用户名: 密码: 验证码:
新型真三轴仪调试及重塑黄土强度变形特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真三轴仪是一种任意应力路径下测试土力学特性的试验仪器。西安理工大学研制了一种新型压力室真三轴仪,它具有伺服步进电机驱动滚珠丝杆推进活塞产生压力的液压/体变控制器独立施加三向主应力的自动控制系统。本文首先进行了国内外同类仪器的比较分析和新型真三轴仪仪器性能的测试与调试;进而,利用该真三轴仪,进行了重塑黄土的真三轴试验,分析了真三轴应力条件下不同含水率重塑黄土的强度变形特性。通过以上的研究工作,得到了如下的一些认识:
     (1)西安理工大学真三轴仪采用轴向刚性板加载、侧向双轴液压柔性囊加载的三向加载方式;侧向双轴相邻液压囊之间采用径向弹性伸缩、平面弹性转动的薄壁钢板有效隔离;三向均应用伺服步进电机驱动滚珠丝杆推进活塞的液压/体变控制器加载,实现了三向独立加载、互不干扰。经测试分析,仪器系统性能稳定。
     (2)经过调试及控制系统的完善,能够完成各类常规试验及特殊试验:①应力、应变控制式等中轴应力比试验;②等球应力试验;③加卸荷循环应力路径试验;④侧向卸荷试验;⑤蠕变试验;⑥应力诱导各向异性试验。
     (3)通过对不同初始含水率和不同固结围压条件下的重塑黄土的试验分析表明,同一含水率及固结围压条件下,随着中主应力比的增大,应力应变曲线由强硬化型逐渐转化为弱硬化型或理想塑性;同一固结围压及中主应力比值条件下,随着含水率的增大,应力应变曲线由弱硬化型或理想塑性转化为强硬化型;同一含水率及中主应力比值条件下,随着固结应力增大,应力应变曲线也由弱硬化型或理想塑性转化为强硬化型。
     (4)通过重塑黄土的强度变化规律分析,不同应变条件下π平面上重塑黄土屈服曲线与其破坏曲线基本相似;不同含水率条件下π平面上黄土的破坏曲线相似,且随着含水率的增大逐渐向内收缩。通过π平面上重塑黄土破坏轨迹的拟合分析,邢义川所提出的破坏面的形状函数能很好地描述重塑黄土π平面上的破坏曲线,该破坏曲线位于摩尔库仑破坏面及松岗元SMP破坏面之外、广义米塞斯圆之内。
     (5)通过不同含水率重塑黄土应力空间破坏面变化规律分析,应用广义米塞斯准则和SMP准则建立了描述不同含水率黄土强度破坏面的准则;引用姚仰平等提出的变换应力空间方法,修正剑桥模型,提出了能够反映重塑黄土含水率变化的三维应力空间弹塑性模型的思路。
A true triaxial apparatus is a testing system measuring the mechanics characteristics of soil under three-dimension principle stress condition.A new true triaxial apparatus with a new structural cell was developed by the geotechnical engineering institute in Xi'an University of Technology.By comparison loading ways of different true triaxial apparatuses both at home and abroad,the new true triaxial appratus's charateristics was summarized as following:A kinds of hydraulic/Variable apparatus with stepper motor servo-driven was developed,which was used to load independently principal stress,and the corresponding automatic control system was developed.Furthermore,the true triaxial testing of remolded loess was executed on the new true triaxial apparatus,the characteristic of the stress-strain curve of the true triaxial testing of remolded loess and the the strength of the Loess remodeling was analyzed under different water content.Through the above research work,some points as following:
     (1)In this paper,the rigid axial loading,lateral load biaxial are flexible,lateral adjacent biaxial between the use of hydraulic radial capsule flexible scalable,flexible rotation of planar thin-walled steel effective segregation of the three independent axial loading system was used on the Xi'an university of technology true triaxial apparatus;and servo stepper motor driven hydraulic / variable load controller was used,the loading process of the independent three principal stress was realized,Noninterference direction stress and strain can be forecasted.
     (2)The true triaxial apparatus can to complete various types of conventional and special test pilot,the pilot project are:①The stress path test and the strain path test with the constant middle principal stress ratio b;②constant mean stress test;③and Unloading Stress test on cycle path;④lateral unloading test;⑤creep test;⑥stress-induced anisotropy test.
     (3)By analysis the experimental datas of remodeling loess under the conditions of adoption of different initial moisture content of consolidation pressure,the same consolidation pressure and moisture conditions,with the increase of the ratio of axial stress,stress-strain curve of the hard-liners gradually hardening into a weak ideal or plastic;the same consolidation pressure and the ratio of axial stress conditions,as the moisture increases,the stress-strain curve from weak sclerosis or idealism into hard plastic;the same moisture content and the ratio of axial stress conditions,as the consolidation stress increases,stress-strain curve from weak or hardened into a tough idea plastic state.
     (4)through analysis the remolded loess the Strength change rule,under the different strain condition,on theπplane,of the the yield curve of remolded loess and damage curve was basic similar;Under the different moisture content condition in theπplane,the loess damage curve is similar,and along with moisture content enlargement,the curve contracts inward,through to destroy path's fitting analysis,on theπplane,the failure curve was well described by function which Yi-chuan Xing proposed,this failure curve located at mole of coulomb line and outside loose hillock Yuan SMP criterion curve,under same condition Mises circle.
     (5)on theπplane,through analysis the stress space failure change rule analysis of the remolded loess with the different water content,the application generally Mises criterion and the SMP criterion has established the description different water content loess intensity failure plane criterion;the transformation stress space method proposed by Yang-ping Yao etal was quoted to revises the Cambridge model and to establish the elastoplasticity model,which can reflect the deformation properties of remolded loess with water content change on the three dimensional stress space.
引文
[1]殷宗泽,土力学学科发展的现状与展望[J],河海大学学报,1999,Vol.27(1):1-5
    [2]刘祖典,黄土力学与工程[M].西安:陕西省科学技术出版社,1996;
    [3]张炜,张苏民.非饱和黄土地基变形特性[J].岩土工程报,1998,Vol.20(4):98-101
    [4]党进谦,李靖。非饱和黄土的结构强度与抗剪强度[J],水利学报,2001,7
    [5]沈珠江,沈珠江论文选集[M],北京:清华大学出版社,2005,1.
    [6]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径,岩土工程学报[J],1999,21(6):651-656.
    [7]骆亚生,谢定义,邵生俊等.非饱和黄土的结构变化特性[J].西北农林科技大学学报(自然科学版),2004.Vol.24(8):114-118
    [8]沈珠江.土体变形特性的损伤力学模拟[C],第五届全国岩土力学数值分析与解析方法讨论会论文集.重庆.1994.1-8
    [9]沈珠江,胡再强.黄土的二元介质模型[J],水利学报,2003,7,1-6
    [10]夏旺民,黄土弹塑性损伤本沟模型及工程应用研究[D],西安理工大学博士论文,2005,3.
    [11]胡再强,沈珠江等,结构性黄土的本构模型[J],岩石力学与工程学报,2005,Vol.24(5):565-569
    [12]邵生俊,周飞飞等,考虑黄土结构性变化的地基增湿变形分析[J],土木工程学报,2006.Vol.39(6):94-99
    [13]邵生俊,罗爱忠等,加荷增湿作用下Q3粘黄土的结构损伤特性[J],岩土工程学报,2006.Vol.28(12):2077-2081
    [14]陈正汉等,重塑非饱和黄土的变形、强度、屈服和水量变化特性,[J],岩土工程学报,1999.Vol.21(1):82-90
    [15]吴培安等,黄土湿陷变形的内时本构模型[J],水资源与水工程学报,1990,04
    [16]苗天德等,湿陷性黄土的变形及其本构关系[J],岩土工程学报,1999.Vol.21(4):383-387
    [17]阎明礼等,重塑饱和亚粘土应力应变关系的非线性模型[J],岩土工程学报,1981.Vol.6(4),181-186
    [18]万玉珍等,重塑黄土的应力应变关系,[J],岩土工程学报,1994.Vol.16(9),987-996
    [19]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531-536.
    [20]T.W.Lambe.The Engineering Behaviorof Compaeted Clay,proe.ASCE.Vol.84,NO.SMZ,May,1958.
    [21]H.B.Seed.Chan,C.K.,Strueture and Strength Charaeteristics of Compaeted Clays,Proe.ASCE,Vol.85.No.SMS,Oet.,1959,pp.87-128.
    [22]施斌,李生林.击实膨胀土微结构与工程特性的关系[J],土木工程学报,1988,10(6),80-87.
    [23]施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,18(4):57-62.
    [24]LiXiaojun.CTDI Serimination of Fabrie Changeof Unsaturated Compaeted Loess during Compression Proeess,Chinese Journal of Rock Meehanies and Engneering,2002,21(1):107-111.
    [25]Lambe,Kingsley Harrop-Williams,1985.J.Geotech Engrg.,ASCE.115(9):1025-1226
    [26]Benson C.H.etal,1990,J。Geoteeh.Engrg,ASCE,116(8):1232-1246
    [27]陈正汉等,非饱和土的水气运动规律及其工程性质研究[J],岩土工程学报,1993,15(3):9-12
    [28]伍石生,戴经梁,彭波,压实黄土的微结构及其渗水的研究[J],西安交通大学学报,1998,18(4):17-20
    [29]顾正维,粘土的原状土、重塑土、固化土渗透性试验研究[J],岩石力学与工程学报,2003,22(3):505-508
    [30]王丽琴等,重塑黄土的渗透性及影响因素研究[J],兰州铁道学院学报(自然科学版),2003,22(4):95-97
    [31]张虎元等,压实粘土里衬的渗透性[J],中国地质灾害与防治学报,1995,6(1):49-54
    [32]杜金生,渤海海底重塑土的强度性质[J],岩土工程学报,1985,(1).
    [33]李光范,郑镇燮,龚晓南.压实花冈土的试验研究[J],岩石力学与工程学报,2004,23(2):235-241
    [34]郭拴宁,汪保明,龚兆桐.压实填土岩土工程特性的分析与评价[J],土工基础,2000,14(3):28-30.
    [35]刘松玉.击实膨胀土的循环膨胀特性研究[J],岩土工程学报,1999,21(1):9-3.
    [36]李雷.凡种击实土挠曲极限拉应变的试验研究[J],水运科学研究,2000(1)
    [37]路志平.非饱和压实土的孔隙压力[C].
    [38]李振,邢义川,张爱军.膨胀土的浸水变形特性[J],水利学报,2005,36(11):1385-1390
    [39]张爱军,哈岸英,骆亚生.压实膨胀土的膨胀变形规律与计算模式[J],岩石力学与工程学报,2005,24(7):1236-241.
    [40]陈存礼,胡再强,骆亚生.兰州黄土掺合无机结合料的力学特性试验研究[J],西安理工大学学报,2001,17(3):288-91.
    [41]熊承仁,刘宝深.重塑非饱和豁性土UU抗剪强度参数与饱和度的关系[J],水土保持通报,2003,23(6):19-2.
    [42]杨有海,王丽琴,苏在朝等.重塑黄土的强度特性及其影响因素的研究[J],兰州铁道学院学报(自然科学版),2003,22(3):38-1.
    [43]姜蓉,折学森.击实功与龄期对重塑黄土力学性质的试验研究[J],东北公路,2003,46-8.
    [44]Shibata,T.and Karube.D.,Influence of the Variation of the Intermediate Principal Stress on the Mechanical Properties of Normally Consolidated Clays,Proc.of.the 6th ICSMFE.Montreal,Sep.8-15,Univ.of Toronto Press,Toronto.1965,1,pp.359-363
    [45]Yong,R.N.and Mickyes,E.,Yielding of Clay in a Complex Stress Field,Proc.of 3rd Pan American Conf.On Soil Mechanics and Foundation Engineering,Caracas,Venezuela,1967,1,pp.131-143
    [46]Pearce,J.A.,A Truly Tri-axial Machine for Testing Clay,Veroffenlichungendes Institutes fur Boden mechanik and Feismechanik der University at Fridericiana Karlsruhe,44,Karisruhe,Germany,1970,pp.95-110
    [47]Pearce,J.A.,ANew True Triaxial Apparatus,Stress-Strain Behavior of Soils,Proc.of the Roscoe Memorial Symposium,Cambridge Univ.England,Eds.by R.H.G.Parry,G.T.Foulis,and Co.Lt d.Yeovil,England,1971,pp.330-339
    [48]Vaid,Y.P.and Campanella,R.t2 Tri-axial and Plane Strain Behavior of Nature Clay.TGED.ASCE.1974.100(GT3).pp.207-224
    [49]Ko,H.-Y.and Scott,R.F.,Deformation Sand ad Failure,J.SMFD,ASCE,1968,94(SM4),pp.883-898
    [50]Sutherland,H.B.and Mesdary,M.S.,The Influence of the Intermediate Principal Stress on the Strength of Sand,Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering,Mexico City,1969,pp.391-399
    [51]Bishop,A.W.,Discussion of Shear Strength of Soil Other than Clay,Proceedings of the Geotechnical Conference,Oslo,Norway,1967,Vol.Ⅱ,PP.201-204
    [52]Lade,P.V and Duncan,J.M.,Cubical Tri-axial Tests on Cohesionless Soil,J.SMFD,ASCE,1973.99(SM10),pp.783-812
    [53]Lade,P.V.and Musante,H.M.,Tree-Dimensional Behavior ofremoulded Clay,JGED,ASCE.1978,104(GT2),pp.193-209
    [54]Habib,P.,Influence de la Variation de la Contrainte Principale Moyennesur la Resistance au Cisalllement des Sols,Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering,Switzerland,1953,1,pp.131-136
    [55]Broms,B.B.and Casbarian,A.O.,Effect of Rotation of the Principal Stress Axes and of the Intermediate Principal Stress on the Shear Strength,Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering,Montreal,Canada.1965,I,pp.179-183
    [56]Bishop,A.VP.,The Strength of Soils as Engineering Material,6th Rankine Lecture, Geo-technique,London.England.1966.16(2),pp.89-130
    [57]Nakai,T.and..Matsuoka,H.,Shear Behavior of Sand and Clay under Three-Dimensional Stress Condition,Soils and Foundations,Japanese Society of Soil Mechanics and Foundation Engineering,1983,23(2),pp.27-42
    [58]朱俊高,土体侧向变形的真三轴试验研究[J],河海大学学报,1995,Vol.23(6),28-33
    [59]Murayama S.,A Theoretical Consideration on a behavior of Sand,Proc.,IUTAM Symposium on Rheology and Soil Mechanics.Grenoble,1964,pp.146-159
    [60]Murayama.S.and Matsuoka,H.,A Microscopic Study on Sheafing mechanism of Soils,Proc.,8th ICSMFE,1973,1(Part 2),pp.293-298
    [61]Matsuoka.H.,Stress-Strain Relationship of Sands based on the Mobilize Plane,Soils and Foundations,1974b,14(2),Pp.47-61
    [62]Matsuoka,H.and Nakai,T.,Stress Deformation and Strength Characterastics of Soil under Three DifferentPrineipalStresses,Proc.,JSCE,1974,232,pp.59-70
    [63]Matsuoka,H.and Nakai,T.,Stress-Strain Relationship of Soil on the "SMP",Proe.of ⅨICSMFE.Tokyo,1977.pp.153-162
    [64]Concept of Spatial Mobilized Plane and Its Application to Finite Element Analysis,Soils and Foundations,1983,23(4)
    [65]Nakai,T.and Mihara,Y.,A New Mechanical Quantity for Soils and Its Application to Elastic-plastic Constitutive Models,Soils and Foundations,Japanese Society of Soil Mechanics and Foundation Engineering,1984,24(2),pp.82-94
    [66]Nakai.T.and Matsuoka,H.,A Generalized Elastic-plastic Constitutive Model for Clay in Three-Dimensional Stresses,Soils and Foundations,Japanese Society of Soil Mechanics and Foundation Engineering,1986,26(3),pp.81-98
    [67]Nakai.T.,Matsuoka,H.,O.kuno,N.and Tsuzuki,K.,True Td-axial Tests on Normally Consolidated Clay and Analysis of the Observed Shear behavior Using Elastic-plastic Constitutive Models,Soils and Foundations,Japanese Society of Soil Mechanics and Foundation Engineering,1986,26(4),pp.67-78
    [68]Matsuoka,H.and Sun,D.A.,An Elastic-Plastic Model for Frictional and Cohesive Materials Including Granular Materials and Metals,Proc.,Japan Society of Civil Engineering Soils and Foundations,Japanese Society of Soil Mechanics and Foundation Engineers(JSCE),1994,505,pp.201-210
    [69]Sun D.A.and Matsuoka.H.,An Elastic-Plastic Model for Materials under Complex Loading,Computer Methods and Advances in Geo-mechanics,Yuan(ed),Salkema,Rotterdam,1997
    [70]Lade P.V,Elastic-Plastic stress-strain Theory for Cohesionless soil with Curved Yeild Surface,J of solids and Structure,1977,13(11).
    [71]Kirkgard,M.M.and Lade,R V.,Anisotropic Three-Dimensional Behavior of a Normally Consolidated Clay Can.Geo-tech.1993,30,pp.848-858
    [72]Chu,J.,Lo.S.oC.R.and Lee,I.K.,Strain Softening Behavior of Granular Soils,J.Geo-tech.EngngDiv.Am.Soc.Civ.Engrs,1992,118(2),pp.191-208
    [73]Chu,J.,Lo,S.-C.R.and Lee,I.K.,Strain Softening and Shear band Formation of Sand in Multi-Axial Testing,Geo-technique.1996,46(1),pp.63-82
    [74]李广信,土的三维本构关系的探讨与模型验证,清华大学水利水电工程系博士学位论文,1985
    [75]许东俊,岩石强度随中间主应力的变化规律,固体力学学报,1985,01,94-98
    [76]许东俊,中间主应力对岩石变形和强度的影响,岩石力学,1987,15,16合订本:90-V 98
    [77]陈晓光,许广庚,潘国栋,王树海,电液控制真三轴仪的研究,应用科学学报,1990,8(2):158-164
    [78]高延法,陶振宇,岩石强度准则的真三轴压力试验检验与分析,岩土工程学报,1993,15(4):2632
    [79]李锦坤,张清慧,应力劳台角对空隙压力发展的影响,岩土工程学报,1994.16(4):17-23
    [80]李广平,陶振宇,真三轴条件下的岩石微观损伤力学模型,岩土工程学报,1995,17(1):25-31
    [81]袁聚云,软土各向异性性状的试验研究及其在工程中的应用,同济大学博士论文,1995
    [82]姜洪伟,上海软土的屈服函数[J],同济大学学报,1996,Vol.24(4),422-426
    [83]朱俊高,土体侧向变形的真三轴试验研究[J],河海大学学报,1995,Vol.23(6),28-33
    [84]曾开华,土质心墙坝水力劈裂影响因素的研究[D],河海大学博士论文,2001
    [85]姜洪伟,软土的三维各向异性弹粘塑性本构关系[J],同济大学学报,1998,Vol.26(2),153-156
    [86]孙红,软土的真三轴试验研究[J],水利学报,2002,12,74-78
    [87]何世秀,基坑土体侧向卸荷变形的真三轴试验研究[J],岩土力学,2005,Vol.26(6),869-872
    [88]邱斌,中主应力对邓肯-张模型影响的真三轴试验研究[J],岩土工程技术,2002,1,45-47
    [89]徐志伟,中砂侧向变形的真三轴试验研究[J],岩土工程技术,1999,4,27-30
    [90]徐志伟,围压增大条件下淤泥土弹性模量及侧向变形的真三轴试验研究[J],岩土工程技术,2000,4,226-229
    [91]庄心善,深基坑开挖土体的卸荷试验研究及有限元分析[D],武汉理工大学博士论文,2005
    [92]孙红,软土损伤门槛值的真三轴试验研究[J],水利学报,2002,7,93-97
    [93]张坤勇,考虑应力各向异性土体本构模型及其应用研究[D],河海大学,南京,2004
    [94]徐志伟,土体各向异性变形特性的真三轴试验研究[D],河海大学,南京,2003
    [95]骆亚生,复杂应力条件下土的结构性本构关系[J],四川大学学报,2005,Vol.37(5),14-18
    [96]邢义川,黄土的弹塑性模型及边坡稳定有限元分析[D],西安理工大学,1988
    [97]李广信,高等土力学[M],清华大学出版社,北京
    [98]AnhDan,True apparatuses with two rigid boudades,GSP 138 Site Characterization and Modeling,1-10
    [99]袁聚云,真三轴仪的研制及上海粘性土性能与应用研究[D],同济大学,上海,1988
    [100]许东俊,中间主应力对岩石变形和强度的影响,岩石力学,1987,(15-16):90-98
    [101]袁聚云,软土各向异性性状的试验研究及其在工程中的应用[D],同济大学,上海,1995
    [102]章光,RT3型岩石高压真三轴仪研制成功[J],岩土力学,1990,01
    [103]姚仰平等,岩土材料的变换应力空间及其应用[J],岩土工程学报,2005,Vol.27(1),24-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700