用户名: 密码: 验证码:
奥氏体不锈钢激光熔覆自润滑耐磨复合涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢因其良好的力学性能和化学稳定性,在化工、机械、建筑、医疗等领域得到了广泛的应用。但受硬度低、耐磨性差等性能缺点的制约,其一般不能用作重要的摩擦运动副零部件。此外,很多在高温条件下承受强烈摩擦磨损作用的相对运动副零部件不仅要求具有优异的高温耐磨性与抗氧化性,而且由于高温条件下无法实现外加润滑而必须具有优异的高温自润滑性能。由于磨损基本发生于材料或零部件的表面,采用合适的表面工程手段在材料表面制备自润滑耐磨涂层无疑具有较高的经济性和可行性。
     激光熔覆技术对基体和涂层材料无限制,能实现在低熔点的工件上熔覆一层高熔点的合金,能控制稀释率,可局部熔覆,微观结构细致,热影响区小,并使涂层材料快速熔化和冷却而与基体材料形成良好的冶金结合,结合强度高。
     为了提高不锈钢的耐磨性并开发具有良好减摩耐磨性能的先进复合材料涂层新体系,本文分别以NiCr/Cr_3C_2、NiCr/Cr_3C_2-15WS_2-15CaF_2、NiCr/Cr_3C_2-15WS_2-30CaF_2合金粉末为原料,采用激光熔覆技术,在不锈钢表面制备自润滑耐磨复合涂层。利用SEM、XRD、EDS等手段分析了涂层的显微组织,利用显微硬度计测试了涂层的显微硬度,利用高温摩擦磨损试验机分别测试了涂层在不同温度(室温、300℃、600℃)及不同载荷(2N、5N、10N)下的干滑动磨损性能并分析了其磨损机理。
     结果表明:激光熔覆NiCr/Cr_3C_2合金粉末制备出了以γ-(Ni,Fe)镍基固溶体为基体、(Cr,Fe)_7C_3碳化物为增强相,厚度约0.8mm、组织致密均匀、与不锈钢基体呈冶金结合的耐磨涂层,其平均显微硬度约为850HV0.3;激光熔覆NiCr/Cr_3C_2-15WS_2-15CaF_2合金粉末制备出以γ-(Ni,Fe)为基体、(Cr,Fe)_7C_3/WC为增强相、WS_2和CrS为润滑相的自润滑耐磨涂层,涂层的厚度约0.6mm、组织致密均匀、与不锈钢基体形成良好的冶金结合,其平均显微硬度为620HV0.3;激光熔覆NiCr/Cr_3C_2-15WS_2-30CaF_2合金粉末制备出的涂层中的物相也为γ-(Ni,Fe)基体、碳化物增强相及硫化物润滑相,然而涂层的厚度仅为0.25mm。
     摩擦磨损测试表明,室温时,激光熔覆NiCr/Cr_3C_2耐磨涂层的摩擦系数和磨损率均最小,激光熔覆NiCr/Cr_3C_2-15WS_2-15CaF_2耐磨自润滑涂层的摩擦系数和磨损率稍大于NiCr/Cr_3C_2耐磨涂层,不锈钢基体的摩擦系数和磨损率最大;随着温度上升至300℃时,不锈钢基体和NiCr/Cr_3C_2耐磨涂层的磨损率增大,而由于润滑相被挤压至磨损表面发挥了润滑作用,激光熔覆NiCr/Cr_3C_2-15WS_2-15CaF_2自润滑耐磨涂层的磨损率减小,使得自润滑涂层在300℃拥有最小的摩擦系数和磨损率;当温度上升至600℃时,润滑相被氧化,失去了润滑效果,激光熔覆NiCr/Cr_3C_2耐磨涂层和NiCr/Cr_3C_2-15WS_2-15CaF_2自润滑涂层的磨损率大小接近。
     低载(2N)时,激光熔覆NiCr/Cr_3C_2-15WS_2-15CaF_2自润滑耐磨涂层中良好的强韧相结合赋予涂层良好的耐磨性能;中载(5N)时,除了强韧相结合为涂层提供有效抵抗磨损外,涂层中的润滑颗粒被挤压至磨损表面发挥了有效的减摩耐磨作用,使得涂层在中载时拥有更为优异的摩擦学性能;高载(10N)时,涂层中的润滑相发生脱粘大大减小了其润滑效果,硬质增强相发生剥离使得磨损表面产生凹坑、犁沟,涂层在高载时的磨损率变大。
     综合分析认为,激光熔覆NiCr/Cr_3C_2-15WS_2-15CaF_2自润滑耐磨复合涂层在中温(300℃)中载(5N)下具有优异的耐磨性能。
Due to its good mechanical and high chemical stability, austenitic stainless steel findsextensive applications in mechanical, chemical, medical and architectural as well asnuclear engineering areas. But it can’t be used as key tribological moving componentsbecause of its relatively lower hardness and wear resistance. Moreover, there are manytribological components working in high temperature aggressive environments whereliquid lubricants and greases cannot be used, demanding combination of high-temperaturewear, oxidation and self-lubricating properties. Fabricating a self-lubricating wear-resistantcoating with advanced surface technology on a tribological component surface is one ofmost efficient and economic ways to solve the problem.
     Laser cladding is fundamentally a type of coating technology that utilizes a focused ora defocused high-power laser beam to locally melt the thin surface layer of a substrate andthe added materials while at the same time forming a new layer of material with desiredproperties after solidification. A great variety of powder materials or powder mixtures canbe effectively deposited onto the substrates to achieve various properties such as wearresistance and corrosion resistance. The microstructure of the deposited layer is very fineand has the typical characteristic of rapid solidification, so it can achieve completemetallurgical bond at the interface.
     In order to improve the wear resistance of austenitic stainless steel and develop newsystems of advanced composite coating with good wear resistance and anti-friction, theauthor individually used NiCr/Cr_3C_2, NiCr/Cr_3C_2-15WS_2-15CaF_2andNiCr/Cr_3C_2-15WS_2-30CaF_2alloy powder as raw materials, fabricated self-lubricatingwear-resistant coating on austenitic stainless steel by laser cladding. Microstructures of thecoatings were characterized by X-ray diffractometer (XRD), scanning electron microscope(SEM) and energy dispersive spectrometer (EDS). Microhardness of the coatings wasmeasured by a microhardness tester. The friction and wear properties of the coatings under different temperatures and loads were investigated, and the corresponding wearmechanisms were analyzed.
     The results showed that a wear resistant coating reinforced with hard (Cr,Fe)_7C_3carbide and toughened by ductile γ-(Ni,Fe) solid solution was fabricated by laser claddingusing NiCr/Cr_3C_2as precursor. The thickness and average microhardness of the coating isabout0.8mm and850HV0.3, respectively, and the bonding to the substrate is metallurgical.The microstructure is dense and uniform. A self-lubricating wear-resistant coatingconsisting of (Cr,Fe)_7C_3/WC, γ-(Ni,Fe), WS_2and CrS were obtained usingNiCr/Cr_3C_2-15WS_2-15CaF_2as precursor. The thickness and average microhardness of theself-lubricating wear-resistant composite coating is about0.6mm and620HV0.3,respectively. When the precursor changes to NiCr/Cr_3C_2-15WS_2-30CaF_2, the thickness ofthe coating is only about0.25mm.
     At room temperature, NiCr/Cr_3C_2coating exhibits superior wear resistance. Frictioncoefficient and wear rate of NiCr/Cr_3C_2-15WS_2-15CaF_2coating are slightly higher thanNiCr/Cr_3C_2coating but far lower than stainless steel substrate. With the increase oftemperature, both the friction coefficients and wear rates of NiCr/Cr_3C_2composite coatingand stainless steel substrate gradually increased while that of NiCr/Cr_3C_2-15WS_2-15CaF_2coating decreased. The lubricant phase spreading out onto the worn surface at300℃wasbeneficial to the friction-reducing and wear-resisting. Whereas, the lubricant phasecouldn’t provide effective lubricious effect due to its oxidation at600℃and the wear ratesof NiCr/Cr_3C_2coating and NiCr/Cr_3C_2-15WS_2-15CaF_2coating were very close. Both thefriction coefficient and wear rate of NiCr/Cr_3C_2-15WS_2-15CaF_2coating firstly decreasedand then slightly increased with the increasing normal load.
     In conclusion, laser cladding NiCr/Cr_3C_2-15WS_2-15CaF_2self-lubricating compositecoating possesses excellent wear resistance and anti-friction under moderate temperature(300℃) andmoderate load (5N).
引文
[1]王传生,刘春廷.工程材料及应用[M].西安:西安电子科技大学出报社,2008.
    [2]庞国星.工程材料与成形技术基础[M].北京:机械工业出版社,2005.
    [3]潘强,朱美华,童建华.工程材料[M].上海:上海科学技术出版社,2005.
    [4]涂义,张永忠,席明哲.不锈钢表面激光熔覆镍基合金层研究[J].稀有金属,2008,32(5):599-603.
    [5] A. Yakovlev, Ph. Bertrand, I. Smurov. Laser cladding of wear resistant metal matrixcomposite coating [J]. Thin Solid Films453~454(2004)133-138.
    [6] Zhixiang Zeng, Yan Zhou, Bin Zhang, et al.. Designed fabrication of hardCr-Cr2O3-Cr7C3nanocomposite coatings for anti-wear application [J]. Acta Materialia57(2009)5342-5347.
    [7] Sudha C, Shankar P, Subba Rao R V, et al.. Microchemical and microstructuralstudies in a PTA weld overlay of Ni-Cr-Si-B alloy on AISI304L stainless steel [J].Surface and Coatings Technology202(2008)2103-2112.
    [8]李军,李文戈,张慧颖.不锈钢基体上激光熔覆原位合成制备TiB2/WC增强镍基复合涂层[J].机械工程材料,2008,32(11):34-38.
    [9] Guo-Liang Hou, Hui-Di Zhou, Yu-Long An, et al.. Microstructure andhigh-temperature friction and wear behavior of WC-(W,Cr)2C-Ni coating prepared byhigh velocity oxy-fuel spraying [J]. Surface and Coatings Technology206(2011)82-94.
    [10] Y. Liu, H.M. Wang. Elevated temperature wear behaviors of a Co-Mo-Si ternarymetal silicide alloy [J]. Scripta Materialia52(2005)1235-1240.
    [11] Y.J. Dong, H.M. Wang. Microstructure and dry sliding wear resistance of laser cladTiC and reinforced Ti-Ni-Si intermetallic composite coating [J]. Surface and CoatingsTechnology204(2009)731-735.
    [12] X.D. Lu, H.M. Wang. Metallic tribological compatibility of laser clad Mo2Ni3Si/NiSimetal silicide coatings [J]. Surface and Coatings Technology200(2005)2380-2385.
    [13] X.D. Lu, H.M. Wang. High-temperature phase stability and tribological properties oflaser clad Mo2Ni3Si/NiSi metal silicide coatings [J]. Acta Materilia52(2004)5419-5426.
    [14]张大伟,张新平.激光熔覆Ni基与Ni+Cr3C2合金涂层凝固组织特征[J].材料热处理学报,2009,30(2):152-157.
    [15] José S. Moya, Sonia Lopez-Esteban, Carlos Pecharromán. The challenge ofceramic/metal microcomposites and nanocomposites [J]. Progress in MaterialsScience52(7)(2007)1017-1090.
    [16] Z. Marcano, J. Lesage, D. Chicot, et al.. Microstructure and adhesion of Cr3C2 NiCrvacuum plasma sprayed coatings [J]. Surface and Coatings Technology202(2008)4406-4410.
    [17] Zhihai Han, Bingshi Xu, Haijun Wang, Shikui Zhou. A comparison of thermal shockbehavior between currently plasma spray and supersonic plasma spray CeO2-Y2O3-ZrO2graded thermal barrier coatings [J]. Surface and Coatings Technology201(2007)5253-5256.
    [18] Q. Li, G. M. Song, Y. Z. Zhang, et al.. Microstructure and dry sliding wear behaviorof laser clad Ni-based alloy coating with addition of SiC [J]. Wear254(2005)222-229.
    [19] C. DellaCorte. The effect of counterface on the tribological performance of a hightemperature solid lubricant composite from25to650℃[J]. Surface and CoatingsTechnology86-87(1996)486-492.
    [20] Narendra B. Dahotre, S. Nayak. Nanocoatings for engine application [J].Surface andCoatings Technology194(2005)58-67.
    [21] Wenchao Wang. Application of a high temperature self-lubricating composite coatingon steam turbine components [J]. Surface and Coatings Technology177-178(2004)12-17.
    [22] J.X. Deng, L.L. Liu, X.F. Yang, et al.. Self-lubrication of Al2O3/TiC/CaF2ceramiccomposites in sliding wear tests and in machining processes [J]. Materials and Design28(2007)757-764.
    [23]王黎钦,应丽霞,古乐等.固体自润滑复合涂层材料研究进展及其制备技术发展趋势[J].机械工程师,2002,9:6-8.
    [24]张祥林,熊贤武,章小峰等.固体自润滑涂层摩擦磨损特性研究[J].现代制造工程,2007,3:1-5.
    [25] A. Erdemirb. Modern Tribology Handbook [M]. Boca Raton: CRC Press,2001.
    [26] C. Donnet, A. Erdemirb. Solid lubricant coatings: recent developments and futuretrends [J]. Tribology Letters17(2004)389-397.
    [27] C. Donnet, A. Erdemirb. Historical developments and new trends in tribological andsolid lubricant coatings [J]. Surface and Coatings Technology180-181(2004)76-84.
    [28]尹延国,刘君武,郑志祥等.石墨对铜基自润滑材料高温摩擦磨损性能的影响[J].摩擦学学报,2005,25(3):217-219.
    [29]姜春华,李长生,丁巧党.镍-铬基自润滑复合材料的制备及性能[J].机械工程材料,2007,31(4):48-51.
    [30] Chuanbing Huang, Lingzhou Du, Weigang Zhang. Effects of solid lubricant contenton the microstructure and properities of NiCr/Cr3C2-BaF2·CaF2composite coatings[J]. Journal of Alloys and Compounds479(2009)777-784.
    [31] Gilyoung Kim, Hanshin Choi, Changmin Han, et al.. Characterization of atmosphericplasma spray NiCr-Cr2O3-Ag-CaF2/BaF2coatings [J]. Surface and CoatingsTechnology195(2005)107-115.
    [32]李宁,黎德育,翟淑芳. Ni-P/CaF2复合镀层的高温抗氧化性及耐磨性能[J].材料工程,2000,(3):25-27.
    [33]申蓉蓉,陈奎儒,刘继光.化学镀Ni-B/BN自润滑复合镀层研究[J].西南科技大学学报,2006,21(4):34-36.
    [34]浙江大学.含有无机类富勒烯纳米材料的复合镀层及其制备方法[J].电镀与涂饰,2002,2l(4):68-69.
    [35]莫继良,陈龙,朱旻昊. WC/C固体润滑涂层的滑动摩擦磨损性能研究[J].材料工程,2008,8:13-16.
    [36]吕反修.化学气相沉积金刚石膜的研究与应用进展[J].材料热处理学报,2010,31(1):16-28.
    [37]乔晓勇.激光熔覆亚微/纳米固体自润滑涂层[D].华中科技大学硕士毕业论文,2007.
    [38]段辉平,罗俊,张涛等. TiAl/IN718合金过度相连接[J].北京航空航天大学学报,2004,30(10):212-217.
    [39] Sture H, Per H. Tribology characterization of thin, Hard coatings [J]. Proceedings ofthe6th Nordic symposiumon tribology3(25)(2004)735-747.
    [40]穆柏春,张辉,唐立丹.制备工艺对碳化硼陶瓷性能的影响[J].粉末冶金技术,2007,25(4):275-280.
    [41] Ehsan T, Amir K, Stephen C. Laser Cladding [M]. Boca Raton: CRC Press,2004.
    [42] M Zhong, W Liu. Laser surface cladding: the state of the art and challenges [J].Journal of Mechanical Engineering Science224(2009)1041-1060.
    [43]陈永哲,王存山,李婷等.镁合金表面激光熔覆Ni-Zr-Al合金涂层成分设计与组织性能[J].中国激光,2009,36(8):2187-2190.
    [44]张现虎,晁明举,梁二军等.激光熔覆原位生成TiC-ZrC颗粒增强镍基复合涂层[J].中国激光,2009,36(4):999-1004.
    [45]王华明,于荣莉,李锁岐.激光熔覆Al2O3/CaF2陶瓷基高温自润滑耐磨复合材料涂层组织与耐磨性研究[J].应用激光,2002,22(2):86-89.
    [46] H.M. Wang, Y.L. Yu, S.Q. Li. Microstructure and tribological properties of laser cladCaF2/Al2O3self-lubrication wear-resistant ceramic matrix composite coatings [J].Scripta Materialia47(2002)435-440.
    [47] X.B. Liu, C.M. Wang, L.G. Yu, et al.. Microstructure of laser clad high-temperatureself-lubricating wear resistant composite coatings [J]. International Conference onIndustrial Lasers (IL99), Proc SPIE.3862(1999)423-427.
    [48] X.B. Liu, C.M. Wang, L.G. Yu, et al.. Laser cladding for high-temperatureself-lubricating wear-resistant composite coatings on γ-TiAl intermetallic alloyTi-48Al-2Cr-2Nb [J]. International Conference on High-Power Lasers inManufacturing, Proc SPIE.3888(2000)312-317.
    [49] Xiu-Bo Liu, Shi-Hong Shi, Jian Guo,et al.. Microstructure and wear behavior ofγ/Al4C3/TiC/CaF2composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding [J]. Applied Surface Science255(2009)5662-5668.
    [50] Wen-Gang Liu, Xiu-Bo Liu, Zhen-Guo Zhang, et al.. Development andcharacterization of composite Ni-Cr-C-CaF2laser cladding on γ-TiAl intermetallicalloy [J]. Journal of Alloys and Composite470(2009) L25-L28.
    [51]张祥林,章小峰,王爱华等.激光熔覆金属基固体自润滑涂层的组织结构[J].中国机械工程师,2006,17(19):2084-2088.
    [52] A.H. Wang, X.L. Zhang, X.F. Zhang, et al.. Ni-based alloy/submicron WS2self-lubricating composite coating synthesized by Nd: YAG laser cladding [J].Materials Science and Engineering A475(2008)312-318.
    [53]章小峰,王爱华,张祥林等.激光熔覆Ni45-CaF2-WS2自润滑涂层组织与性能[J].中国有色金属学报,2008,18(2):215-220.
    [54]俞友军,周建松,陈建敏等.激光熔覆NiCr/Cr3C2-Ag-BaF2/CaF2金属基高温自润滑耐磨覆层的组织结构及摩擦学性能[J].中国表面工程,2010,23(3):64-73.
    [55]高永建,张世堂,邓智昌等.激光熔覆高温自润滑覆层的摩擦学特性[J].中国表面工程,2011,24(2):51-56.
    [56] Shengyu Zhu, Qinlin Bi, Jun Yang, et al.. Influence of Cr content on tribologicalproperties of Ni3Al matrix high temperature self-lubricating composites [J]. TribologyInternational44(2011)1182-1187.
    [57] Shengyu Zhu, Qinlin Bi, Jun Yang, et al.. Ni3Al matrix high temperatureself-lubricating composites [J]. Tribology International44(2011)445-453.
    [58] Shitang Zhang, Jiansong Zhou, Baogang Guo, et al.. Friction and wear behavior oflaser cladding Ni/hBN self-lubricating composite coating [J]. Materials Science andEngineering A491(2008)47-54.
    [59] Jiang Xu, Wenjin Liu, Minlin Zhong. Microstructure and dry sliding wear behavior ofMoS2/TiC/Ni composite coatings prepared by laser cladding [J]. Surface and CoatingsTechnology200(2006)4227-4232.
    [60]陈哲源,徐江,刘文今,钟敏霖.激光熔覆MoS2/TiC/Ni减摩耐磨复合涂层组织及磨损性能的研究[J].材料热处理学报,2007,28:253-258.
    [61] L. Avril, B. Courant, J.J. Hantzpergue. Tribological performance of α-Fe(Cr)-Fe2B-FeB and α-Fe(Cr)-h-BN coatings obtained by laser melting [J]. Wear260(2006)351-360.
    [62]胡传炘.涂层技术原理及应用[M].北京:化学工业出版社,2000.
    [63]李振铎,于月光,刘海飞,鲍君峰.高温耐磨损Cr3C2-25%NiCr涂层制备及其性能研究[J].有色金属(冶炼部分),2006年增刊,37-40.
    [64] Xiu-Bo Liu, Hua-Ming Wang. Microstructure and tribological properties of laser cladγ/Cr7C3/TiC composite coatings on γ-TiAl intermetallic alloy [J]. Wear262(2007)514-521.
    [65]刘秀波,于利根,王华明. γ-TiAl金属键化合物合金激光表面合金化改性[J].稀有金属材料与工程,2001,30(3):224-227.
    [66] Gui-fang Sun, Yong-kang Zhang, Chang-sheng Liu, et al. Microstructure and wearresistance enhancement of cast steel rolls by laser surface alloying NiCr-Cr3C2[J].Materials and Design31(2010)2737-2744.
    [67]王枫,朱晖朝,陈志坤等.采用HVAF和HVOF工艺制备的NiCr-25%Cr3C2涂层的结构和性能表征[J].材料研究与应用,2010,4(3):202-206.
    [68]李振铎,曾克里,于月光.超细25%NiCr-Cr3C2粉末制备及HVOF涂层性能研究[J].热喷涂技术,2010,2(1):20-23.
    [69]张长军,纪刚昌. Cr3C2-NiCr涂层磨料磨损行为[J].长安大学学报(自然科学版),2003,23(3):97-100.
    [70]范吉明,鲁玉祥,李春玲等. Cr3C2-NiCr涂层等离子喷涂工艺参数的优化[J].材料热处理技术,2009,38(20):100-103.
    [71]王海斗,徐滨士,刘家浚.固体润滑膜层技术与应用[M].北京:国防工业出版社,2009.
    [72] J.X. Deng, L.L. Liu, X.F. Yang, et al.. Self-lubrication of Al2O3/TiC/CaF2ceramiccomposites in sliding wear tests and in machining processes [J]. Materials and Design28(2007)757-764.
    [73] Chuanbing Huang, Lingzhong Du, Weigang Zhang. Preparation and characterizationof atmospheric plasma-sprayed NiCr/Cr3C2 BaF2·CaF2composite coating [J].Surface and Coatings Technology (2009)3058-3065.
    [74] Zhang Xiao-feng, Zhang Xiang-lin, Wang Ai-hua, et al.. Microstructure andproperties of HVOF sprayed Ni-based submicron WS2/CaF2self-lubricatingcomposite coating. Transactions of Nonferrous Metal Society of China19(2009)85-92.
    [75]杜宝帅.激光熔覆原位合成陶瓷相增强Fe基熔覆层研究[D].山东大学博士学位论文,2009.
    [76] Guifang Sun, Rui Zhou, Peng Li, et al.. Laser surface alloying of C-B-W-Cr powderson nodular cast iron rolls [J]. Surface and Coatings Technology205(2011)2747-2754.
    [77] Xiong Dangsheng. Lubrication behavior of Ni-Cr-based alloys containing MoS2athigh temperature [J]. Wear251(2001)251:1094-1099.
    [78] B.布尚(Bharat Bhushan)著,葛世荣译.摩擦学导论[M].机械工业出版社,2006.
    [79] J.C.G. Milan, M.A. Carvalho, R.R. Xavier, et al.. Effect of temperature, normal loadand pre-oxidation on the sliding wear of multi-component ferrous alloys [J]. Wear259(2005)412-423.
    [80] Rajnesh Tyagi, Dangsheng Xiong, Jianliang Li. Effect of load and sliding speed onfriction and wear behavior of silver/h-BN containing Ni-base P/M composites [J].Wear270(2011)423-430.
    [81] Rajnesh Tyagi, Dangsheng Xiong, Jianliang Li. Elevated temperature tribologicalbehavior of Ni based composites containing nano-silver hBN [J]. Wear269(2010)884-890.
    [82] Wenlin Ma, Jinjun Lu. Effect of surface texture on transfer layer formation andtribological behaviour of copper-graphite composite [J]. Wear270(2011)218-229.
    [83] J.H. Ouyang, Y.F. Li, Y.M. Wang, et al.. Microstructure and tribological properties ofZrO2(Y2O3) matix composites doped with different solid lubricants from roomtemperature to800℃[J]. Wear267(2009)1353-1360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700