用户名: 密码: 验证码:
微波烧结ITO靶材研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波烧结具有节能、缩短烧结周期等一系列优点,获得的材料表现出高致密度、组织均匀等特征,在近20年来备受关注。随着现代工业向高效节能方向的发展,微波烧结将会有更为广阔的应用前景。ITO靶材作为制备透明导电氧化物薄膜的材料,在军用和民用领域有着广泛应用。鉴于微波烧结的特殊优势和ITO靶材的重要价值,论文首次应用微波烧结技术制备ITO靶材,并研究了微波烧结制备ITO靶材的工艺、致密化行为、以及靶材显微组织,得到以下结论:
     (1)微波烧结能快速制备高致密度、显微组织均匀的的ITO靶材。研究发现,靶材的相对密度随着烧结温度升高而增大;在1580℃进行微波烧结时,靶材的相对密度随着保温时间的延长先增大后减小,在保温1.5h时相对密度达到最大值(99.58%),高温更长时间烧结对ITO靶材的致密化不利。另外,微波烧结促进了ITO靶材的致密化,即以更低的烧结温度或更短的保温时间均能获得综合性能较好的材料,是一种活化烧结模式。升温速度是微波烧结的一个重要参数,ITO靶材可以在10-65℃/min升温速度范围内烧结出相对密度和收缩率均较高的ITO靶材,而最佳升温速度约为45℃/min;
     (2)在微波烧结制备ITO靶材的过程中,压制压力也有着重要的影响。压坯和ITO靶材的密度均随着压制压力的升高而增加,在压制压力为500MPa时达到最高。提高压制压力有利于靶材的致密化;在最佳的微波烧结工艺参数(1580℃×1.5h×500MPa)条件下,ITO靶材密度达到7.12g/cm3,与常规烧结(7.13g/cm3)几乎相当,但与常规烧结相比,微波烧结温度略低,但烧结时间仅是常规烧结的1/8,可以明显缩短烧结周期,有利于节约能源,降低成本。这对工业生产有积极意义;
     (3)微波烧结制备的高密度ITO靶材显微组织均匀,失氧率比商用靶材低,晶粒尺寸较均匀,晶粒尺寸大致为3.5-7.3μm,而且晶粒尺寸较商用靶材要小,不同温度下制备的ITO靶材均无Sn02相析出,仍是单一的固溶体相,不存在第二相。
Microwave sintering has gained a lot of acceptance in resent decades because of its dramatic advantages such as energy efficiency, reduced fabricating cycle, rapid densification, and homogeneous microstructure.And microwave sintering would expand its applications in modern industries as it can meet the high efficiency and energy saving demands trend.ITO(Indiμm Tin Oxide)target as an important material that can be made into transparent conductive film,have broad application in ordnance and civilian. Based on the nμmerous advantages of microwave sintering and the great significance of ITO,our experiment fabricates the ITO targets by microwave process first,researches in terms of sintering process,microstructure and densification behaviors.The major conclusions of this paper were sμmmarized as following:
     (1) The resulted evidence shows microwave sintering technique possesses ITO targets with full density and homogeneous microstructure in short cycle. The results indicated that the relative density of samples increased with the increasing of the temperature. The relative density of samples increased then decreased with the time increasing when sintered at 1580℃. The relative density reached the maximμm value (99.58%) when 1.5 hours soaking. It is shown that high temperature and long soaking deteriorate densification of the ITO targets.In addition, the microwave sintering promotes densification of ITO targets, which can lower the sintering temperature and shorter soaking time to obtain High performance ITO targets,is activated sintering model. Heating rate is an important parameter in microwave sintering, high density and shrinkage ITO target can be sintered at the heating rate of 10-65℃/min,but the best heating rate is about 45℃/min;
     (2) In the process of microwave sintering ITO targets, the compaction pressure also has an important impact. The relative density of green body and ITO targets increased with the compacting pressure increasing,and reach the maximμm at the pressure 500MPa. Compacting pressure is conducive to improve the densification of targets;in the best condition of microwave sintering process parameters(1580℃×1.5h×500MPa), the ITO target density reaches 7.12g/cm3,which is almost equivalent to the conventional sintering (7.13 g/cm3),but in comparison with conventional sintering, microwave sintering temperature is slightly lower,and the sintering time is only 1/8 of the conventional sintering. Microwave sintering can significantly reduce the sintering cycle, help save energy and reduce costs,which has positive significance in industrial application;
     (3) ITO targets microstructure sintered by microwave sintering are homogeneous, Oxygen loss rate lower than the commercial target.The grain size is uniform,3.5-7.3μm approximately,which is smaller than the commercial target.The XRD analysis indicates that no SnO2 precipitation is observed under different sintering temperature, and ITO targets still are single-phase, without the second phase.
引文
[1]Prewitt C T, Shaxnon R D, Rogers D B,et al. The C Rare Earth Oxide-Corundμm Transition and Crystal Chemistry of Oxides Having the Corundμm Structure[J].Inorg.Chem.,1969,8(9):1985.
    [2]Kim Hyoun Woo,Kim Nam Ho.Study of Ga2O3 nanobelts synthesized by the thermal annealing of GaN powders[J].Acta Physica Polonica A,2005, 107(2):346-350.
    [3]Cha G Y,Baek W W,Lee S T,et al.Effects of crystal structure and particle size on ethanol gas sensing characteristics of nanocrystalline ITO thick film[J].the Ceramic Society of Japan,2004,112(1305):252-258.
    [4]Boulares N, Guergouri K, Zouaghi R,et al.Photolμminescence and photodissociation properties of pure and In2O3 doped ZnO nanophases[J].Phys.Stat.Sol.(a),2004,201(10):2319-2328.
    [5]Li Shi tao,Qiao Xue liang,Chen Jianguo,et al.Effects of temperature on indiμm tin oxide particles synthesized by co-precipitation[J].Crystal Growth,2006, 289(1):151-156
    [6]Kim H,Horwitz J S,Pique A,et al.Effect of Film thickness on the Properties of Indiμm Tin Oxide Thin Film Grown by Pulsed laser Deposition for Organic Light-emitting Diodes [J].Proceedings of SPIE,2000,3933(1-2):140-149.
    [7]Buchanan M, Webb J B, Williams D F.Preparation of conducting and transparent thinfilms oftin-doped indiμm oxide by magnetron sputtering[J].Appl.Phys Lett.,1980,37(2):213-215.
    [8]Toshihiro Miyata,Shingo Suzuki,Makoto Ishii,et al.New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering [J].Thin Solid Films,2002,411(1):79-81.
    [9]Karasawa T, Miyata Y.Electrical and optical properties of indiμm tin oxide thin films deposited on unheated substrates by d.c. reactive sputtering[J].Thin Solid Films,1993,223(3):135-139.
    [10]Toshihiro Miyata,Shingo Suzuki,Makoto Ishii,et al.New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering [J].Thin Solid Films,2002,411(1):76-81.
    [11]Tadatsugu Minami,Toshikazu,Yoshihiro Takeda,et al.Highly transparent and conductive ZnO-In2O3 thin films prepared by d.c. magnetron sputtering[J].Thin solid films,1996,290-291(1):1-5.
    [12]Tadatsugu Minami,Shingo Suzuki,Toshihiro Miyata.Highly transparent and conductive Rare Earth-doped ZnO thin films prepared by magnetron sputtering[J].Thin Solid Films,2000,366(1-2):63-69.
    [13]Tominaga K, murayama T, Mori I,et al.Conductive transparent films deposited by simultaneous sputtering of Zinc-Oxide and Indiμm-Oxide targets[J]. Vacuμm,2000,59(2-3):546-552
    [14]Joshi R N, Singh V P, McClur J C.Characteristics of indiμm tin oxide deposited by r.f. magnetron sputtering[J].Thin solid Films,1995 (257):32-35.
    [15]赵俊卿,马瑾,李淑英等.有机薄膜ITO遴明导电膜的结构和光电特性[J].半导体学报,1998,19(10):752-755.
    [16]Yutaka Sawada, Chikako Kobayashi, Shigeyuki Seki,et al. Highly-conducting indiμm-tin-oxide transparent films fabricated by spray CVD using ethanol solution of indiμm(III) chloride and tin(II) chloride[J].Thin Solid Films,2002(409):46-50.
    [17]Card C P,James K M G,Philip G H.Aqueous Sol-Gel Routes to Conducting Films of Indium Oxide and Indiμm-Tin-Oxide[J].Sol-Gel Optics,2000,39(3):270-279
    [18]程珊华,宁兆元.微波ERC等离子体辅助反应蒸发沉积ITO膜[J].功能材料,1995,26(5):405-408.
    [19]Chandrasekhar R, Choy K L.Innovative and cost-effective synthesis of indium tin oxide films[J].Thin Solid Films,2001,(59-64):398-399.
    [20]Kim H, Horwitz J S,Pique A.Electrical and optical properties of indiμm tin oxide thin films grown by pulsed laser deposition[J].Applied Physics A Materials Science&Processing,1999:447-450.
    [21]李音波,李卫华,闫琳等.ITO靶材的研究现状与发展趋势[J].功能材料,2004,35:996-1000.
    [22]Elfallal I, Pilkington R D,Hill A E.Formulation of a statistical thermodynamic model for the electron concentration in heavily doped metal oxide semiconductors applied to the tin-doped indiμm oxide sy stem [J]. Thin Solid Films.1993,223(2):303-310.
    [23]Lambert Bates J, Griffin C W,Marchcnt D D,et al.Electrical conductivity, Seebeck Coefficient, and structure of In/sub 2/O/sub 3/-SnO/sub 2/[J].Am.Ceram.Soc.Bull.1986,65(4):673-678.
    [24]Medvedovskia E,Alvarez a N,Yankov O,et al.Advanced indiμm-tin oxide ceramics for sputtering targets[J].Ceramics International.2008,34:1173-1182.
    [25]王信阳.ITO靶材市场及技术发展趋势[J].台湾,2003,46(7):132-135.
    [26]2006铟市场年度报告[EB\OL].http://www.asianmetal.cn/Metal_News/. 2007-02-15.
    [27]高鸿锦.液晶显示器材料产业现状及发展趋势[J].新材料产业.2004,6:86-93.
    [28]李晶,陈世柱,李芝华.冷等静压—烧结法制备ITO磁控溅射靶材的工艺研究[J].稀有金属与硬质合金,2003,31(4):18-21.
    [29]张树高.铟锡氧化物陶瓷靶材热等静压研究[J].功能材料.2000,31(4):383-387.
    [30]韩雪,夏慧.研究与试制透明导电膜及靶材[J].电子元件与材料,1999,17(1):30-35.
    [31]马金龙,童学锋,彭虎.烧结技术的革命[J].新材料产业,2001,11(6):30-32.
    [32]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社,2006.
    [33]罗述东.微波加热技术在金属材料制备中的应用研究-微波烧结与焊接工艺[D].长沙:中南大学,2008:1-2.
    [34]焦其祥.电磁场与电磁波[M].北京:科学出版社,2004:180.
    [35]Barnsley B P. Microwave Processing of Materials[J]. Metals and Mater,1989, 5(11):633-633.
    [36]晋勇,谢华锟.微波烧结技术的应用与进展[J].工具技术,2004,39(1):19-23.
    [37]Rybakov K I,Semenov V E,Egorov S V,et al.Microwave heating of conductive powder materials[J].Appl. Phys.,2006,99(1):023506.
    [38]Gupta M,Wong W L E.Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering[J].Scripta Mater.,2005,52(6):479-483.
    [39]Wang J,Binner J,Vaidhyanathan B,et al.Evidence for the microwave effect during hybrid sintering[J].Am.Ceram.Soc.,2006,89(1):1977-1984.
    [40]Saitou K.Microwave sintering of iron, cobalt, nickel, copper and stainless powders[J].Scripta Mater.,2006,54(1):875-879.
    [41]Cheng J,Agrawal D,Zhang Y,et al.Microwave sintering of transparent alμmina[J].Mater.Lett,2002,56(44):587-592.
    [42]Fang Y,Cheng J,Agrawal D K.Effect of powder reactivity on microwave sintering of alμmina[J].Mater. Lett.,2004,58(33):498-501.
    [43]Bykov Yu V,Rybakov K I,Semenov V E.High-temperature microwave processing of materials[J].Phys.D:Appl.Phys.,2001,34(1):55-75.
    [44]Nishitani T.Method for sintering refractories and an apparatus therefore[P].USPatent:No.4147911,1979.
    [45]Kaleem A,Pan W,Si W J.Microwave sintering of alμmina-silicon carbide nanocomposites[J]. Key Eng.Mater.,2007,336(338):1072-1075.
    [46]Roy R,Agrawal D,Cheng J,et al.Full sintering of powder metal bodies in a microwave field[J].Nature.1999,399(17):668-670.
    [47]Iftikhar A,Richard S.Joining ceramics using microwave energy[J].Materials Research Society Symposiμm Proceedings,1993,314(1):119-130.
    [48]Put S,Vleugels J,Anne G,et al.Processing of hardmetal coatings on steel substrates[J].Scripta Mater.,2003,48(99):1361-1366.
    [49]Yarlagadda P D V,Soon R C T.Characterization of materials behavior in microwave joining of ceramics[J].Mater. Process Technol.,1998,84(1):162-174.
    [50]Janney M A,Kimrey H D,Allen W R,et al.Enhanced diffusion in sapphire during microwave heating[J].Mater.Sci.,1997,32(55):1347-1355.
    [51]Bykov Yu V,Egorov S V,Eremeev A G,et al.Evidence for microwave enhanced mass transport in the annealing of nanoporous alμmina membranes[J]. Mater.Sci.,2001,36(11):131-136.
    [52]Shazman A,Mizrahi S,Cogan U,et al.Examining for possible non-thermal effects during heating in a microwave oven[J].Food Chem.,2007,103(1):444-453.
    [53]Rybakov K I,Semenov V E.Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field[J].Phys.Rev.B,1994,49(1):64-68.
    [54]Rybakov K I,Semenov V E.Mass transport in ionic crystals induced by the Ponderomotive action of a high-frequency electric field[J].Phys.Rev.B,1995,52(5):3030-3033.
    [55]Sadatsugu Takayama,Yasushi Saito,et al.Sintering behavior of metal powders involving microwave-enhanced chemical reaction[J].Applied Physics, 2006,45:1816-1822.
    [56]Breval E,Cheng J P,et al.Comparison between microwave and conventional sintering of WC/Co composites [J].Materials Science and Engineering A.2005,291:285-295.
    [57]林枞,许业文,徐政.陶瓷微波烧结技术研究进展[J].硅酸盐通报,2006,25(3):132-135.
    [58]罗民华,曾令可,黄浪欢.微波加热技术应用于陶瓷行业需要解决的几个问题[J].陶瓷学报,2001,22(4):268-275.
    [59]晋勇,薛屺,汤小文等.纳米金属陶瓷材料的微波烧结工艺研究[J].机械工程材料,2004,28(12):49-51.
    [60]李友芬,刘伟伟,张麟宁.A1N陶瓷烧结技术研究进展[J].现代技术陶瓷,2006,107(1):28-31.
    [61]Agrawal D.Microwave processing of ceramics, composites and metallic materials [J].High tech ceramic news,2005,5:9-10.
    [62]Clark D E, Folz D C, West J K.Processing materials with microwave energy[J].Materials science and engineering A,2007,287:153-158.
    [63]吕明Y2O3-ZrO2材料的微波烧结研究[D].广州:华南理工大学,2000.
    [64]Gedevanishvili S, Agrawal D, Roy R.Microwave combustion synthesis and sintering of intermetallics and alloys[J].Materials science letters,1999, 18:665-668.
    [65]刘阳.微波合成TiC及微波烧结Al2O3-TiC复合材料的研究[D].广州:华南理工大学,2001.
    [66]Gedevanishvili S,Agrawal D,Roy R.Microwave combustion synthesis and sintering of intermetallics and alloy [J].Mat Sci Lett,1999,18:665.
    [67]Jokisaari J R, Bhaduri S. Microwave activated combustion synthesis of titaniμm aluminide[J].Mater.Sci.Eng.2005,A394:385-392.
    [68]Poli G,Sola R,Veronesi P.Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator.modeling and optimization [J].Mater.Sci.Eng.,2006,A441:149-156.
    [69]Eremeev A G,Plotnikov I V,Holoptsev V V,et al.Absorption of Millimeter Waves in Composite Metal-Ceramic Materials[A] Monika Willert Porada. Advances in Microwave and Radio Frequency Processing[C].Berlin:Springer Berlin Heidelberg,2006.591-597.
    [70]Ahmad I, Chandler G T, Clar D E.[J].Material Science.1995,24:239-239.
    [71]周晓东.微波烧结在固相反应及烧结中的应用[J].昆明冶金高等专科学校学报,2006,22(1):55-60.
    [72]Cheng J, Fang Y, Agrawal D K, et al..Material Research Society Symposium[J] Proceeding.1994,347:513.
    [73]Makino Y.Characteristics of millimeter-wave heating and smart materials synthesis[C].ISIJ international,2007,47 (4):539-544.
    [74]陈利祥.陶瓷材料的微波烧结工艺[J].研究青岛大学学报,1997,10(3):94-96.
    [75]吕明,陈楷,苏雪筠.氧化物陶瓷的微波烧结机理[J].中国陶瓷,1998,35(4):26-29.
    [76]Cheng J P,Agrawa L D.ZhangY H,et a.Fabricating transparent Ceramics by Microwave Sintering[J].Amar.Cera.Soc.Bull.,2000,79(9):71-74.
    [77]Fang Y.,Roy R.,Agrawal D.K.,et al.Transparent Mullite Ceramics from Diphasic Aerogels by Microwaveand Conventional Processing[J].Mater.Let., 1996,28(1-3):11-15.
    [78]朱文玄,吴一平,徐正达等.微波烧结技术及其进展[J].材料科学与工程,1998,16(2):61-64.
    [79]刘阳,曾令可,胡晓力.微波合成纳米TiC粉体的热力学研究[J].中国陶瓷工业,2003,10(3):20-23.
    [80]曲世鸣,张明.微波混合加热技术及应用前景[J].物理,1999,28(2):117-117.
    [81]李磊,许业文,林枞等.微波烧结ZnO压敏电阻的可行性研究[J].电子元件与材料,2007,26(3):41-43.
    [82]Mohit Jain,Ganesh Skandan,Amit Singha,et al.Processing of nanopowders into transparent ceramics for infrared windows[J]. Proceeding of SPIE, 2003,5078(1):189-198.
    [83]Yi Fang,Dinesh Agrawal,Ganesh Skandan,et al.Fabrication of translucent MgO ceramics using nanopowders [J].Materials Letters,2004,58:551-554.
    [84]Ramesh Peelamedu.Sintering of zirconia nanopowder by microw ave-laser hybrid process[J].Am.Ceram.Soc.,2004,87[9]:1806-1809.
    [85]Paranosenkov V P,Kelina I Yu, Plyasunkova L A,et al.preparation of dense ceramics based on silicon nitride[J].nanopowders,2003,44(4):223-226.
    [86]Egorov S,Eremeev A, Sorokin A,et al."Experimental study of the possibility of microstructure control in the microwave sintering of nanostructured alumina,"in Abstr.3rd World Congr.Microwave and Radio Frequency Applications [J]. Sydney, Australia,2002:109-110.
    [87]Yoon-chang Kim,et al.Novel microstructure of microwave-sintered silicon nitride doped with Al2O3 and Y2O3[J].Ceram Eng&SciProc,1997,18(4):394-400.
    [88]Panneerselvam M, Agrawall Ankur, Rao K J.Microwave sintering of MoSi2/SiC composites[J].Materials Science and Engineering,2003, A356:267-273.
    [89]田岛键一.高强度压电陶瓷制造方法[J].日本公开特许公报(A),特开平 10-29350,1998:10-20.
    [90]樊旭东,谢志鹏,黄勇.现代技术陶瓷增刊[J].1996:731-735.
    [91]杨文,常爱民,庄建文等.陶瓷材料的制备及介电特性研究[J].无机材料学报,2002,17(4):822-825.
    [92]王卓薇,王志强等.羟基磷灰石的微波烧结[J].大连轻工业学院学报,2007,26(2):147-151.
    [93]杨林,车磊.混合加热中SiC预加热体加热特性的研究[J].第11届中国微波能应用学术研讨会,中国南京:28-32.
    [94]彭金辉,马骏骑.对微波弱吸收物质的辅助性加热[J].微波学报,1997,13(4):333-336.
    [95]刘智,杨林,于传斌.微波混合加热中SiC预加热体工艺参数对升温特性的影响[J].2006,25(2):135-138.
    [96]罗述东.微波加热技术在金属材料制备中的应用研究[J].中南大学博士后研究工作报告.
    [97]Kriegsmann G A.Thermal runaway in microwave heated ceramics:A one-dimensional model[J].J Appl Phys 1992,71:1960-1996.
    [98]Ma J, Diehl J F,Johnson E J, Martin K R,et al. Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts[J].J Appl Phys,2007,101:074-06
    [99]朱凤霞.铜粉压坯的微波烧结研究[D].长沙:中南大学,2008:6-7.
    [100]Tun KS, Gupta M. Effect of heating rate during hybrid microwave sintering on the tensile properties of magnesiμm and Mg Y2O3 nanocomposite[J]. J. Alloys Compd.,2008,466(7):140-145.
    [101]Kim B, Hiraga K, Morita K, Yoshida H. Effects of heating rate on microstructure and transparency of spark-plasma-sintered alμmina[J].Eur. Ceram. Soc,2009,29(2):323-327.
    [102]邢鹏飞,邢伟,王政红等.ITO靶材的微观结构分析[J].功能材料,2008,39:258-260.
    [103]刘继胜.微波烧结工作原理及工业应用研究[J].机电产品开发与创新,2007,20(2):20-23.
    [104]Wroe R,Rowley A T.Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia[J].Mater Sci,1996,31(8):2019-2026.
    [105]Freeman S A,Rybakov K I,Semenov V E.Dynamics of microwave-induced currents in ionic crystals[J].Phys Rev Bull,1994,49(1):3559-3563.
    [106]易键宏,唐新文.微波烧结技术的进展及展望[J].粉末冶金技术,2003,21(6):351-354.
    [107]JANNEY M A,et al.Grain Growth in Microwave-Annealed Alμmina[J].Am. Ceram.Soc.1991,74[7]:1675-1681.
    [108]JANNEY M A,et al.Microwave Sintering of Solid Oxide Fuel Cell Materials:I Zirconia-8mol% Yttria[J],Am. Ceram. Soc.,1992,75 [2]:341-346.
    [109]郝洪顺,徐利华,黄勇等.陶瓷材料微波烧结动力学机理研究[J].中国科学,2009,39(1):146-149.
    [110]Terzini E, Thilakan P,Minarini C.Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature[J].Materials Science and Engineering,2000,B77:110-114.
    [111]黄培云.粉末冶金原理[M].北京:冶金工业出版社,2004:310-314.
    [112]Amith K Murali. A kinetic study of indiμm nitride formation from indium oxide powders [J].Materials Science and Engineering,2002,B96:111-114.
    [113]李亚静,刘家祥.降温速率对ITO靶材相组成的影响[J].稀有金属,2007,31(6):794-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700