 2010,463,640-643.
    [160]Rodionova, G.; Lenes, M.; Eriksen,0.; Gregersen,0., Surface chemical modification of microfibrillated cellulose:improvement of barrier properties for packaging applications, Cellulose 2011,18,127-134.
    [161]Carlsson, L.; Malmstrom, E.; Carlmark, A., Surface-initiated ring-opening metathesis polymerisation from cellulose fibres, Polymer Chemistry 2012,3,727-733.
    [162]Shang, W.; Huang, J.; Luo, H.; Chang, P. R.; Feng, J.; Xie, G, Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil, Cellulose 2013,20,179-190.
    [163]Walcarius, A.; Mandler, D.; Cox, J. A.; Collinson, M.; Lev, O., Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry, J. Mater. Chem.2005,15,3663-3689.
    [164]Wu, L.-K.; Hu, J.-M.; Zhang, J.-Q.; Cao, C.-N., Superhydrophobic surface constructed on electrodeposited sol-gel silica film, Electrochem. Commun.2012.
    [165]Shang, S.-M; Li, Z.; Xing, Y.; Xin, J. H.; Tao, X.-M., Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes, Appl. Surf. Sci.2010,257,1495-1499.
    [166]Cappelletto, E.; Callone, E.; Campostrini, R.; Girardi, F.; Maggini, S.; della Volpe, C; Siboni, S.; Di Maggio, R., Hydrophobic siloxane paper coatings:the effect of increasing methyl substitution, J. Sol-Gel Sci. Technol.2012,62,441-452.
    [167]Ding, B.; Li, C; Hotta, Y; Kim, J.; Kuwaki, O.; Shiratori, S., Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface, Nanotechnology 2006,17,4332.
    [168]Vasiljevic, J.; Gorjanc, M.; Tomsic, B.; Orel, B.; Jerman, I.; Mozetic, M.; Vesel, A.; Simoncic, B., The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties, Cellulose 2013,20, 277-289.
    [169]Li, D.; He, Q.; Cui, Y.; Li, J., Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly (4-vinylpyridine), Chem. Mater.2007,19,412-417.
    [170]Zampano, G.; Bertoldo, M.; Bronco, S., Poly (ethyl acrylate) surface-initiated ATRP grafting from wood pulp cellulose fibers, Carbohydr. Polym.2009,75,22-31.
    [171]Wang, M. C. P.; Gates, B. D., Surface-Initiated Atom Transfer Radical Polymerization-Induced Transformation of Selenium Nanowires into Copper Selenide@Polystyrene Core-Shell Nanowires, ACS Appl. Mater. Interfaces 2013,5, 9546-9553.
    [172]Barbey, R.; Kauffmann, E.; Ehrat, M.; Klok, H.-A., Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization, Biomacromolecules 2010,11,3467-3479.
    [173]Xiao, M.; Li, S.; Chanklin, W.; Zheng, A.; Xiao, H., Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils, Carbohydr. Polym.2011,83,512-519.
    [174]Nisoa, M.; Wanichapichart, P., Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films, Sonklanakarin J. Sci.Technol.2010,32,97.
    [175]Zhou, X.; Zhang, Z.; Xu, X.; Guo, F.; Zhu, X.; Men, X.; Ge, B., Robust and Durable Superhydrophobic Cotton Fabrics for Oil/Water Separation, ACS Appl. Mater. Interfaces 2013,5,7208-7214.
    [176]Li, S.; Zhang, S.; Wang, X., Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process, Langmuir 2008,24,5585-5590.
    [177]Guntari, S. N.; Khin, A. C; Wong, E. H.; Goh, T. K.; Blencowe, A.; Caruso, F.; Qiao, G G, (Super) hydrophobic and Multilayered Amphiphilic Films Prepared by Continuous Assembly of Polymers, Adv. Funct. Mater.2013, DOI: 10.1002/adfin.201300768.
    [178]Roberts, J. C., "The" Chemistry of Paper. Royal Society of chemistry:1996; Vol.11.
    [179]Quan, C.; Werner, O.; Wagberg, L.; Turner, C., Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide-alkyl ketene dimer solution, J.Supercrit. Fluid.2009,49,117-124.
    [180]Yang, Q.; Saito, T.; Isogai, A., Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties, Cellulose 2012,19,1913-1921.
    [181]Yoon, Y. I.; Moon, H. S.; Lyoo, W. S.; Lee, T. S.; Park, W. H., Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment, Carbohydr. Polym.2009,75,246-250.
    [182]Anitha, S.; Brabu, B.; Thiruvadigal, D. J.; Gopalakrishnan, G.; Natarajan, T., Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO, Carbohydr. Polym.2012,87,1065-1072.
    [183]Thorvaldsson, A.; Edvinsson, P.; Glantz, A.; Rodriguez, K.; Walkenstrom, P.; Gatenholm, P., Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers, Cellulose 2012,19,1743-1748.
    [184]Gustafsson, E.; Larsson, P. A.; Wagberg, L., Treatment of cellulose fibres with polyelectrolytes and wax colloids to create tailored highly hydrophobic fibrous networks, Colloid Surf. A-Physicochem. Eng. Asp.2012,414,415-421.
    [185]Li, H.; Fu, S.; Peng, L.; Zhan, H., Surface modification of cellulose fibers with layer-by-layer self-assembly of lignosulfonate and polyelectrolyte:effects on fibers wetting properties and paper strength, Cellulose 2012,19,533-546.
    [186]Kettunen, M.; Silvennoinen, R. J.; Houbenov, N.; Nykanen, A.; Ruokolainen, J.; Sainio, J.; Pore, V.; Kemell, M.; Ankerfors, M.; Lindstrom, T., Photoswitchable superabsorbency based on nanocellulose aerogels, Adv. Funct. Mater.2011,21, 510-517.
    [187]Korhonen, J. T.; Kettunen, M.; Ras, R. H.; Ikkala, O., Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents, ACS Appl Mater. Interfaces 2011,3,1813-1816.
    [188]Ogihara, H.; Xie, J.; Okagaki, J.; Saji, T., Simple method for preparing superhydrophobic paper:spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency, Langmuir 2012,28,4605-4608.
    [189]Zhang, Y.-L.; Wang, J.-N.; He, Y.; He, Y; Xu, B.-B.; Wei, S.; Xiao, F.-S., Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces, Langmuir 2011,27,12585-12590.
    [190]Stanssens, D.; Van den Abbeele, H.; Vonck, L.; Schoukens, G.; Deconinck, M.; Samyn, P., Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles, Mater. Lett.2011,65,1781-1784.
    [191]Wang, H.; Fang, J.; Cheng, T.; Ding, J.; Qu, L.; Dai, L.; Wang, X.; Lin, T., One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity, Chem. Commun.2008,877-879.
    [192]Guo, Y; Wang, Q., Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite, Appl. Surf. Sci.2010,257,33-36.
    [193]Pan, Y.; Xiao, H.; Song, Z., Hydrophobic modification of cellulose fibres by cationic-modified polyacrylate latex with core-shell structure, Cellulose 2013,20, 485-494.
    [194]Han, Y; Manolach, S. O.; Denes, F.; Rowell, R. M., Cold plasma treatment on starch foam reinforced with wood fiber for its surface hydrophobicity, Carbohydr. Polym.2011,86,1031-1037.
    [195]Shi, J.; Lu, L.; Guo, W.; Sun, Y; Cao, Y, An environment-friendly thermal insulation material from cellulose and plasma modification, J. Appl. Polym. Sci.2013, DOI:10.1002/app.39615.
    [196]Crick, C. R.; Bear, J. C.; Kafizas, A.; Parkin, I. P., Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition, Adv. Mater.2012,24, 3505-3508.
    [197]Oh, M.-J.; Lee, S.-Y; Paik, K.-H., Preparation of hydrophobic self-assembled mono layers on paper surface with silanes, J. Ind Eng. Chem.2011,17,149-153.
    [198]Balu, B.; Breedveld, V.; Hess, D. W., Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing, Langmuir 2008,24, 4785-4790.
    [199]Athauda, T. J.; Hari, P.; Ozer, R. R., Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers, ACS Appl Mater Interfaces 2013,5, 6237-6246.
    [200]Sarkar, M. K.; He, F.; Fan, J., Differential superhydrophobicity and hydrophilicity on a thin cellulose layer, Thin Solid Films 2010,518,5033-5039.
    [201]Goncalves, G.; Marques, P. A.; Trindade, T.; Neto, C. P.; Gandini, A., Superhydrophobic cellulose nanocomposites, J. Colloid Interface Sci.2008,324, 42-46.
    [202]Ladet, S.; David, L.; Domard, A., Multi-membrane hydrogels, Nature 2008,452, 76-79.
    [203]Dai, H.; Li, X.; Long, Y; Wu, J.; Liang, S.; Zhang, X.; Zhao, N.; Xu, J., Multi-membrane hydrogel fabricated by facile dynamic self-assembly, Soft Matter 2009,5,1987-1989.
    [204]Dhanasingh, A.; Groll, J., Polysaccharide based covalently linked multi-membrane hydrogels, Soft Matter 2012,8,1643-1647.
    [1]Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K. W., Biomedical applications of polymer-composite materials:a review, Compos. Sci. Technol.2001, 61,1189-1224.
    [2]Bhardwaj,R.;Mohanty,A.K.;Drxal,L.;Pourboghrat,F.;Misra,M.,Renewableresource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic, Biomacromolecules 2006,7, 2044-2051.
    [3]Lu, Y.; Larock, R. C., Fabrication, Morphology and Properties of Soybean Oil-Based Composites Reinforced with Continuous Glass Fibers, Macromol Mater Eng.2007,292,1085-1094.
    [4]Yan, L.; Chen, J.; Bangal, P. R., Dissolving cellulose in a NaOH/thiourea aqueous solution:a topochemical investigation, Macromol Biosci.2007,7,1139-1148.
    [5]Cheung, H.-Y; Lau, K.-T.; Lu, T.-P.; Hui, D., A critical review on polymer-based bio-engineered materials for scaffold development, Compos.Part. B-Eng.2007,38, 291-300.
    [6]Juntaro, J.; Pommet, M.; Kalinka, G.; Mantalaris, A.; Shaffer, M. S.; Bismarck, A., Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers, Adv. Mater.2008,20,3122-3126.
    [7]Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L., The path forward for biofuels and biomaterials, Science 2006,311,484-489.
    [8]Sgriccia, N.; Hawley, M.; Misra, M., Characterization of natural fiber surfaces and natural fiber composites, Compos.Part.A-Appl. S.2008,39,1632-1637.
    [9]Svagan, A. J.; Samir, M. A.; Berglund, L. A., Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils, Adv. Mater.2008,20,1263-1269.
    [10]Yang, Q.; Lue, A.; Qi, H.; Sun, Y; Zhang, X.; Zhang, L., Properties and bioapplications of blended cellulose and corn protein films, Macromol Biosci.2009,9, 849-856.
    [11]Habibi, Y; Lucia, L. A.; Rojas, O. J., Cellulose nanocrystals:chemistry, self-assembly, and applications, Chem. Rev.2010,110,3479-3500.
    [12]Cai, J.; Zhang, L., Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions, Macromol Biosci.2005,5,539-548.
    [13]Cai, J.; Zhang, L., Unique gelation behavior of cellulose in NaOH/urea aqueous solution, Biomacromolecules 2006,7,183-189.
    [14]Cai, J.; Zhang, L.; Liu, S.; Liu, Y; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.; Cheng, H., Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures, Macromolecules 2008,41,9345-9351.
    [15]Chang, C.; Peng, J.; Zhang, L.; Pang, D.-W., Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.2009,19,7771-7776.
    [16]Liu, S.; Zhang, L.; Zhou, J.; Wu, R., Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway, J. Phys. Chem. C 2008,112, 4538-4544.
    [17]Luo, X.; Liu, S.; Zhou, J.; Zhang, L., In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery, J. Mater. Chem.2009,19, 3538-3545.
    [18]Qi, H.; Chang, C.; Zhang, L., Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process, Green Chem.2009,11,177-184.
    [19]Ruan, D.; Zhang, L.; Mao, Y.; Zeng, M.; Li, X., Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution, J. Membr. Sci.2004, 241,265-274.
    [20]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B., Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties, Adv. Mater.2007,19,821-825.
    [21]Murugan, R.; Ramakrishna, S., Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite, Biomaterials 2004,25,3829-3835.
    [22]Aaserud,O.; Hommeren, O. J.; Tvedt, B.; Nakstad, P.; Mowe, G.; Efskind, J.; Russell, D.; Jorgensen, E. B.; Nyberg-Hansen, R.; Rootwelt, K., Carbon disulfide exposure and neurotoxic sequelae among viscose rayon workers, Am. J. Ind. Med 1990,18,25-37.
    [23]COLMAN, A.; BYERS, M. J.; PRIMROSE, S. B.; LYONS, A., Rapid purification of plasmid DNAs by hydroxyapatite chromatography, Eur. J. Biochem. 1978,91,303-310.
    [24]Schroder, E.; Jonsson, T.; Poole, L., Hydroxyapatite chromatography:altering the phosphate-dependent elution profile of protein as a function of pH, Anal. Biochem. 2003,313,176-178.
    [25]Jongpaiboonkit, L.; Franklin-Ford, T.; Murphy, W. L., Growth of hydroxyapatite coatings on biodegradable polymer microspheres, ACS Appl. Mater. Interfaces 2009, 1,1504-1511.
    [26]Wei, G.; Ma, P. X., Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials 2004,25,4749-4757.
    [27]Swetha, M.; Sahithi, K.; Moorthi, A.; Srinivasan, N.; Ramasamy, K.; Selvamurugan, N., Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering, Int. J. Biol. Macromol.2010,47,1-4.
    [28]Balasundaram, G.; Webster, T. J., An Overview of Nano-Polymers for Orthopedic Applications, Macromol Biosci.2007,7,635-642.
    [29]Grande, C. J.; Torres, F. G.; Gomez, C. M.; Carmen Bano, M, Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications, Acta Biomater.2009,5, 1605-1615.
    [30]Jeong, S. I.; Ko, E. K.; Yum, J.; Jung, C. H.; Lee, Y. M.; Shin, H., Nanofibrous poly (lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration, Macromol Biosci.2008,8,328-338.
    [31]Katti, K. S.; Katti, D. R.; Dash, R., Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering, Biomed.Mater.2008,3,034122.
    [32]Madhumathi, K.; Binulal, N.; Nagahama, H.; Tamura, H.; Shalumon, K.; Selvamurugan, N.; Nair, S.; Jayakumar, R., Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications, Int. J. Biol. Macromol.2009,44,1-5.
    [33]Peter, M.; Binulal, N.; Soumya, S.; Nair, S.; Furuike, T.; Tamura, H.; Jayakumar, R., Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications, Carbohydr. Polym.2010,79, 284-289.
    [34]Jia, N.; Li, S.-M.; Ma, M.-G; Sun, R.-C.; Zhu, J.-F., Hydrothermal Synthesis and Characterization of Cellulose-Carbonated Hydroxyapatite Nanocomposites in NaOHUrea Aqueous Solution, Sci. Adv. Mater.2010,2,210-214.
    [35]Wan, Y.; Huang, Y.; Yuan, C.; Raman, S.; Zhu, Y.; Jiang, H.; He, F.; Gao, C., Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications, Mater. Sci. Eng. C 2007,27,855-864.
    [36]Padilla, S.; Izquierdo-Barba, I.; Vallet-Regi, M., High specific surface area in nanometric carbonated hydroxyapatite, Chem. Mater.2008,20,5942-5944.
    [37]Lue, A.; Zhang, L., Effects of carbon nanotubes on rheological behavior in cellulose solution dissolved at low temperature, Polymer 2010,51,2748-2754.
    [38]Mathieu, L.; Bourban, P.-E.; Manson, J.-A., Processing of homogeneous ceramic/polymer blends for bioresorbable composites, Compos. Sci. Technol.2006,66, 1606-1614.
    [39]Rabek, J. F., Experimental methods in polymer chemistry:physical principles and applications. Wiley:1980.
    [40]Ma, G; Liu, X. Y., Hydroxyapatite:hexagonal or monoclinic? Cryst Growth Des. 2009,9,2991-2994.
    [41]Nassif, N.; Martineau, F.; Syzgantseva, O.; Gobeaux, F.; Willinger, M.; Coradin, T.; Cassaignon, S.; Azai's, T.; Giraud-Guille, M., In vivo inspired conditions to synthesize biomimetic hydroxyapatite, Chem. Mater.2010,22,3653-3663.
    [42]Zhang, G.; Yang, J.; Quan, Z.; Yang, P.; Li, C; Hou, Z.; Lin, J., Hydroxyapatite nano-and microcrystals with multiform morphologies:controllable synthesis and luminescence properties, Cryst Growth Des.2009,9,2725-2733.
    [43]Zeng, J.; Liu, S.; Cai, J.; Zhang, L., TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation, J. Phys. Chem. C 2010,] 14,7806-7811.
    [44]Cuneyt Tas, A., Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃ in synthetic body fluids, Biomaterials 2000,21,1429-1438.
    [45]Isogai, A.; Usuda, M; Kato, T.; Uryu, T.; Atalla, R. H., Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs, Macromolecules 1989,22, 3168-3172.
    [46]Han, J.; Dou, Y; Yan, D.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X., Biomimetic design and assembly of organic-inorganic composite films with simultaneously enhanced strength and toughness, Chem. Commun.2011,47,5274-5276.
    [47]Balazs, A. C.; Emrick, T.; Russell, T. P., Nanoparticle Polym. Compos.:where two small worlds meet, Science 2006,314,1107-1110.
    [487]Yang, J.; Han, C.-R.; Duan, J.-F.; Xu, F.; Sun, R.-C, Interaction of silica nanoparticle/polymer nanocomposite cluster network structure:Revisiting the reinforcement mechanism, J. Phys. Chem. C2013,117,8223-8230.
    [1]Zarzar, L. D.; Aizenberg, J., Stimuli-Responsive Chemomechanical Actuation:A Hybrid Materials Approach, Acc. Chem. Res.2013,47,530-539.
    [2]Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y, Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface, Adv. Mater.2012,24,1969-1974.
    [3]Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, P.; Aizenberg, J., Reversible switching of hydrogel-actuated nanostructures into complex micropatterns, Science 2007,315,487-490.
    [4]de las Heras Alarcon, C.; Pennadam, S.; Alexander, C., Stimuli responsive polymers for biomedical applications, Chem. Soc. Rev.2005,34,276-285.
    [5]Hu, J.; Liu, S., Responsive polymers for detection and sensing applications: current status and future developments, Macromolecules 2010,43,8315-8330.
    [6]Stuart, M. A. C.; Huck, W. T.; Genzer, J.; Miiller, M.; Ober, C.; Stamm, M.; Sukhorukov, G B.; Szleifer, I.; Tsukruk, V. V.; Urban, M., Emerging applications of stimuli-responsive polymer materials, Nat. Mater.2010,9,101-113.
    [7]Ma, M.; Guo, L.; Anderson, D. G.; Langer, R., Bio-inspired polymer composite actuator and generator driven by water gradients, Science 2013,339,186-189.
    [8]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A., Cellulose:fascinating biopolymer and sustainable raw material, Angew. Chem., Int. Ed. 2005,44,3358-3393.
    [9]Cai, J.; Kimura, S.; Wada, M.; Kuga, S.; Zhang, L., Cellulose aerogels from aqueous alkali hydroxide-urea solution, ChemSusChem 2008,1,149-154.
    [10]Pei, Y; Wang, X.; Huang, W.; Liu, P.; Zhang, L., Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices, Cellulose 2013,20,1897-1909
    [11]Liu, S.; Zhang, L., Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution, Cellulose 2009,16,189-198.
    [12]Wang, Q.; Cai, J.; Zhang, L.; Xu, M.; Cheng, H.; Han, C. C; Kuga, S.; Xiao, J.; Xiao, R., A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure, J. Mater. Chem. A 2013,1,6678-6686.
    [13]Zeng, J.; Liu, S.; Cai, J.; Zhang, L., TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation, The Journal of Physical Chemistry C 2010,114,7806-7811.
    [14]Yuvaraj, H.; Shim, J. J.; Lim, K. T., Organic-inorganic polypyrrole-surface modified SiO2 hybrid nanocomposites:a facile and green synthetic approach, Polym. Adv. Technol.2010,21,424-429.
    [15]Zhang, Y.; Yu, J.; Zhou, C.; Chen, L.; Hu, Z., Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2 nanocomposite fibers, Polym. Compos.2010,31,684-690.
    [16]Wang, Z.; Han, E.; Ke, W., Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP-DPER—MEL coating, Polym. Degrad Stab.2006,91,1937-1947.
    [17]Chen, M.; Wu, L.; Zhou, S.; You, B., Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method, Macromolecules 2004,37, 9613-9619.
    [18]Nan, C.-W.; Fan, L.; Lin, Y; Cai, Q., Enhanced Ionic Conductivity of Polymer Electrolytes Containing Nanocomposite SiO2 Particles,Phys. Rev. Lett.2003,91, 266104.
    [19]Fujii, S.; Read, E. S.; Binks, B. P.; Armes, S. P., Stimulus-Responsive Emulsifiers Based on Nanocomposite Microgel Particles, Adv. Mater.2005,17,1014-1018.
    [20]Wu, J.; Sailor, M. J., Chitosan Hydrogel-Capped Porous SiO2 as a pH Responsive Nano-Valve for Triggered Release of Insulin, Adv. Funct. Mater.2009,19,733-741.
    [21]Garnweitner, G; Smarsly, B.; Assink, R.; Ruland, W.; Bond, E.; Brinker, C. J., Self-assembly of an environmentally responsive polymer/silica nanocomposite, J. Am. Chem. Soc.2003,125,5626-5627.
    [22]Ogihara, H.; Xie, J.; Okagaki, J.; Saji, T., Simple method for preparing superhydrophobic paper:spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency, Langmuir 2012,28,4605-4608.
    [23]Song, H.; Zheng, L., Nanocomposite films based on cellulose reinforced with nano-SiO2:microstructure, hydrophilicity, thermal stability, and mechanical properties, Cellulose 2013,20,1737-1746.
    [24]Cai, J.; Liu, Y; Zhang, L., Dilute solution properties of cellulose in LiOH/urea aqueous system, J. Polym. Sci., Part B:Polym. Phys.2006,44,3093-3101.
    [25]Li, L.; Aoki, Y, Rheological images of poly (vinyl chloride) gels.1. the dependence of sol-gel transition on concentation, Macromolecules 1997,30, 7835-7841.
    [26]Apetz, R.; Bruggen, M. P., Transparent Alumina:A Light-Scattering Model, J. Am. Ceram. Soc.2003,86,480-486.
    [27]Chen, D.; Huang, F.; Cheng, Y. B.; Caruso, R. A., Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes:A Superior Candidate for High-Performance Dye-Sensitized Solar Cells, Adv. Mater.2009,21,2206-2210.
    [28]Koo, J.; Hong, K.; Park, J.; Shin, D., Effect of grain size on transmittance and mechanical strength of sintered alumina, Mater. Sci. Eng. A 2004,374,191-195.
    [29]Yang, X.; Liu, Q.; Chen, X.; Yu, F.; Zhu, Z., Investigation of PVA/ws-chitosan hydrogels prepared by combined y-irradiation and freeze-thawing, Carbohydr. Polym. 2008,73,401-408.
    [30]Han, J.; Dou, Y.; Yan, D.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X., Biomimetic design and assembly of organic-inorganic composite films with simultaneously enhanced strength and toughness, Chem. Commun.2011,47,5274-5276.
    [31]Balazs, A. C; Emrick, T.; Russell, T. P., Nanoparticle Polym. Compos.:where two small worlds meet, Science 2006,314,1107-1110.
    [32]Yang, J.; Han, C.-R.; Duan, J.-F.; Xu, F.; Sun, R.-C., Interaction of silica nanoparticle/polymer nanocomposite cluster network structure:Revisiting the reinforcement mechanism, J. Phys. Chem. C2013,117,8223-8230.
    [1]Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel, M. C., An engineered anisotropic nanofilm with unidirectional wetting properties, Nat. Mater. 2010,9,1023-1028.
    [2]Sun, T.; Feng, L.; Gao, X.; Jiang, L., Bioinspired surfaces with special wettability, Acc. Chem. Res.2005,38,644-652.
    [3]Gao, X.; Jiang, L., Biophysics:water-repellent legs of water striders, Nature 2004, 432,36-36.
    [4]Roach, P.; Shirtcliffe, N. J.; Newton, M. I., Progess in superhydrophobic surface development, Soft Matter 2008,4,224-240.
    [5]Qi, H.; Cai, J.; Zhang, L.; Nishiyama, Y.; Rattaz, A., Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution, Cellulose 2008,15,81-89.
    [6]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B., Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties, Adv. Mater.2007,19,821-825.
    [7]Chang, C.; He, M.; Zhou, J.; Zhang, L., Swelling Behaviors of pH-and Salt-Responsive Cellulose-Based Hydrogels, Macromolecules 2011,44,1642-1648.
    [8]Luo, X.; Liu, S.; Zhou, J.; Zhang, L., In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery, J. Mater. Chem.2009,19, 3538-3545.
    [9]Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D., Super-Hydrophobic Surfaces:From Natural to Artificial, Adv. Mater.2002,14, 1857-1860.
    [10]Jiang, L.; Zhao, Y.; Zhai, J., A Lotus-Leaf-like Superhydrophobic Surface:A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics, Angew. Chem.Int. Ed 2004,116,4438-4441.
    [11]Lai, Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing superhydrophobic porous nanostructures with tunable water adhesion, Adv. Mater.2009,21,3799-3803.
    [12]Erbil H. Y; Demirel, A. L.; Avci, Y.; Mert, O., Transformation of a simple plastic into a superhydrophobic surface, Science 2003,299,1377.
    [13]Zhao, N.; Weng, L.; Zhang, X.; Xie, Q.; Xu, J., A Lotus-Leaf-Like Superhydrophobic Surface Prepared by Solvent-Induced Crystallization, ChemPhysChem 2006,7,824-827.
    [14]Wu, T.; Pan, Y; Li, L., Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid, J. Colloid Interface Sei. 2010,348, 265-270.
    [15]Theneshkumar, S.; Gnanaprakash, D.; Nagendra Gandhi, N., Solubility and Mass Transfer Coefficient Enhancement of Stearic Acid through Hydrotropy, J Chem Eng Data 2010,55,2980-2984.
    [16]Shepherd, T.; Robertson, G; Griffiths, D.; Birch, A.; Duncan, G., Effects of environment on the composition of epicuticular wax from kale and swede, Phytochemistry 1995,40,407-417.
    [17]Sebti, I.; Ham-Pichavant, F.; Coma, V., Edible bioactive fatty acid-cellulosic derivative composites used in food-packaging applications, J. Agric. Food Chem. 2002,50,4290-4294.
    [18]Lai, H. M.; Padua, G. W., Properties and microstructure of plasticized zein films, Cereal chemistry 1997,74,771-775.
    [19]Lodha, P.; Netravali, A. N., Thermal and mechanical properties of environment-friendly green plastics from stearic acid modified-soy protein isolate, Ind Crop and Prod.2005,21,49-64.
    [20]Nyfors, L.; Suchy, M.; Laine, J.; Kontturi, E., Ultrathin Cellulose Films of Tunable Nanostructured Morphology with a Hydrophobic Component, Biomacromolecules 2009,10,1276-1281.
    [21]Taajamaa, L.; Kontturi, E.; Laine, J.; Rojas, O. J., Bicomponent fibre mats with adhesive ultra-hydrophobicity tailored with cellulose derivatives, J. Mater. Chem. 2012,22,12072-12082.
    [22]Berlioz, S.; Molina-Boisseau, S.; Nishiyama, Y.; Heux, L., Gas-phase surface esterification of cellulose micro fibrils and whiskers, Biomacromolecules 2009,10, 2144-2151.
    [23]Wang, J.; Somasundaran, P., Mechanisms of ethyl (hydroxyethyl) cellulose-solid interaction:Influence of hydrophobic modification, J. Colloid Interface Sci.2006,293, 322-332.
    [24]Ding, B.; Li, C.; Hotta, Y; Kim, J.; Kuwaki, O.; Shiratori, S., Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface, Nanotechnology 2006,17,4332.
    [25]Balu, B.; Breedveld, V.; Hess, D. W., Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing, Langmuir 2008,24, 4785-4790.
    [26]Cunha, A. G.; Freire, C. S.; Silvestre, A. J.; Neto, C. P.; Gandini, A.; Orblin, E.; Fardim, P., Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates, Biomacromolecules 2007,8, 1347-1352.
    [27]Jonoobi, M.; Harun, J.; Mathew, A. P.; Hussein, M. Z. B.; Oksman, K., Preparation of cellulose nanofibers with hydrophobic surface characteristics, Cellulose 2010,17,299-307.
    [28]Cunha, A. G.; Freire, C.; Silvestre, A.; Neto, C. P.; Gandini, A.; Belgacem, M. N.; Chaussy, D.; Beneventi, D., Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas-solid reaction, J. Colloid Interface Sci.2010, 344,588-595.
    [29]Bayer, I. S.; Fragouli, D.; Attanasio, A.; Sorce, B.; Bertoni, G.; Brescia, R.; Di Corato, R.; Pellegrino, T.; Kalyva, M.; Sabella, S.; Pompa, P. P.; Cingolani, R.; Athanassiou, A., Water-repellent cellulose fiber networks with multifunctional properties, ACSAppl Mater Interfaces 2011,3,4024-4031.
    [30]Herminghaus, S., Roughness-induced non-wetting, EPL (Europhysics Letters) 2000,52,165.
    [31]Gao, X.; Jiang, L., Biophysics:water-repellent legs of water striders, Nature 2004, 432,36-36.
    [32]Joung, Y S.; Buie, C. R., Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces, Langmuir 2011,27,4156-4163.
    [33]Zhang, D.; Yu, W; Hao, D.; Li, L.; Liu, H.; Lu, Z., Functional nanostructured surfaces in hybrid sol-gel glass in large area for antireflective and super-hydrophobic purposes, J. Mater. Chem.2012,22,17328-17331.
    [34]Meng, T.; Xie, R.; Ju, X.-J.; Cheng, C.-J.; Wang, S.; Li, P.-F.; Liang, B.; Chu, L.-Y., Nano-structure construction of porous membranes by depositing nanoparticles for enhanced surface wettability, J. Membr. Sci.2013,427,63-72.
    [35]Feng, X.; Jiang, L., Design and creation of superwetting/antiwetting surfaces, Adv. Mater.2006,18,3063-3078.
    [36]Cai, J.; Liu, Y; Zhang, L., Dilute solution properties of cellulose in LiOH/urea aqueous system, J. Polym. Sci., Part B:Polym. Phys.2006,44,3093-3101.
    [37]Zhang, L.; Liu, H.; Zheng, L.; Zhang, J.; Du, Y; Feng, H., Biodegradability of regenerated cellulose films in soil, Ind. Eng. Chem. Res.1996,35,4682-4685.
    [38]Rabek, J. F., Experimental methods in polymer chemistry:physical principles and applications. Wiley:1980.
    [39]Isogai, A.; Usuda, M.; Kato, T.; Uryu, T.; Atalla, R H., Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs, Macromolecules 1989,22, 3168-3172.
    [40]Teixeira, A. C. T.; Garcia, A. R; Ilharco, L. M.; Goncalves da Silva, A. M. P. S.; Fernandes, A. C., Phase behaviour of oleanolic acid, pure and mixed with stearic acid: Interactions and crystallinity, Chem. Phys. Lipids 2010,163,655-666.
    [41]Ensikat, H.; Boese, M; Mader, W; Barthlott, W; Koch, K., Crystallinity of plant epicuticular waxes:electron and X-ray diffraction studies, Chem. Phys. Lipids 2006, 144,45-59.
    [42]Malta, V.; Celotti, G.; Zannetti, R.; Martelli, A. f., Crystal structure of the C form of stearic acid, J. Chem. Soc. B1971,548-553.
    [43]Cassie, A.; Baxter, S., Wettability of porous surfaces, Trans. Faraday Soc.1944, 40,546-551.
    [44]Crick, C. R.; Parkin, I. P., Preparation and Characterisation of Super-Hydrophobic Surfaces,Chem.-Eur. J.2010,16,3568-3588.
    [45]Chang, C.; Peng, J.; Zhang, L.; Pang, D. W., Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.2009,19,7771-7776.
    [46]Liu, S.; Zhang, L.; Zhou, J.; Xiang, J.; Sun, J.; Guan, J., Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers, Chem. Mater.2008,20,3623-3628.
    [47]Severino, P.; Pinho, S. C.; Souto, E. B.; Santana, M. H., Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles, Colloids Surf B 2011,86,125-130.
    [48]Sala, S.; Elizondo, E.; Moreno, E.; Calvet, T.; Cuevas-Diarte, M. A.; Ventosa, N.; Veciana, J., Kinetically Driven Crystallization of a Pure Polymorphic Phase of Stearic Acid from CO2-Expanded Solutions, Cryst. Growth Des.2010,10,1226-1232.
    [49]Tang, Z.; Liu, A.; Chen, Z., Study on performance of colloidal mixtures consisted of stearic acid and Na2HPO4·I2H2O for use as phase change materials of thermal energy storage, Energy Convers. Manage.2010,51,1459-1463.
    [1]Sun, T.; Feng, L.; Gao, X.; Jiang, L., Bioinspired surfaces with special wettability, Acc. Chem. Res.2005,38,644-652.
    [2]Roach, P.; Shirtcliffe, N. J.; Newton, M. I., Progess in superhydrophobic surface development, Soft Matter 2008,4,224-240.
    [3]Gao, X.; Jiang, L., Biophysics:water-repellent legs of water striders, Nature 2004, 432,36-36.
    [4]Zheng, Y.; Bai, H.; Huang, Z.; Tian, X.; Nie, F.-Q.; Zhao, Y; Zhai, J.; Jiang, L., Directional water collection on wetted spider silk, Nature 2010,463,640-643.
    [5]Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J., Adhesive force of a single gecko foot-hair, Nature 2000,405, 681-685.
    [6]Tian, Y.; Pesika, N.; Zeng, H.; Rosenberg, K.; Zhao, B.; McGuiggan, P.; Autumn, K.; Israelachvili, J., Adhesion and friction in gecko toe attachment and detachment, Proc. Natl. Acad. Sci. U.S.A.2006,103,19320-19325.
    [7]Ju, J.; Bai, H.; Zheng, Y; Zhao, T.; Fang, R.; Jiang, L., A multi-structural and multi-functional integrated fog collection system in cactus, Nat. Commun.2012,3, 1247.
    [8]Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel, M. C., An engineered anisotropic nanofilm with unidirectional wetting properties, Nat. Mater. 2010,9,1023-1028.
    [9]Geim, A.; Dubonos, S.; Grigorieva, I.; Novoselov, K.; Zhukov, A.; Shapoval, S. Y, Microfabricated adhesive mimicking gecko foot-hair, Nat. Mater.2003,2,461-463.
    [10]Lee, H.; Lee, B. P.; Messersmith, P. B., A reversible wet/dry adhesive inspired by mussels and geckos, Nature 2007,448,338-341.
    [11]Lee, W.; Jin, M.-K.; Yoo, W.-C; Lee, J.-K., Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability, Langmuir 2004,20,7665-7669.
    [12]Thomas, A.; Goettmann, F.; Antonietti, M., Hard templates for soft materials: creating nanostructured organic materials, Chem. Mater.2008,20,738-755.
    [13]Bonderer, L. J.; Studart, A. R.; Gauckler, L. J., Bioinspired design and assembly of platelet reinforced polymer films, Science 2008,319,1069-1073.
    [14]Ma, M.; Guo, L.; Anderson, D. G; Langer, R., Bio-inspired polymer composite actuator and generator driven by water gradients, Science 2013,339,186-189.
    [15]Bleek, K.; Taubert, A., New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution, Acta Biomater.2013,9, 6283-6321.
    [16]Cai, J.; Wang, L.; Zhang, L., Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH-urea aqueous solution, Cellulose 2007,14,205-215.
    [17]Cai, J.; Liu, S.; Feng, J.; Kimura, S.; Wada, M.; Kuga, S.; Zhang, L., Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel, Angew. Chem Int. Ed 2012,124,2118-2121.
    [18]Liu, S.; Zhang, L.; Zhou, J.; Xiang, J.; Sun, J.; Guan, J., Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers, Chem. Mater.2008,20,3623-3628.
    [19]Eloundou, J. P.; Girard-Reydet, E.; Gerard, J.-F.; Pascault, J.-P., Calorimetric and rheological studies of 12-hydroxystearic acid/digycidyl ether of bisphenol A blends, Polym. Bull.2005,53,367-375.
    [20]Lam, R. S. H.; Rogers, M. A., Experimental validation of the modified Avrami model for non-isothermal crystallization conditions, CrystEngComm 2011,13, 866-875.
    [21]Wu, S.; Gao, J.; Emge, T. J.; Rogers, M. A., Solvent-Induced Polymorphic Nanoscale Transitions for 12-Hydroxyoctadecanoic Acid Molecular Gels, Cryst. Growth Des.2013,13,1360-1366.
    [22]Rogers, M. A.; Marangoni, A. G., Solvent-Modulated Nucleation and Crystallization Kinetics of 12-Hydroxystearic Acid:A Nonisothermal Approach, Langmuir 2009,25,8556-8566.
    [23]Hearle, J., A critical review of the structural mechanics of wool and hair fibres, Int. J. Biol. Macromol.2000,27,123-138.
    [24]Powell, B. C.; Rogers, G, The role of keratin proteins and their genes in the growth, structure and properties of hair, In Formation and structure of human hair, Springer:1995; pp 59-148.
    [25]Hong, Y.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission:phenomenon, mechanism and applications, Chem. Commun.2009,4332-4353.
    [26]Hong, Y.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission, Chem. Soc. Rev.2011,40,5361-5388.
    [27]Hong, Y; Meng, L.; Chen, S.; Leung, C. W. T.; Da, L.-T.; Faisal, M.; Silva, D.-A.; Liu, J.; Lam, J. W. Y; Huang, X., Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics, J. Am. Chem. Soc.2012,134,1680-1689.
    [28]Xu, S.; Lin, Y.; Huang, J.; Li, Z.; Xu, X.; Zhang, L., Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water, J. Mater. Chem. A 2013,1,4198-4206.
    [29]Cai, J.; Liu, Y.; Zhang, L., Dilute solution properties of cellulose in LiOH/urea aqueous system, J. Polym. Sci, Part B:Polym. Phys.2006,44,3093-3101.
    [30]Song, Z.; Hong, Y; Kwok, R. T.; Lam, J. W.; Liu, B.; Tang, B. Z., A dual-mode fluorescence "turn-on" biosensor based on an aggregation-induced emission luminogen, J. Mater. Chem. B 2014,2,1717-1723.
    [31]Zhou, X.; Li, H.; Chi, Z.; Zhang, X.; Zhang, J.; Xu, B.; Zhang, Y.; Liu, S.; Xu, J., Piezofluorochromism and morphology of a new aggregation-induced emission compound derived from tetraphenylethylene and carbazole, New J. Chem.2012,36, 685-693.
    [32]Grahame, D. A.; Olauson, C.; Lam, R. S.; Pedersen, T.; Borondics, F.; Abraham, S.; Weiss, R. G.; Rogers, M. A., Influence of chirality on the modes of self-assembly of 12-hydroxystearic acid in molecular gels of mineral oil, Soft Matter 2011,7, 7359-7365.
    [33]Isogai, A.; Usuda, M.; Kato, T.; Uryu, T.; Atalla, R. H., Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs, Macromolecules 1989,22, 3168-3172.
    [34]Crick, C. R.; Parkin, I. P., Preparation and Characterisation of Super-Hydrophobic Surfaces, Chem.-Eur. J.2010,16,3568-3588.
    [35]Athauda, T. J.; Hari, P.; Ozer, R. R., Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers, ACS Appl Mater Interfaces 2013,5, 6237-6246.
    [36]Sarkar, M. K.; He, F.; Fan, J., Differential superhydrophobicity and hydrophilicity on a thin cellulose layer, Thin Solid Films 2010,518,5033-5039.
    [37]Tang, Z.; Liu, A.; Chen, Z., Study on performance of colloidal mixtures consisted of stearic acid and Na2HPO4·12H2O for use as phase change materials of thermal energy storage,Energy Convers. Manage.2010,51,1459-1463.
    [38]Tamura, T.; Ichikawa, M., Effect of lecithin on organogel formation of 12-hydroxystearic acid, J. Am. Oil Chem. Soc.1991,74,491-495.
    [39]Chen, J.; Law, C. C.; Lam, J. W.; Dong, Y.; Lo, S. M.; Williams, I. D.; Zhu, D.; Tang, B. Z., Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles, Chem. Mater.2003,15, 1535-1546.
    [40]Zhao, Z.; Chen, S.; Lam, J. W.; Jim, C. K.; Chan, C. Y.; Wang, Z.; Lu, P.; Deng, C.; Kwok, H. S.; Ma, Y, Steric hindrance, electronic communication, and energy transfer in the photo-and electroluminescence processes of aggregation-induced emission luminogens, J. Phys. Chem. C2010,114,7963-7972.
    [41]Tong, H.; Hong, Y; Dong, Y; Haussler, M.; Li, Z.; Lam, J. W.; Dong, Y.; Sung, H. H.-Y; Williams, I. D.; Tang, B. Z., Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics,./Phys. Chem. B2007,111,11817-11823.
    [42]Hou, L.; Wang, C.; Chen, L.; Chen, S., Multiple-structured nanocrystals towards bifunctional photoluminescent-superhydrophobic surfaces, J. Mater. Chem.2010,20, 3863-3868.
    [1]Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder, Nature 2010,463,339-343.
    [2]Sun, J. Y; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z., Highly stretchable and tough hydrogels, Nature 2012,489, 133-136.
    [3]Johnson, L. M.; DeForest, C. A.; Pendurti, A.; Anseth, K. S.; Bowman, C. N., Formation of three-dimensional hydrogel multilayers using enzyme-mediated redox chain initiation, ACS Appl. Mater. Interfaces 2010,2,1963-1972.
    [4]Zarzar, L. D.; Kim, P.; Aizenberg, J., Bio-inspired Design of Submerged Hydrogel-Actuated Polymer Microstructures Operating in Response to pH, Adv. Mater.2011,23,1442-1446.
    [5]Wu, J.; Ren, Y.; Sun, J.; Feng, L., Carbon nanotubes-coated macroporous poly (N-isopropylacrylamide) hydrogel and its electro-sensitivity, ACS Appl. Mater. Interfaces 2013,5,3519-3523.
    [6]Katsuno, C.; Konda, A.; Urayama, K.; Takigawa, T.; Kidowaki, M.; Ito, K., Pressure-responsive polymer membranes of slide-ring gels with movable cross-links, Adv Mater 2013,25,4636-4640.
    [7]Liang, S.; Hu, J.; Wu, Z. L.; Kurokawa, T.; Gong, J. P., Toughness Enhancement and Stick-Slip Tearing of Double-Network Hydrogels in Poly (ethylene glycol) Solution, Macromolecules 2012,45,4758-4763.
    [8]Elisseeff, J., Hydrogels:structure starts to gel, Nat. Mater.2008,7,271-273.
    [9]Dai, H.; Li, X.; Long, Y; Wu, J.; Liang, S.; Zhang, X.; Zhao, N.; Xu, J., Multi-membrane hydrogel fabricated by facile dynamic self-assembly, Soft Matter 2009,5,1987-1989.
    [10]Ladet, S.; David, L.; Domard, A., Multi-membrane hydrogels, Nature 2008,452, 76-79.
    [11]Ladet, S.; Tahiri, K.; Montembault, A.; Domard, A.; Corvol, M., Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors, Biomaterials 2011,32, 5354-5364.
    [12]Kunze, A.; Giugliano, M.; Valero, A.; Renaud, P., Micropatterning neural cell cultures in 3D with a multi-layered scaffold, Biomaterials 2011,32,2088-2098.
    [13]Li, Y.; Wang, Y.; Wu, D.; Zhang, K.; Hu, Q., A facile approach to construct three-dimensional oriented chitosan scaffolds with in-situ precipitation method, Carbohydr. Polym.2010,80,408-412.
    [14]Baek, K.; Jeong, J. H.; Shkumatov, A.; Bashir, R.; Kong, H., In SituSelf-Folding Assembly of a Multi-Walled Hydrogel Tube for Uniaxial Sustained Molecular Release, Adv. Mater.2013,25,5568-5573.
    [15]Duan, J.; Hou, R.; Xiong, X.; Wang, Y.; Fu, J.; Yu, Z., Versatile fabrication of arbitrarily shaped multi-membrane hydrogels suitable for biomedical applications, J. Mater. Chem. B 2013.
    [16]Li, Y.; Kong, M.; Feng, C.; Liu, W. F.; Liu, Y.; Cheng, X. J.; Chen, X. G., Preparation and property of layer-by-layer alginate hydrogel beads based on multi-phase emulsion technique, J. Sol-Gel Sci. Technol.2012,1-10.
    [17]Dhanasingh, A.; Groll, J., Polysaccharide based covalently linked multi-membrane hydrogels, Soft Matter 2012,8,1643-1647.
    [18]Xing, Q.; Zhao, F.; Chen, S.; McNamara, J.; DeCoster, M. A.; Lvov, Y M., Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture, Acta Biomater.2010,6,2132-2139.
    [19]Vinatier, C.; Gauthier, O.; Fatimi, A.; Merceron, C.; Masson, M.; Moreau, A.; Moreau, F.; Fellah, B.; Weiss, P.; Guicheux, J., An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects, Biotechnol. Bioeng.2009,102,1259-1267.
    [20]MagaMes, W. L. E.; Cao, X.; Lucia, L. A., Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies, Langmuir 2009,25,13250-13257.
    [21]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A., Cellulose:fascinating biopolymer and sustainable raw material, Angew Chem IntEd.2005,44,3358-3393.
    [22]Cai, J.; Zhang, L.; Liu, S.; Liu, Y; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.; Cheng, H., Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures, Macromolecules 2008,41,9345-9351.
    [23]Gericke, M.; Trygg, J.; Fardim, P., Functional cellulose beads:preparation, characterization, and applications, Chem. Rev.2013,113,4812-4836.
    [24]iqueira, G.; Bras, J.; Follain, N.; Belbekhouche, S.; Marais, S.; Dufresne, A., Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals, Carbohydr. Polym.2013,91,711-717.
    [25]Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H., Optically transparent nanofiber paper Adv. Mater.2009,21,1595-1598.
    [26]Chang, C.; He, M.; Zhou, J.; Zhang, L., Swelling Behaviors of pH-and Salt-Responsive Cellulose-Based Hydrogels, Macromolecules 2011,44,1642-1648.
    [27]Chang, C.; Peng, J.; Zhang, L.; Pang, D. W., Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.2009,19,7771-7776.
    [28]Cai, J.; Liu, S.; Feng, J.; Kimura, S.; Wada, M.; Kuga, S.; Zhang, L., Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel, Angew. Chem Int. Ed 2012,124,2118-2121.
    [29]Cai, J.; Zhang, L., Unique gelation behavior of cellulose in NaOH/urea aqueous solution, Biomacromolecules 2006,7,183-189.
    [30]Cai, J.; Liu, Y.; Zhang, L., Dilute solution properties of cellulose in LiOH/urea aqueous system, J. Polym. Sci, Part B:Polym. Phys.2006,44,3093-3101.
    [31]Eap, S.; Ferrand, A.; Mendoza Palomares, C.; Hebraud, A.; Stoltz, J.-F.; Mainard, D.; Schlatter, G.; Benkirane-Jessel, N., Electrospun nanofibrous 3D scaffold for bone tissue engineering,Bio-Med. Mater. Eng.2012,22,137-141.
    [32]Karageorgiou, V.; Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 2005,26,5474-5491.
    [33]Wang, Y.; Liu, Y; Cheng, Y; Kim, E.; Rubloff, G W.; Bentley, W. E.; Payne, G F., Coupling Electrodeposition with Layer-by-Layer Assembly to Address Proteins within Microfluidic Channels, Adv. Mater.2011,23,5817-5821.
    [34]Hoffinann, S. A.; Muller-Vieira, U.; Biemel, K.; Knobeloch, D.; Heydel, S.; Luebberstedt, M.; Nuessler, A. K.; Andersson, T. B.; Gerlach, J. C.; Zeilinger, K., Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies, Biotechnol. Bioeng.2012,109,3172-3181.
    [35]Wang, D.; Wu, M., Stress and Displacement Fields in Soft Cylindrical Multilayers, Int. J. Solids Struct.2012.
    [36]Chang, C; Duan, B.; Zhang, L., Fabrication and characterization of novel macroporous cellulose-alginate hydrogels, Polymer 2009,50,5467-5473.
    [37]Choi, S. W.; Xie, J.; Xia, Y, Chitosan-Based Inverse Opals:Three-Dimensional Scaffolds with Uniform Pore Structures for Cell Culture, Adv. Mater.2009,21, 2997-3001.
    [38]Sharma, Y.; Tiwari, A.; Hattori, S.; Terada, D.; Sharma, A. K.; Ramalingam, M.; Kobayashi, H., Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture, Int. J. Biol. Macromol.2012,51,627-631.
    [39]Miiller, F. A.; Miiller, L.; Hofmann, I.; Greil, P.; Wenzel, M. M.; Staudenmaier, R., Cellulose-based scaffold materials for cartilage tissue engineering, Biomaterials 2006, 27,3955-3963.
    [1]Kobayashi, M.; Chang, Y. S.; Oka, M., A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus, Biomaterials 2005,26,3243-3248.
    [2]Balakrishnan, B.; Banerjee, R., Biopolymer-Based Hydrogels for Cartilage Tissue Engineering, Chem. Rev.2011,111,4453.
    [3]Egawa, E. Y.; Kato, K.; Hiraoka, M.; Nakaji-Hirabayashi, T.; Iwata, H., Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor, Biomaterials 2011,32,4737-4743.
    [4]Chang, C.; Zhang, L., Cellulose-based hydrogels:Present status and application prospects, Carbohydr. Polym.2011,84,40-53.
    [5]Liu, Y.; Chan-Park, M. B., A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture, Biomaterials 2010, 31,1158-1170.
    [6]Nata, I. F.; Wang, S. S.-S.; Wu, T.-M.; Lee, C.-K., Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers, Soft Matter 2012,8, 3522-3525.
    [7]Chang, C.; Chen, S.; Zhang, L., Novel hydrogels prepared via direct dissolution of chitin at low temperature:structure and biocompatibility, J. Mater. Chem.2011,21, 3865-3871.
    [8]Ladet, S.; David, L.; Domard, A., Multi-membrane hydrogels, Nature 2008,452, 76-79.
    [9]Rinaudo, M., Chitin and chitosan:properties and applications, Prog. Polym. Sci. 2006,31,603-632.
    [10]Jang, M. K.; Kong, B. G.; Jeong, Y. I.; Lee, C. H.; Nah, J. W., Physicochemical characterization of a-chitin, P-chitin, and y-chitin separated from natural resources, J. Polym. Sci, Part A:Polym. Chem.2004,42,3423-3432.
    [11]Terbojevich, M.; Carraro, C.; Cosani, A.; Marsano, E., Solution studies of the chitin-lithium chloride-N, N-di-methylacetamide system, Carbohydr Res.1988,180, 73-86.
    [12]Austin, P. R., Solvents for and purification of chitin. Google Patents:1975.
    [13]Tamura, H.; Nagahama, H.; Tokura, S., Preparation of chitin hydrogel under mild conditions, Cellulose 2006,13,357-364.
    [14]Hu, X.; Du, Y.; Tang, Y.; Wang, Q.; Feng, T.; Yang, J.; Kennedy, J. F., Solubility and property of chitin in NaOH/urea aqueous solution, Carbohydr. Polym.2007,70, 451-458.
    [15]Ding, B.; Cai, J.; Huang, J.; Zhang, L.; Chen, Y.; Shi, X.; Du, Y.; Kuga, S., Facile preparation of robust and biocompatible chitin aerogels, J. Mater. Chem.2012,22, 5801-5809.
    [16]Duan, B.; Chang, C.; Ding, B.; Cai, J.; Xu, M.; Feng, S.; Ren, J.; Shi, X.; Du, Y.; Zhang, L., High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature, J. Mater. Chem. A 2013,1,1867-1874.
    [17]Duan, B.; Liu, F.; He, M.; Zhang, L., Ag-Fe3O4 Nanocomposites@Chitin Microspheres Constructed by in Situ One-pot synthesis for Rapid Hydrogenation Catalysis, Green Chem.2014,16,2835-2845.
    [18]Huang, Y.; Zhong, Z.; Duan, B.; Wang, Y.; Zhang, L. Novel Fibers Fabricated Directly from Chitin Solution and Their Application as Wound Dressing, J. Mater. Chem. B 2014 DOI:10.1039/C4TB00098F.
    [19]Chang, P. R.; Jian, R.; Yu, J.; Ma, X., Starch-based composites reinforced with novel chitin nanoparticles, Carbohydr. Polym.2010,80,420-425.
    [20]Araki, J.; Yamanaka, Y.; Ohkawa, K., Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers, Polym. J 2012, 44,713-717.
    [21]Tang, X.; Alavi, S., Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability, Carbohydr. Polym.2011,85,7-16.
    [22]Mori, Y.; Tokura, H.; Yoshikawa, M., Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications, J. Mater. Sci.1997,32,491-496.
    [23]Stauffer, S. R.; Peppast, N. A., Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing, Polymer 1992,33,3932-3936.
    [24]Hassan, C.; Peppas, N., Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods, Adv. Polym. Sci.2000,37-65.
    [25]Yokoyama, F.; Masada, I.; Shimamura, K.; Ikawa, T.; Monobe, K., Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting, Colloid. Polym. Sci.1986,264,595-601.
    [26]Peppas, N. A.; Scott, J. E., Controlled release from poly (vinyl alcohol) gels prepared by freezing-thawing processes, J Control Release.1992,18,95-100.
    [27]Peesan, M.; Rujiravanit, R.; Supaphol P., Characterisation of beta-chitin/poly (vinyl alcohol) blend films, Polym Test.2003,22,381-387.
    [28]Lee, Y. M.; Kimt, S. H.; Kimt, S. J., Preparation and characteristics of β-chitin and poly (vinyl alcohol) blend, Polymer 1996,37,5897-5905.
    [29]Chang, C.; Lue, A.; Zhang, L., Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels, Macromol. Chem. Phys.2008,209,1266-1273.
    [30]Sudhamani, S.; Prasad, M.; Udaya Sankar, K., DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films, Food Hydrocolloids 2003,17,245-250.
    [31]Yang, X.; Liu, Q.; Chen, X.; Yu, F.; Zhu, Z., Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation.ion and freeze-thawing, Carbohydr. Polym.2008,73,401-408.
    [32]Bartlett, D. H.; Azam, F., Chitin, cholera, and competence, Science 2005,310, 1775-1777.
    [33]Shigemasa, Y.; Matsuura, H.; Sashiwa, H.; Saimoto, H., Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin, Int. J. Biol. Macromol.1996,18,237-242.
    [34]Rabek, J. F., Experimental methods in polymer chemistry:physical principles and application. Wiley New York:1980; Vol.2.
    [35]Nikolov, S.; Petrov, M.; Lymperakis, L.; Friak, M.; Sachs, C.; Fabritius, H. O.; Raabe, D.; Neugebauer, J., Revealing the Design Principles of High-Performance Biological Composites Using Ab initio and Multiscale Simulations:The Example of Lobster Cuticle, Adv. Mater.2010,22,519-526.
    [36]Tanner, S. F.; Chanzy, H.; Vincendon, M.; Roux, J. C.; Gaill, F., High-resolution solid-state carbon-13 nuclear magnetic resonance study of chitin, Macromolecules 1990,23,3576-3583.
    [37]Kobayashi, M.; Ando, I.; Ishii, T.; Amiya, S., Structural study of poly (vinyl alcohol) in the gel state by high-resolution solid-state 13CNMR spectroscopy, Macromolecules 1995,28,6677-6679.
    [38]Terao, T.; Maeda, S.; Saika, A., High-resolution solid-state carbon-13 NMR of poly(vinyl alcohol):enhancement of tacticity splitting by intramolecular hydrogen bonds, Macromolecules 1983,16,1535-1538.
    [39]Yamaguchi, Y.; Nge, T. T.; Takemura, A.; Hori, N.; Ono, H., Characterization of uniaxially aligned chitin film by 2D FT-IR spectroscopy, Biomacromolecules 2005,6, 1941-1947.
    [40]Lu, Y.; Sun, Q.; She, X.; Xia, Y.; Liu, Y.; Li, J.; Yang, D., Fabrication and characterisation of a-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication, Carbohydr. Polym.2013,98,1497-1504
    [41]Wada, M.; Saito, Y, Lateral thermal expansion of chitin crystals J. Polym. Sci, Part B:Polym. Phys.2001,39,168-174.
    [42]Ricciardi, R.; Auriemma, F.; De Rosa, C.; Laupretre, F., X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques, Macromolecules 2004,37,1921-1927.
    [43]Zhang, X.; Chu, C.; Zhuo, R., Using hydrophobic additive as pore-forming agent to prepare macroporous PNIPAAm hydrogels, J. Polym. Sci, Part A:Polym. Chem. 2005,43,5490-5497.
    [44]Hu, J.; Hiwatashi, K.; Kurokawa, T.; Liang, S. M.; Wu, Z. L.; Gong, J. P., Microgel-Reinforced Hydrogel Films with High Mechanical Strength and Their Visible Mesoscale Fracture Structure, Macromolecules 2011,44,7775-7781.
    [45]Wang, X.; Wang, H.; Brown, H. R, Jellyfish gel and its hybrid hydrogels with high mechanical strength Soft Matter 2011,7,211-219.
    [46]Cai, J.; Zhang, L.; Liu, S.; Liu, Y; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.; Cheng, H., Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures, Macromolecules 2008,41,9345-9351.
    [47]Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N., Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages, Science 2004,304,1134-1137.
    [48]Hassan, C. M.; Peppas, N. A., Structure and morphology of freeze/thawed PVA hydrogels, Macromolecules 2000,33,2472-2479.
    [49]Kim, J.; Lee, K.-W.; Hefferan, T. E.; Currier, B. L.; Yaszemski, M. J.; Lu, L., Synthesis and evaluation of novel biodegradable hydrogels based on poly (ethylene glycol) and sebacic acid as tissue engineering scaffolds, Biomacromolecules 2007,9, 149-157.
    [50]Andac, M.; Plieva, F; Denizli, A.; Galaev, I. Y; Mattiasson, B., Poly (hydroxyethylmethacrylate)-Based Macroporous Hydrogels with Disulfide Cross-Linker, Macromol. Chem. Phys.2008,209,577-584.
    [1]Bartlett, D. H.; Azam, F., Chitin, cholera, and competence, Science 2005,310, 1775-1777.
    [2]Fabritius, H. O.; Sachs, C; Triguero, P. R.; Raabe, D., Influence of Structural Principles on the Mechanics of a Biological Fiber-Based Composite Material with Hierarchical Organization:The Exoskeleton of the Lobster Homarus americanus, Adv. Mater.2009,21,391-400.
    [3]Minke, R.; Blackwell, J., The structure of a-chitin, J. Mol Biol.1978,120, 167-181.
    [4]Bouligand, Y., Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue and Cell 1972,4,189-217.
    [5]Giraud-Guille, M.-M.; Chanzy, H.; Vuong, R., Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy, J Struct Bio.1990,103,232-240.
    [6]Nikolov, S.; Petrov, M.; Lymperakis, L.; Friak, M.; Sachs, C; Fabritius, H. O.; Raabe, D.; Neugebauer, J., Revealing the Design Principles of High-Performance Biological Composites Using Ab initio and Multiscale Simulations:The Example of Lobster Cuticle, Adv. Mater.2010,22,519-526.
    [7]Anitha, A.; Sowmya, S.; Kumar, P.; Deepthi, S.; Chennazhi, K.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R., Chitin and Chitosan in Selected Biomedical Applications, Prog. Polym, Sci 2014.
    [8]Huang, Y.; Zhong, Z.; Duan, B.; Wang, Y.,; Zhang, L. Novel Fibers Fabricated Directly from Chitin Solution and Their Application as Wound Dressing, J. Mater. Chem. B 2014, DOI:10.1039/C4TB00098F.
    [9]Chang, C.; Chen, S.; Zhang, L., Novel hydrogels prepared via direct dissolution of chitin at low temperature:structure and biocompatibility, J. Mater. Chem.2011,21, 3865-3871.
    [10]Duan, B.; Chang, C.; Ding, B.; Cai, J.; Xu, M.; Feng, S.; Ren, J.; Shi, X.; Du, Y.; Zhang, L., High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature, J. Mater. Chem. A 2013,1,1867-1874.
    [11]Duan, B.; Liu, F.; He, M.; Zhang, L., Ag-Fe3O4 Nanocomposites @ Chitin Microspheres Constructed by in Situ One-pot synthesis for Rapid Hydrogenation Catalysis, Green Chem.2014,16,2835-2845
    [12]Ding, B.; Cai, J.; Huang, J.; Zhang, L.; Chen, Y.; Shi, X.; Du, Y.; Kuga, S., Facile preparation of robust and biocompatible chitin aerogels, J. Mater. Chem.2012,22, 5801-5809.
    [13]Puppi, D.; Chiellini, F.; Piras, A.; Chiellini, E., Polymeric materials for bone and cartilage repair, Prog. Polym. Sci 2010,35,403-440.
    [14]Yaszemski, M. J., Biomaterials in orthopedics. CRC Press:2013.
    [15]Lichte, P.; Pape, H.; Pufe, T.; Kobbe, P.; Fischer, H., Scaffolds for bone healing: concepts, materials and evidence, Injury 2011,42,569-573.
    [16]李保强.壳聚糖/羟基磷灰石仿生骨材料的研究[D].浙江大学,2005.
    [17]廖世波;赖琛;张志雄;盛立远;奚廷斐,骨修复复合材料及其相关问题的研究进展,中国生物医学工程学报2012,31,755-761.
    [18]Tokura, S.; Tamura, H.,O-Carboxymethyl-chitin concentration in granulocytes during bone repair, Biomacromolecules 2001,2,417-421.
    [19]Wang, Q.; Cai, J.; Zhang, L.; Xu, M.; Cheng, H.; Han, C. C.; Kuga, S.; Xiao, J.; Xiao, R., A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure, J. Mater. Chem. A 2013,1,6678-6686.
    [20]Aaserud, O.; Hommeren, O. J.; Tvedt, B.; Nakstad, P.; Mowe, G.; Efskind, J.; Russell, D.; Jorgensen, E. B.; Nyberg-Hansen, R.; Rootwelt, K., Carbon disulfide exposure and neurotoxic sequelae among viscose rayon workers, Am. J. Indust. Med 1990,18,25-37.
    [21]Madhumathi, K.; Shalumon, K.; Rani, V.; Tamura, H.; Furuike, T.; Selvamurugan, N.; Nair, S.; Jayakumar, R., Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications, Int J Biol Macromol.2009,45,12-15.
    [22]Murugan, R.; Ramakrishna, S., Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite, Biomaterials 2004,25,3829-3835.
    [23]Shigemasa, Y.; Matsuura, H.; Sashiwa, H.; Saimoto, H., Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin, Int JBiol Macromol 1996,18,237-242.
    [24]Tang, H.; Zhou, W.; Zhang, L., Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels, J Hazard Mater.2012,209,218-225.
    [25]Deligianni, D. D.; Katsala, N. D.; Koutsoukos, P. G; Missirlis, Y. F., Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials 2000,22,87-96.
    [26]Liu, S.; Zhang, L.; Zhou, J.; Wu, R., Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway, J. Phys.Chem.C 2008,112, 4538-4544.
    [27]Schroder, E.; Jonsson, T.; Poole, L., Hydroxyapatite chromatography:altering the phosphate-dependent elution profile of protein as a function of pH, Anal. Biochem. 2003,313,176-178.
    [28]Murphy, C. M.; Haugh, M. G.; O'Brien, F. J., The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials 2010,31,461-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700