用户名: 密码: 验证码:
激光熔凝核工程结构材料不锈钢的抗腐蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢是核工程结构中常用的材料。大量用于制作燃料元件包壳,工艺管道,蒸汽发生器,泵,阀等,由于工作条件极端苛刻,尽管不锈钢具有优异的抗腐蚀性,但仍会出现许多腐蚀问题,例如应力腐蚀、晶间腐蚀、隙缝腐蚀和点腐蚀等。
     本文利用TJ-HL-T5000型CO_2激光器对1Crl8Ni9Ti奥氏体不锈钢基材和焊接接头进行激光熔凝处理,改善焊接接头抗腐蚀的均匀性,并提高不锈钢抗腐蚀性能。利用JSM-6360V扫描电镜、OXFORD能谱仪、OLYMPUS GX51金相显微镜等仪器对熔凝层进行微观检测,利用CHI660B电化学分析仪对试样进行抗腐蚀性试验,分析其内部组织结构、化学成份与抗腐蚀性能的关系,并对影响腐蚀效果的因素进行了综合研究。试验结果表明:
     (1)激光熔凝层比不锈钢基体具有更强的耐蚀性,这和熔凝层的结构有关。1Crl8Ni9Ti奥氏体不锈钢基体组织为单相奥氏体等轴晶,经激光表面熔凝处理后,除组织形态发生了显著变化外,在表面的熔化区获得极细的等轴晶和超微晶。
     (2)由于焊接自身的工艺特点,造成焊接接头的组织和性能不均匀,在核工程恶劣工况下,常出现晶间腐蚀和应力腐蚀。激光熔凝焊接接头中的薄弱环节-近焊缝区,可使近焊缝区的粗大组织细化,改善微观结构和成分偏析,从而提高抗蚀能力。采用加速腐蚀试验方法,对焊接试样施加拉应力,发现近焊缝区经激光熔凝后,应力腐蚀倾向减小。阳极极化曲线测试结果也表明,激光熔凝后不锈钢的抗晶间腐蚀能力有所提高。
     本研究对不锈钢焊接接头采用激光熔凝改善其抗腐蚀性进行了有益尝试,为激光熔凝技术在更广阔的领域得到应用提供了实验依据。
Stainless steel is one of the common materials for engineering structure. It is used for shell of fuel component, process piping, steam generator, pumps and valves. Although stainless steel has the advantage of superior corrosion resistance, many corrosion problems ccur when it is used under bad condition, such as stress corrosion, intergranular corrosion, crevice corrosion and pitting. The paper deals with the influencing factors of corrosion effect and analyzes the relationship between its microstructure, chemical composition and corrosion resistance by the following means: Firstly, to treat 1Cr18Ni9Ti austenitic stainless steel base material and welding joint by laser melting using TJ-HL-T5000 CO_2 laser to improve its evenness and increase the corrosion resistance; Secondly, to examine the microstructure of melting layer by such instruments as SEM of JSM-6360V, EDX of OXFORD, and OM of OLYMPUS GX51. Thirdly, to test corrosion resistance of the sample by an electrochemistry analytical instrument of CHI660B. Research results show:
     (1) The laser melting layers have the better ability of corrosion resistance than the stainless steel substrates relating to their organization. The organization of 1Cr18Ni9Ti austenitic stainless steel substrates is single-phase austenitic cubic crystal. After processed by the laser surface melting the organization of stainless steel substrates change greatly, especially the cubic crystal and super-micro crystalline appear on the surface of the reeking area.
     (2) On account of the characteristic of welding technology the organization and property of welding joint is not homogeneous. Under bad condition of nuclear engineering, stress corrosion and intergranular corrosion appear in the welding area. The area close to the welding line is the weaker part of the welding joint, laser melting can improve its microstructure and make it finer. So the ability of corrosion resistance of the area close to the welding line improves. Adopting the method of accelerating corrosion experiments by applying tensile stress on the specimen, the tendency of stress corrosion of the area declines. The anodic polarization curves shows that the ability of intergranular corrosion resistance of the stainless steel is stronger after the process of laser melting.
     The research makes a profitable attempt to improve the corrosion resistance of stainless steel welding joint by laser melting and lays foundation for applying laser melting technology in a much wider field.
引文
[1] 陈鹤鸣.马春来等.核反应堆材料腐蚀及其防护[M].北京:原子能出版社.1984
    [2] 中国机械工程学会焊接学会.《焊接手册》第2卷 材料的焊接[M].北京:机械工业出版社,2004
    [3] 中国机械工程学会热处理专业分会.热处理手册第4卷 热处理质量控制和检验[M].北京:机械工业出版社,2001
    [4] 刘洪涛等.人类生存发展与核科学[M].北京:北京大学出版社.2001
    [5] 罗伟.OCr19Ni9Ti焊接接头的抗蚀性及电弧重熔[J].材料工程,2000,2
    [6] 熊天英,王吉孝等.OCr18Ni9Ti钢焊接接头表面纳米化及接头抗H2S应力腐蚀性能的研究[J].材料保护,2005,1
    [7] 张光钧.激光热处理的现状及发展[J].金属热处理,2000.1
    [8] 刘江龙.高能束热处理[M].北京:机械工程出版社,1997
    [9] 石世宏,郑启光.耐酸不锈钢激光熔覆层耐腐蚀研究[J].光学技术,1999,2
    [10] 李晓轩,孙锡军等.奥氏体不锈钢1Cr18NigTi激光冲击强化研究[J].宇航材料与工艺,1999.4
    [11] 花银群等.激光淬火+冲击复合强化处理QT800-2的实验研究[J].中国激光,2003.7
    [12] Zhang Guangjun, et al. Research on Laser Cladded Nickel Based Nanometer Tungsten Carbide Coating[J].The 14th IFHTSH, Oct, 2004
    [13] Zhang Guangjun, et al. Research on Laser Assembly Nanostructured Al_2O_3/TiO_2 Coating on CAST Aluminan Surface[J]. The 14th ICSE, Oct, 2004
    [14] 杨安静等.1Cr18Ni9T不锈钢表面复合改性处理的研究[J].金属热处理学报,1995.3
    [15] 邬震泰.等离子渗氮Ti合金基体上的TiN涂层的砂浆冲蚀特性[J].材料热处理学报,2001,3
    [16] 张光钧.激光表面工程的发展趋势[J].机械制造,2005.1
    [17] 潘清跃,李延民等.不锈钢激光表面熔凝处理的组织特征[J].金属学报,1996,7
    [18] 陆世英,张康德.不锈钢应力腐蚀破裂[M].北京:科学出版社,1977
    [19] 褚武扬.氢损伤和滞后断裂[M].北京:冶金工业出版社,1988
    [20] T. Bell, et al. Energy Beams in Second Generation Surface Engineering of Aluminium and Titanium Alloys[J]. The Proceedings of 2nd IFHT Seminar, Sept, 1989: 69-84
    [21] 张友寿,王巍等.不锈钢激光快速熔凝处理与表面合金化[J].光电子.激光,2002,1
    [22] Sun Z, et al. Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet[J]. Materials Science and Engineering A, 2003, 345(1-2): 293-300.
    [23] Perez del Pino A, et al. Oxidation of titanium through Nd:YAG laserirradiation[J]. Applied Surface Science, 2002, 197-198: 887-890.
    [24] Lavisse L, et al. Early stage of the laser-induced oxidation of titanium substrates[J]. Applied Surface Science, 2002, 186(1-4): 150-155.
    [25] Mudali U K, Dayal R K. J Mater Eng Perform, 1992; 1: 341
    [26] Mudali U K, Dayal R K, Gnamamoorthy J B, Kanetkar S M, Ogale S B. Mater Trans JIM, 1991; 33: 845
    [27] 蔡伟平.马氏体不锈钢表面激光熔化处理后的组织特征[J].武汉钢铁学院学报,1994.9
    [28] 胡建东等.高碳工具钢激光处理区的微观组织[J].材料科学进展,1990,4
    [29] 朱捷等.Cr12钢激光硬化处理后的组织[J].材料科学进展,1990,4
    [30] 赵玉珍,史耀武.Cr12激光表面熔凝处理的组织和性能研究[J].应用激光,2002,12
    [31] 邵天敏,蔺秀川等.2Cr13钢激光熔凝处理的过渡区组织分析[J].金属学报,2001,10
    [32] 刘江龙.激光合金化的微观成分不均匀性的探讨[J].金属热处理学报,1990,3
    [33] 沈莲.灰铸铁激光表面热处理的显微组织与耐磨性研究[J].金属热处理学 报,1990,1
    [34] 吴祖乾,顾永康.核反应堆压力容器主焊缝和不锈钢堆焊层特殊性能研究[J].材料工程,2000,5
    [35] 樊湘芳,赵立宏.不锈钢焊接接头的激光熔凝试验[J].热加工工艺,2006,12
    [36] 于永泗,齐民.机械工程材料[M].大连:大连理工大学出版社.2007
    [37] 刘文今.铸铁表面激光物理冶金强化的研究[D].北京:清华大学机械工程系,1989
    [38] 周昌炽,陈鹤鸣.利用激光束改善核工程结构材料抗腐蚀性质的研究.核材料会议论文集,1986
    [39] 樊湘芳,何彬等.球墨铸铁的激光相变硬化[J].金属热处理,2006,11
    [40] Kurz W, Fisher D J. Fundamentals of Solidification [M]. Aedermannsdorf Tech, 1989
    [41] 潘清跃.激光快速凝固下材料的组织形成形成规律研究[D].西安:西北工业大学,1996
    [42] Chan C L, Mazumder J, Chen M M. Three-dimensional axisy m metric model for convection in laser-melted pools[J]. M aterials Science and T echnolony, 1987, 4: 306-311
    [43] Hoadley A F A, Rappaz M, Zimmermann M.I Heat-flow simulation of laser remelting with experimental validation[J]. Metallurgical Transactions B, 1991, 22B: 101-109.
    [44] Paul A, Debroy T. Ferr surface flow and heat transfer in conduction mode laser welding[J]. Metallurgical Transactions B, 1988, 19B: 851-858
    [45] Fleminns F C. Solidification Processing[M]. New York: Mcgraw-Hill, 1974
    [46] 罗伟,张孝彬.1Cr18Ni9Ti表面微束等离子弧重熔抗腐蚀性的研究[J].材料保护,1999,3
    [47] 严绍华.热加工工艺基础[M].北京:高等教育出版社,2004
    [48] 王宽福,冯丽云.焊接与化机焊接结构[M].杭州:浙江大学出版社,1992
    [49] 魏星,刘德镇.奥氏体钢焊接区域的金相组织及扫描电镜分析[J].山东工业大学 学报,1999,4
    [50] 刘斌,张廷凯等.核反应堆用不锈钢管道焊缝附近的锈蚀[J].钢铁研究学报,1996,4
    [51] Turnur S et al. Corrosion, 1989, 45 (9): 710
    [52] 赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002
    [53] 沃伦依·里贝,丛一译,核工程中的腐蚀[M].北京:原子能出版社,1977
    [54] 陆世英,王欣增等.不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢[M].北京:原子能出版社.1985
    [55] B.R.T弗罗斯特.材料科学与技术丛书 核材料(第Ⅱ部分)[M].北京:科学出版社.1999
    [56] 中国腐蚀与防护学会.不锈钢[M].北京:化学工业出版社,1991
    [57] Bear D.R, et al, Differences in oxides on large and small-Grained 304 stainless steel[J]. Metallurgical Transactions, 1980, 11A: 9
    [58] 陈飞,周海等.不锈钢表面等离子喷涂梯度涂层耐蚀性能的研究[J].金属热处理,2006,11
    [59] 胡礼木.瑞典焊接结构材料及焊接材料的发展现状[J].陕西工学院学报,1997.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700