用户名: 密码: 验证码:
镧铈混合掺杂纳米TiO_2的制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料所产生的小尺寸效应、界面效应和宏观量子隧道效应等使其在光、电、热、磁等物理性质和化学性质方面与常规材料相比,具有了许多奇异特性和新的特殊功能。以纳米半导体氧化物为催化剂的多相光催化是一种理想的环境污染治理技术,已成为近年来国际上最为活跃的研究领域之一。纳米TiO_2以其氧化能力强、无毒无害、降解效率较高、无二次污染和成本低的特点而最为常用。TiO_2纳米管具有比纳米粉体和薄膜更大的比表面积,纳米管的大比表面积提供了更多的反应活性位,更有利于需降解物质的吸附和反应;管状结构为电子的迁移和界面间的电荷转换提供了好的通道。利用稀土元素独特的4f电子结构,对TiO_2进行稀土元素掺杂改性是常用的提高TiO_2光催化活性的方法。纵观目前众多的稀土掺杂TiO_2光催化研究,大都是单一稀土元素掺杂,稀土元素与过渡金属元素或非金属元素的双元素共掺杂,对双稀土混合掺杂研究报道极少。
     本文采用溶胶-凝胶法成功制备了稀土镧铈混合掺杂TiO_2纳米粉体。并且以该纳米粉为前驱物,利用微波法制备了稀土镧铈混合掺杂的TiO_2纳米管,同时对它们进行光催化性能对比。利用透射电子显微镜(TEM)、X射线衍射仪(XRD)和X射线荧光光谱(XRF)等手段对试样形貌、结构和组成进行表征,并对其形成机理进行分析。以染料甲基橙为光催化反应模型化合物,分析了制备和降解等工艺对有机物光催化降解的影响。结果表明:
     1.溶胶-凝胶法制备的TiO_2粉体颗粒均匀,粒径在10-20nm之间。掺杂对粉体的粒径有较大影响,掺杂后的粉体粒径比未掺杂的粒径小,说明掺杂抑制了纳米晶体的生长。稀土离子掺杂还可以抑制相变,提高了TiO_2由锐钛矿型转变为金红石型的温度。
     2.以TiO_2纳米粉为前驱物,采用微波法可以制得形貌比较完整的TiO_2纳米管。在电镜下观察到,TiO_2纳米管是开口、中空管,直径基本一致,掺杂镧铈的TiO_2纳米管外径约为10-15nm,内径约为4~8nm,长约50~80nm。
     3.以甲基橙为目标降解物,在15W紫外光源照射下,经150min,对纳米粉和纳米管材料进行了光催化研究,实验结果表明,La、Ce共掺提高了TiO_2纳米粉和纳米管的光催化活性。活性的提高可以归功于以下几个有利作用:在紫外可见范围的强烈吸收、氧空穴的生成、表面吸附能力的增强等。
Compared with conventional materials, nano-materials have many singular features and new special features because of their small size effect, interface effect and macroscopic quantum tunnel effect on the optical, electrical, thermal, magnetic and other physical properties and chemical properties. Oxide semiconductor nano-catalysts heterogeneous photocatalysis is an ideal environment for pollution control technology, has become the most active international research areas in recent years. Nano-TiO_2 has been most commonly used with the characteristics of strong oxidizing ability, non-toxic harmless, the higher the degradation efficiency, low cost and no secondary pollution. TiO_2 nanotubes have a larger surface area than nanopowder and thin films, this surface area of nanotubes provides more reaction active sites so that degradation of material to be more conducive to the adsorption and reaction; tubular structure provids a good channel for electronic migration and interface charge transfer. Using the unique 4f electronic structure of rare earth elements, rare earth doped TiO_2 is commonly used to improve the photocatalytic activity of TiO_2. Looking at the current large number of rare earth doped TiO_2 photocatalytic studies, most are single rare earth doped, both rare earth elements and transition metals or non-metallic elements doped, mixed rare earth doped TiO_2 is minimal.
     Sol-gel method was used to prepare lanthanum cerium co-doped TiO_2 nanoparticles in this paper. To synthesis lanthanum cerium co-doped TiO_2 nanotubes by microwave based on the nano-powder precursor, while compared to the photocatalytic properties between them. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) are used to characterize morphology, structure and composition of samples, and analyze its formation mechanism. To analyze the degradation process on preparation and photocatalytic degradation of organic matter by methyl orange as photocatalytic reaction model compounds. The results showed that:
     1. The TiO_2 nanoparticles which are prepared by sol-gel is evenly, and the diameter is between 10-20nm. The dopant have a great impact on the nanoparticles size, the doped nanoparticles size is smaller than the undoped, which illustrates that the growth of nanocrystals is restrained. Rare earth ion doped can restrain the phase transition, which can raise the TiO_2 transition temperature from anatase to rutile.
     2. To TiO_2 nanoparticles as the precursor, the relatively complete morphology of TiO_2 nanotubes can be prepared by microwave. TiO_2 nanotubes are open, hollow tube, almost the same diameter by observed in the electron microscope, the outer diameter of La-Ce co-doped TiO_2 nanotubes is 10-15nm, the inner diameter is 4-8nm, and the length is about 50-80nm.
     3. To methyl orange as target degradation, the nanopowder and nanotube are studied about photocatalytic by the 15W UV light irradiation at 150min, the result show that La-Ce co-doped improves the photocatalytic activity of TiO_2 nanoparticles and nanotubes. The high activity is due to the strong absorption of UV-visible range, the formation of oxygen hole, the enhanced adsorption capacity and so on.
引文
[1]倪兴元,姚兰芳,沈军等.纳米材料制备技术[M].北京:化学工业出版社,2008.1.1.
    [2]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001.8.1.
    [3]王银川,王保学.纳米技术及材料在废水处理中的应用研究[J].国外建材科技,2007.28(1):49-52.
    [4] Yasumichi, Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts[J]. Solid State Chemistry, 2004, 177:4205-4212.
    [5]林星渝.纳米技术在现代医疗器械中的应用[J].科技视野,2005.14(6):19-20.
    [6] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electode[J], Nature.1972, 37 (1):238-245.
    [7]白春礼.白春礼纵论纳米科技[J].科技时报,2000.8.17.
    [8]张丹凤.纳米材料在农业上的应用现状研究[J].黑龙江农业科学,2008,(3):132-133.
    [9]张海林,韩相明,王焕新等.一维纳米材料在锂离子蓄电池中的应用进展[J].电源技术,2008,32(1):63-66.
    [10]连勇,徐培渝.纳米材料在医药领域的应用及毒理学安全性研究进展[J].预防医学情报杂志,2008.24(1):35-37.
    [11] M.Achermann, M. A.Petruska. Energy-transfer pumping of semiconductor nano-crystals using an epitaxial quantum well.Nature,2004,429:642-646.
    [12] S.Hayashi, R.Koh, Y.Ichiyama, and K.Yamamoto.Evidence for surface-enhanced Raman scattering on nonmetallic surfaces:Copper phthalocyanine molecules on GaP small particles,Phys.Rev.Lett.1988(60):1085-1088.
    [13] Rossetti,R.,Hull,R.,Gibson,JM&Brus,LE.Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer.J.Chem.Phys.1985,82:552-559.
    [14] Kawai,T., Kawai,S.Fine particle effect of semiconductor photocatalyst,Denki Kagaku, 1985,53(1):3-8.
    [15] Maruyama,Toshiro,Nishimoto,Tadashi,Hydrogen evolution over a powdered semiconductor photocatalyst,Industrial&Engineering Chemistry Research,1991,30,1634-1638.
    [16] Albery,W.John;Bartlett,Philip N.Transport and kinetics of photogenerated carriers in colloidal semiconductor eletrode particles.Journal of the Electrochemical Society,1984,131(2),315-325.
    [17] Brian O Regan&Michael Gratzel,A low-cost,High-efficiency solar cell based on dye-sensitized colloidal TiO_2 films.Nature,1991(353):737-740.
    [18]高濂,郑珊,张青红著.纳米氧化钛光催化材料及应用.北京:化学工业出版社材料科学与工程出版中心,2002:42-45.
    [19] Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanoerystallltes for X-3B dye photodegradation[J]. Appl Catal B:Environ,2003,46(2):251-259.
    [20] Li X Z, Li F B, Yang C L,et.al. Photocatalytic activity of WOx-TiO_2 under vsible light irradiation[J].Photoehem Photobiol A:Chem,2001,141(2-3)209-217.
    [21] Kim H R, Lee T G, Shul Y G. Photoluminescence of La/Ti mixed oxides prepared using sol-gel process and their pCBA photodecomposition[J]. JPhotochem Photobiol A:Chem,2007,185:156-160.
    [22] He C, Yu Y, Hu X F, et al. Influence of silver doping on the photocatalytic activity of titania films[J].Appl Surf Sci,2002,200:239-247.
    [23] Zou J J, Zhu B, Wantg L, et al. Zn- and La-modified TiO_2 Photocatalysts for the isomerization of norbomadiene to quadricyclane[J]. J Mol Catal A:Chem,2008,286:63-69.
    [24]方晓明,陈焕钦.纳米TiO_2的液相合成方法.化工进展,2001,9:17-2l.
    [25]姚超,吴凤芹,林西平等.纳米二氧化钛的气相合成.现代化工,2004,24(9):14-18.
    [26] Katzer M, Weber A P. The effects of electrical fields on growth of titania particles formed in a CH4-O_2 diffusion flame. Journal of Aerosol Science,2001,32(9):1045-1067.
    [27] Jang H D, Kim S K. Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor. Materials Research Bulletin,2001,36(3):627-637.
    [28]岳林海,水森,郑遗凡.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版),2000,27(l):69-74.
    [29] Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO_2 nanoparticles [J]. J Catal, 2002,207(2):151-157.
    [30] Jimmy CY, Jun L., Raymund, WM. Enhanced photocatalytic activity of solid solution on the degradation of acetone. J Photochem Photobiol A:Chem,1997,111:199-203.
    [31] Rampaul A, Parkin I P, O’Neill S A, et al. Titania and tungsten doped titania thin films on glass:active photocatalysts.Polyhedron,2003,22:35-44.
    [32] Purans J,Azens A,Granqvist C. X-ray absorption study of Ce-Ti oxide films. Electrochim. Acta,2001,46:2055-2058.
    [33]栾勇,傅平丰,戴学刚等.金属离子掺杂对TiO_2光催化性能的影响.化学进展,2004(16):738-746.
    [34] Yin S., Komatsu M., Sato T, Wang J. Lanthanum and nitrogen co-doped SrTiO3 powders as visible light sensitive photocatalyst. Journal of the European Ceramic Society, 2005,25(13):3207-3212.
    [35]李华基,孟翠,薛寒松等.氧化铝模板法制备Ce掺杂二氧化钛纳米管[J].铝加工.2009,187,8-11.
    [36] Hoyer P., Formation of a Titanium Dioxide Nanotube Array.Langrnuir, 1996, 12:1411-1413.
    [37]刘超,成国祥.模板法制备介孔材料的研究进展.离子交换与吸附,2003,19:374-374.
    [38] Ruan C M, Paulose M, Varghese O K, et a1.Fabrication of Highly Ordered TiO_2 Nanotube Arrays Using an Organic Electrolyte.J.Phys.Chem.B,2005,109,15754-15759.
    [39] Xu J C, Lu M, Guo X Y, et a1. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water.J Mol Catal A, 2005, 226:123-127.
    [40] Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack. J Catal,1990,122:178-192.
    [41] Schwitzgebel J,Ekerdt J G,Gerischer H,et a1.Role of the oxygen molecule and of the photogenerated electron in TiO_2-photoeatalyzed.J Phys Chem,1995,99(15):5633-5638.
    [42]郑红,汤鸿霄,王怡.有机污染物半导体多相光催化氧化机理及动力学研究进展.环境科学进展.1996,4(3):2-16.
    [43] Martra G. Lewis Acid and Base Sites at the Surface of Microcrystalline TiO_2 Anatase:Relationships Between Surface Morphology and Chemical Behaviour. Applied Catalysis A,2000,200(2):275-283.
    [44] Serpone N,Texier I,Emeline A V,et al. Post-Irradiation Effect and Reductive Dechlorination of Chlorophenols at Oxygen-Free TiO_2/Water Interfaces in the Presence of Prominent HolScavengers. J Photochem Photobiol,A,2000,136(3):145-152.
    [45]刘平,周延云,林华香等.TiO_2/SnO_2复合光催化剂的耦合效应.物理化学学报. 2001, 17(3):265-269.
    [46] K.Vinodgopal, Prashan V.K. Enhanced rates of photocatalytic of an azo dye using SnO_2/TiO_2 coupled semiconductor thin film.Environ.Sci.Technol.1995,9(3):841-845.
    [47]岳林海.稀土元素掺杂对二氧化钛催化剂光降解久效磷的研究.上海环境科学. 1998,17(9):17-19.
    [48]水淼,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性.物理化学学报.2000, 16(5):459-463.
    [49]王世敏,许祖勋,傅晶编.纳米材料制备技术.北京:化学工业出版社.2002.
    [50] Zhang,X.W.,Zhou,M.H.,Lei,L.C. Preparation of an Ag-TiO_2 photocatalyst coated on activated carbon by MOCVD.Mater.Chem.Phys.2005,91:73-79.
    [51] Zhang,X.W.,Zhou,M.H.,Lei,L.C. Co-deposition of photocatalytic Fe doped TiO_2 coatings byMOCVD. Catal.Commun.2006,7:427-431.
    [52] Zhang X. W.,Zhou M.H.,Lei L.C. Synthesis of TiO_2 supported on activated carbon by MOCVD : operation parameters study . Journal of Zhejiang University Science. 2004,5:1548-1553.
    [53] Zhang,X.W.,Zhou,M.H.,Lei,L.C. Preparation of photocatalytic TiO_2 coating of nanosized particles supported on activated carbon by AP-MOCVD.Carbon.2005,43:1700-1708.
    [54] Scherrer P. Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen[J].Gottinger Nachr Math Phys,1918,2:98-100.
    [55]吴玉程,宋林云,李云等.Ce掺杂TiO_2纳米粉体的制备及其光催化性能研究[J].人工晶体学报,2008,37(2):429-430.
    [56]李华基,贾志伟,刘志良.稀土La掺杂二氧化钛纳米管微波法制备[J].化工进展, 2010,29(6):1114.
    [57] Rodriguez-TalaveraR,Vargas S,Arroyo-MurilloR,et al. Modifieation of the phase transition temperatures in titania doped with various cations[J]. J Mater Res,1997,12(2):439-443.
    [58] Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO_2 nanoparticles: optimization of the preparation conditions. J. Photochem. Photobiol. A: chemisty, 2003, 157: 47-53.
    [59] C.J.Brinker and Q W.Scherer,Sol-Gel science,Academic Press:New York,1989.
    [60] R.K.Dwivedi,J. Mater.Sci.Lett.5(1986):373.
    [61] J.Sabataityte, I.Oja, F.Lenzmann, O.Volobujeva and M.Krunks, Comptes Rendus Chimie 9(2006),708.
    [62]尹荔松,周歧发,唐新桂等.纳米粉晶的XRD研究[J].功能材料.1999,30(5):498-500.
    [63] Dong Jin Kim, Sung Hong Hahn, Sung Hoon. Influence of calcinations temperature on structural and optical properties of TiO_2 films prepared by sol-gel dip coating [J]. Materials letters,2002,57:355-360.
    [64] Ranjit K T,Wiliner I,Bossmann S H,et al.Lanthanide oxide doped titanium dioxide photoeatalysis:effeetive photoeatalysis for the enhaneed degradation of salicylic and t-cinnamic acid[J]. J Catal,2001,204(2):305-313.
    [65] Bahtat A,Bouazaoui M,Bahtat M,et al.Up-conversion fluorescence spectroscopy in Er3+:TiO_2 planar waveguides prepared by a sol-gel process J.Non-Cryst.Solids,1996,202:16-22.
    [66]苏锵.稀土元素[M].北京:清华大学出版社,2000.
    [67]高远,徐安武,祝静艳.RE/TiO_2用于NO_2-光催化氧化的研究[J].催化学报,2001,22(1):53-56.
    [68]陈俊涛,李新军,杨莹等.稀土元素掺杂对TiO_2薄膜光催化性能的影响.中国稀土学报.2003,21:67-71.
    [69] Lin J,Yu C J.An investigation on photocatalytic activities of mixed TiO_2-rare earth oxides for the oxidation of acetone in air.J Photochem Photobio.A:Chem.1998,116:63-67.
    [70] Li F B,Li X Z,Ao C H,et a1.Enhanced photocatalytic degradation of VOCs using Ln3+-TiO_2 catalysts for indoor air purification.Chemosphere,2005,59:787-800.
    [71] Adil F., M. Christian, S. Bernard & C. Mauro. Theoretical analysis of the structures of titanium dioxide crystals[J]. Phys. Rev. B 1993.47:11717-11724.
    [72] Li F B,Li X Z,Hou M F.Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO_2 suspension for odor control.Appl Catal B,2004,48:185-194.
    [73] Parida K M,Sahu N.Visible light induced photocatalytic activity of rare earth titania nanocomposites.J Mol Catal A,2008,287:151-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700