用户名: 密码: 验证码:
ZnS胶体量子点电致发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体量子点具有发光光谱随粒径调控的特性,近年来逐渐在显示和照明器件领域得到应用。由于良好的单色性,CdSe量子点被广泛应用到新型显示器件中,但也因此限制了其在照明领域的应用。ZnS量子点具有丰富的缺陷结构,发射峰呈现为可调控的宽带光谱,且发光效率高,因此有利于实现色温可调控的、高亮度的白光发射并在照明领域取得应用。本文就ZnS量子点缺陷的光致发光(PL)和电致发光(EL)的调控规律展开研究:
     1)采用超重扩散法和化学沉淀法制备了不同超重环境、不同Zn/S比例、不同合成温度等几个系列的ZnS量子点材料,分析了PL光谱变化规律和作用机制。选取部分量子点材料利用旋涂成膜工艺制备了ZnS量子点薄膜和ZnS量子点-聚合物复合薄膜,利用扫描电子显微镜(SEM)和PL光谱等手段对薄膜的形貌和发光特性进行了讨论。
     2)制备了系列ITO/ZnS量子点/Al单层和多层EL器件。系统地研究电场激发下器件的发光特性,借助PL分析获得了器件的工作机理。对于电压改变下的器件峰值位置从黄绿光(560 nm)到蓝光(470 nm)的移动现象由选择性激发过程,即驱动电压对不同缺陷能级有选择性的激发过程决定;对于不同Zn/S比例下制备的量子点,PL光谱和EL光谱呈现相反的移动趋势,提出了“扩展缺陷带”的概念来解释这一现象,即缺陷带的扩展使浅缺陷能级间距离增加而深缺陷能级间距离减小,最终导致了两种光谱相反的移动趋势;我们同时讨论了尺度效应对ZnS量子点EL光谱的调控机理,认为除了量子尺寸效应,与缺陷能级相关的发射随着量子点尺寸的变化也是重要的原因之一,同时提出这种现象预示了一种调节器件色温的新方法;为了更有效地调节色温,我们还尝试添加了有机材料(分别为MEH-PPV和PVK:NPB)制备ZnS量子点-有机物复合器件,并获得了较好的色温调控效果。
     3)在不同浓度的SiO_2乙醇溶液中制备了一系列ZnO量子点/SiO_2复合材料,通过匀胶的方法制备出复合薄膜器件。SiO_2在器件中不但起到平衡载流子的作用,而且其对ZnO量子点的尺寸及缺陷的影响共同起到对EL光谱的调控作用。
With size-tunable luminescent properties, colloidal quantum dots (QDs) have been applied in display and lighting devices. CdSe QDs were adopted in display devices, thanks to good monochromaticity, but not in lighting devices. ZnS QDs shows broadband emissions from the transitions between the abundant of intrinsic defects. Due to variable spectra and high luminescent efficiency, they are expected to realize high-efficiency white light emission with varying color temperature. In this dissertation, we focus on the natue of photoluminescence (PL) and electroluminescences (EL) from the defects of ZnS QDs. The main experiments and discussions are as follows:
     1) The new synthesis progress named Diffusion of Solvents in Overweight State, and chemical precipitation were co-adopted to prepare ZnS QDs. The series of QDs were obtained by changing the preparation conditions of overweight state, Zn/S molar ratios and temperature. The nature and mechanism of PL from the QDs are discussed. QDs and QDs-polymer composite films were fabricated by spin-coating technology and characterized by SEM images and PL spectra.
     2) Series of ITO/ZnS QDs/Al single-layer and multilayer EL devices were fabricated. Behaviors of the EL devices were studied systematically and their working mechanisms were discussed with the help of PL analysis. EL emission peak were tuned from yellow-blue (560 nm) to blue (470 nm) with the increasing voltage, which determined by selective excitation processes (SEPs). And extended-defect-bands were proposed to explain the contrary shift between PL and EL spectrum for different Zn/S ratios, in which shallow and deep defect levels were selected to be excited by PL and EL. Particle size-dependent wideband EL of ZnS QDs suggested a possibility of adjustment of color temperature for lighting devices. Its origin may be not only related to quantum size effect but also the emission proportion from different defects. Further detailed discussion on regulating color temperature by means of QDs-polymer composite film showed that ZnS QDs/MEH-PPV and QDs/ PVK:NPB composite film device were beneficial to achieve good performance.
     3) Another composite film device was fabricated with ZnO QDs/SiO_2 composite which were synthesized in different concentration of SiO_2-ethanol solution. SiO_2 not only balanced the carriers of device but controlled the size and the defects of ZnO QDs which co-operated to shift the EL spectra.
引文
[1]. V. L. COLVIN, M. C. SCHLAMP, A. P. ALIVISATOS: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature 1994, 370:354-357.
    [2]. XIAOGANG PENG, MICHAEL C. SCHLAMP, ANDREAS V. KADAVANICH, et al: Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J]. Journal of the American Chemical Society 1997, 119:7019.
    [3]. S. COE, W. K. WOO, M. BAWENDI, et al: Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature 2002, 420:800-803.
    [4]. Y. C. LI, H. Z. ZHONG, R. LI, et al: High‐ Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1–x Nanocrystals [J]. Advanced Functional Materials 2006, 16:1705-1716.
    [5]. P. O. ANIKEEVA, J. E. HALPERT, M. G. BAWENDI, et al: Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum [J]. Nano letters 2009, 9:2532-2536.
    [6]. P. J. DEAN: Comparison of MOCVD‐ Grown with Conventional II‐ VI Materials Parameters for EL Thin Films) [J]. Physica Status Solidi (a) 1984, 81:625-646.
    [7]. W. E. HOWARD, O. SAHNI, P. M. ALT: A simple model for the hysteretic behavior of ZnS: Mn thin film electroluminescent devices [J]. Journal of Applied Physics 1982, 53:639-647.
    [8]. E. L. SOININEN, G. HARKONEN, M. LAHONEN, et al: Method of growing a ZnS: Mn phosphor layer for use in thin-film electroluminescent components. Google Patents; 2000.
    [9]. H. LI, W. Y. SHIH, W. H. SHIH: Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis [J]. Nanotechnology 2007, 18:205604.
    [10]. C. W. TANG, S. A. VANSLYKE: Organic electroluminescent diodes [J]. Applied Physics Letters 1987, 51:913.
    [11]. A. KAPPLER, C. PASQUERO, K. O. KONHAUSER, et al: Deposition of banded iron formations by anoxygenic phototrophic Fe (II)-oxidizing bacteria [J]. Geology 2005, 33:865.
    [12]. G. SHARMA, H. J. TRUSSELL: Decomposition of fluorescent illuminant spectra for accurate colorimetry [R]. In. IEEE; 1994: 1002-1006 vol. 1002.
    [13]. Y. OHNO: Spectral design considerations for white LED color rendering [J]. Optical Engineering 2005, 44:111302.
    [14]. A. N. OIDA: Organnc light emitting diodes (OLEDs) for general illumination [J]. Optoelectronics Industry Development Association 2001.
    [15]. C. H. CHANG, K. C. TIEN, C. C. CHEN, et al: Efficient phosphorescent white OLEDs with highcolor rendering capability [J]. Organic Electronics 2010, 11:412-418.
    [16]. Q. WANG, J. DING, D. MA, et al: Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission‐ Mechanism Analysis [J]. Advanced Functional Materials 2009, 19:84-95.
    [17]. J. M. CARUGE, J. E. HALPERT, V. BULOVIC, et al: NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices [J]. Nano letters 2006, 6:2991-2994.
    [18]. O. G. SCHMIDT, K. EBERL: Self-assembled Ge/Si dots for faster field-effect transistors [J]. Electron Devices, IEEE Transactions on 2001, 48:1175-1179.
    [19]. S. Y. JEONG, S. C. LIM, D. J. BAE, et al: Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor [J]. Applied Physics Letters 2008, 92:243103.
    [20]. A. L. ROEST, J. J. KELLY, D. VANMAEKELBERGH, et al: Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling [J]. Physical Review Letters 2002, 89:36801.
    [21]. HUANG JINMAN, YANG YI, XUE SHANHUA, et al: Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks [J]. Applied Physics Letters 1997, vol.70, no.18:2335-2337.
    [22]. I. YU, M. SENNA: Effects of Mn distribution in Cu modified ZnS on the concentration quenching of electroluminescence brightness [J]. Applied Physics Letters 1995, 66:424.
    [23]. H. YANG, S. SANTRA, P. H. HOLLOWAY: Syntheses and Applications of Mn-Doped II-VI Semiconductor Nanocrystals [J]. Journal of Nanoscience and Nanotechnology 2005, 5:1364-1375.
    [24]. H. YANG, P. H. HOLLOWAY, B. B. RATNA: Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals [J]. Journal of Applied Physics 2003, 93:586.
    [25]. S. V. NISTOR, M. STEFAN, L. C. NISTOR, et al: Incorporation and localization of substitutional Mn^{2+} ions in cubic ZnS quantum dots [J]. Physical Review B 2010, 81:35336.
    [26]. H. SASAKURA, H. KOBAYASHI, S. TANAKA, et al: The dependences of electroluminescent characteristics of ZnS: Mn thin films upon their device parameters [J]. Journal of Applied Physics 1981, 52:6901-6906.
    [27].任山令,张家骅,吕少哲,等:纳米ZnS: Mn2+薄膜荧光增强动力学研究[J].发光学报2002, 23.
    [28]. G. K. M. THUTUPALLI, S. G. TOMLIN: The optical properties of amorphous and crystalline silicon [J]. Journal of Physics C: Solid State Physics 1977, 10:467.
    [29]. E. N. ECONOMOU, M. H. COHEN: Existence of mobility edges in Anderson's model for random lattices [J]. Physical Review B 1972, 5:2931-2948.
    [30]. V. A. FONOBEROV, A. A. BALANDIN: Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes [J]. Applied Physics Letters 2004, 85:5971.
    [31]. L. QU, X. PENG: Control of photoluminescence properties of CdSe nanocrystals in growth [J]. Journal of the American Chemical Society 2002, 124:2049-2055.
    [32]. K. SOOKLAL, B. S. CULLUM, S. M. ANGEL, et al: Photophysical properties of ZnSnanoclusters with spatially localized Mn2+ [J]. The Journal of Physical Chemistry 1996, 100:4551-4555.
    [33].徐叙瑢,苏勉曾:发光学与发光材料[M].北京:化学工业出版社, 2004.
    [34]. A. RIZZO, Y. Q. LI, M. MAZZEO, et al: Hybrid colloidal nanocrystal-organics based LEDs - art. no. 69100O [J]. Light-Emitting Diodes: Research, Manufacturing, And Applications Xii 2008, 6910:O9100-O9100.
    [35]. T. ZHU, K. SHANMUGASUNDARAM, S. C. PRICE, et al: Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots [J]. Applied Physics Letters 2008, 92.
    [36]. J. HUANG, Z. XU, S. ZHAO, et al: Organic/inorganic heterostructures for enhanced electroluminescence [J]. Solid State Communications 2007, 142:417-420.
    [37]. N. JING-HUA, H. RUI-NIAN, L. WEN-LIAN, et al: Electroluminescent properties of a device based on terbium-doped ZnS nanocrystals [J]. Journal of Physics D-Applied Physics 2006, 39:2357-2360.
    [38]. H. U. A. RUI-NIAN, N. I. U. JING-HUA, L. I. MING-TAO: Electroluminescent Properties of Device Based on ZnS: Tb/CdS Core-shell Nanocrystals [J]. Chemical Physics Letters 2005, 419:269-272.
    [39]. M. C. SCHLAMP, X. PENG, A. P. ALIVISATOS: Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer [J]. Journal of Applied Physics 1997, 82:5837.
    [40]. C. JM, H. JE: Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J]. Nature Photonics 2008, 2:247-250.
    [41]. L. A. KIM, P. O. ANIKEEVA, S. A. COE-SULLIVAN, et al: Contact printing of quantum dot light-emitting devices [J]. Nano letters 2008, 8:4513-4517.
    [42]. W. K. W. SETH COE, V. B. MOUNGI BAWENDI: Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature 2002, 420:800-803.
    [43]. P. O. ANIKEEVA, J. E. HALPERT, M. G. BAWENDI, et al: Electroluminescence from a Mixed Red- Green- Blue Colloidal Quantum Dot Monolayer [J]. Nano Letters 2007, 7:2196-2200.
    [44]. P. PHOTOPOULOS, A. G. NASSIOPOULOU: Room-and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO layers [J]. Applied Physics Letters 2000, 77:1816.
    [45]. E. NESHATAEVA, T. KüMMELL, G. BACHER, et al: All-inorganic light emitting device based on ZnO nanoparticles [J]. Applied Physics Letters 2009, 94:091115.
    [46]. M. GAO, S. KIRSTEIN, A. L. ROGACH, et al: Photoluminescence and electroluminescence of CdSe and CdTe nanoparticles [J]. Science and Technology of Advanced Materials 1999, 27:347-358.
    [47]. M. G. BAWENDI, J. S. STECKEL: The synthesis of inorganic semiconductor nanocrystalline materials for the purpose of creating hybrid organic/inorganic light-emitting devices [J]. Dspace 2006.
    [48]. J. XU, J. RUZYLLO, K. SHANMUGASUNDARAM, et al: MIST FABRICATION OF QUANTUM DOT DEVICES. Google Patents; 2008.
    [49]. U. BANIN: Light-emitting diodes: Bright and stable [J]. Nature Photonics 2008, 2:209-210.
    [50]. W. K. BAE, J. KWAK, J. W. PARK, et al: Highly Efficient Green Light Emitting Diodes Based on CdSe@ ZnS Quantum Dots with a Chemical Composition Gradient [J]. Advanced Materials 2009, 21:1690-1694.
    [51]. Y. LI, A. RIZZO, M. MAZZEO, et al: White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter [J]. Journal of Applied Physics 2005, 97:113501.
    [52]. H. S. CHEN, C. K. HSU, H. Y. HONG: InGaN-CdSe-ZnSe quantum dots white LEDs [J]. Photonics Technology Letters, IEEE 2005, 18:193-195.
    [53]. S. NIZAMOGLU, T. OZEL, E. SARI, et al: White light generation using CdSe/ZnS core shell nanocrystals hybridized with InGaN/GaN light emitting diodes [J]. Nanotechnology 2007, 18:065709.
    [54]. D. M. YEH, C. F. HUANG, Y. C. LU, et al: White-light light-emitting device based on surface plasmon-enhanced CdSe/ ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode [J]. Applied Physics Letters 2008, 92:091112.
    [55]. S. NIZAMOGLU, E. MUTLUGUN, T. OZEL, et al: Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation [J]. Applied Physics Letters 2009, 92:113110.
    [56]. M. GAO, B. RICHTER, S. KIRSTEIN: White light electroluminescence from self assembled Q CdSe/PPV multilayer structures [J]. Advanced Materials 1997, 9:802-805.
    [57]. M. A. SCHREUDER, K. XIAO, I. N. IVANOV, et al: White Light-Emitting Diodes Based on Ultrasmall CdSe Nanocrystal Electroluminescence [J]. Nano letters 2010, 10:573-576.
    [58]. S. KISHWAR, K. HASAN, G. TZAMALIS, et al: Electro‐ optical and cathodoluminescence properties of low temperature grown ZnO nanorods/p‐ GaN white light emitting diodes [J]. Physica Status Solidi (a) 2009, 207:67-72.
    [59]. C. H. AHN, Y. Y. KIM, D. C. KIM, et al: A comparative analysis of deep level emission in ZnO layers deposited by various methods [J]. Journal of Applied Physics 2009, 105:013502-013502-013505.
    [60]. H. GUO, Z. LIN, Z. FENG, et al: White-Light-Emitting Diode Based on ZnO Nanotubes [J]. The Journal of Physical Chemistry C 2009, 113:12546-12550.
    [61]. K. W. CHEAH, L. XU, X. HUANG: White light luminescence from nano-ZnS doped porous silicon [J]. Nanotechnology 2002, 13:238.
    [62]. R. N. BHARGAVA, D. GALLAGHER, X. HONG, et al: Optical properties of manganese-doped nanocrystals of ZnS [J]. Physical Review Letters 1994, 72:416.
    [63]. Q. HUANG, L. LI, J. XU, et al: Effect of precursor molar ratio of [S 2-]/[Zn 2+] on the lifetime of ZnS nanocrystals [J]. Optoelectronics Letters 2010, 6:161-163.
    [64]. HUI LI, WAN Y. SHIH, WEI-HENG SHIH: Highly Photoluminescent and Stable Aqueous ZnSQuantum Dots [J]. Industrial and Engineering Chemistry 2009, 49:578.
    [65]. D. DONG-QING, L. LAN, Z. XIAO-SONG, et al: Effect of Precursor Molar Ratio of [S2-]/[Zn2+] on Particle Size and Photoluminescence of ZnS: Mn2+ Nanocrystals [J]. Chinese Physics Letters 2007, 24:2661.
    [66]. B. E. WARREN: X-ray Diffraction [M]. Dover Pubns, 1990.
    [67]. T. OKADA, K. KAWASHIMA, Y. NAKATA: Nano-wire pig-tailed ZnO nano-rods synthesized by laser ablation [J]. Thin Solid Films 2006, 506:274-277.
    [68]. W. G. BECKER, A. J. BARD: Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions [J]. The Journal of Physical Chemistry 1983, 87:4888-4893.
    [69]. R. N. BHARGAVA: Spectroscopy of isolated and assembled semiconductor nanocrystals special issue [J]. Journal of Luminescence 1996, 70:85-94.
    [70]. N. KARAR, F. SINGH, B. R. MEHTA: Structure and photoluminescence studies on ZnS: Mn nanoparticles [J]. Journal of Applied Physics 2004, 95:656.
    [71]. J. LEE, S. LEE, S. CHO, et al: Role of growth parameters on structural and optical properties of ZnS nanocluster thin films grown by solution growth technique [J]. Materials Chemistry and Physics 2003, 77:254-260.
    [72]. W. CHEN, Z. WANG, Z. LIN, et al: Absorption and luminescence of the surface states in ZnS nanoparticles [J]. Journal of Applied Physics 1997, 82:3111.
    [73]. M. V. LIMAYE, S. GOKHALE, S. A. ACHARYA, et al: Template-free ZnS nanorod synthesis by microwave irradiation [J]. Nanotechnology 2008, 19:415602.
    [74]. D. DENZLER, M. OLSCHEWSKI, K. SATTLER: Luminescence studies of localized gap states in colloidal ZnS nanocrystals [J]. Journal of Applied Physics 1998, 84:2841.
    [75]. D. B. MITZI, L. L. KOSBAR, C. E. MURRAY, et al: High-mobility ultrathin semiconducting films prepared by spin coating [J]. Nature 2004, 428:299-303.
    [76]. D. E. BORNSIDE, C. W. MACOSKO, L. E. SCRIVEN: Spin coating of a PMMA/chlorobenzene solution [J]. Journal of the Electrochemical Society 1991, 138:317.
    [77]. D. B. HALL, P. UNDERHILL, J. M. TORKELSON: Spin coating of thin and ultrathin polymer films [J]. Polymer Engineering & Science 1998, 38:2039-2045.
    [78]. L. GUO, S. YANG, C. YANG, et al: Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties [J]. Applied Physics Letters 2000, 76:2901.
    [79]. S. K. PANDA, A. DATTA, S. CHAUDHURI: Nearly monodispersed ZnS nanospheres: Synthesis and optical properties [J]. Chemical Physics Letters 2007, 440:235-238.
    [80]. J. H. JOU, M. H. WU, S. M. SHEN, et al: Sunlight-style color-temperature tunable organic light-emitting diode [J]. Applied Physics Letters 2009, 95:013307.
    [81]. C. G. GRANQVIST: Handbook of inorganic electrochromic materials [M]. Elsevier Science Ltd, 1995.
    [82]. L. WANG, N. C. GILES: Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy [J]. Journal of Applied Physics 2003, 94:973.
    [83]. W. CHEN, D. GROUQUIST, J. ROARK: Voltage tunable electroluminescence of CdTe nanoparticle light-emitting diodes [J]. Journal of Nanoscience and Nanotechnology 2002, 2:47-53.
    [84]. D. V. TALAPIN, J. S. LEE, M. V. KOVALENKO, et al: Prospects of colloidal nanocrystals for electronic and optoelectronic applications [J]. Chemical Reviews 2009, 110:389-458.
    [85]. N. ANANTHAKRISHNAN, G. PADMANABAN, S. RAMAKRISHNAN, et al: Tuning polymer light-emitting device emission colors in ternary blends composed of conjugated and nonconjugated polymers [J]. Macromolecules 2005, 38:7660-7669.
    [86]. S. J. BAI, C. C. WU, T. D. DANG, et al: Tunable and white light-emitting diodes of monolayer fluorinated benzoxazole graft copolymers [J]. Applied Physics Letters 2004, 84:1656.
    [87]. S. Y. RYU, B. H. HWANG, K. W. PARK, et al: Highly efficient organic light-emitting diodes with a quantum dot interfacial layer [J]. Nanotechnology 2009, 20:065204.
    [88]. Z. H. CEN, T. P. CHEN, L. DING, et al: Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions [J]. Applied Physics Letters 2009, 94:041102.
    [89]. T. CREAZZO, B. REDDING, E. MARCHENA, et al: Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices [J]. Journal of Luminescence 2009, 130:631-636.
    [90]. K. S. CHO, N. M. PARK, T. Y. KIM, et al: High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer [J]. Applied Physics Letters 2005, 86:071909.
    [91]. I. UCHIDA: Impedance Changes Induced by Photoconductive Effect in ZnS: Cu, Cl Phosphors [J]. Japanese Journal of Applied Physics 1962, 1:71-78.
    [92]. G. SHARMA, S. D. HAN, J. D. KIM, et al: Electroluminescent efficiency of alternating current thick film devices using ZnS: Cu, Cl phosphor [J]. Materials Science and Engineering: B 2006, 131:271-276.
    [93]. D. STICHTENOTH, C. RONNING, T. NIERMANN, et al: Optical size effects in ultrathin ZnO nanowires [J]. Nanotechnology 2007, 18:435701.
    [94]. T. WESTOVER, R. JONES, J. Y. HUANG, et al: Photoluminescence, Thermal Transport, and Breakdown in Joule-Heated GaN Nanowires [J]. Nano letters 2009, 9:257-263.
    [95]. P. VERMA, G. IRMER, J. MONECKE: Laser power dependence of the photoluminescence from CdSxSe1-x nanoparticles in glass [J]. Journal of Physics: Condensed Matter 2000, 12:1097.
    [96]. B. H. KIM, R. F. DAVIS, C. H. CHO, et al: Effect of injection current density on electroluminescence in silicon quantum dot light-emitting diodes [J]. Applied Physics Letters 2009, 95:153103.
    [97]. W. H. ZHANG, J. L. SHI, H. R. CHEN, et al: Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica [J]. Chemistry of Materials 2001, 13:648-654.
    [98]. C. YE, X. FANG, G. LI, et al: Origin of the green photoluminescence from zinc sulfide nanobelts [J]. Applied Physics Letters 2004, 85:3035.
    [99]. Q. ZHAO, L. HOU, R. HUANG: Synthesis of ZnS nanorods by a surfactant-assisted soft chemistry method [J]. Inorganic Chemistry Communications 2003, 6:971-973.
    [100]. V. I. KLIMOV, A. A. MIKHAILOVSKY, D. W. MCBRANCH, et al: Quantization of multiparticle Auger rates in semiconductor quantum dots [J]. Science 2000, 287:1011.
    [101]. R. J. WALTERS, G. I. BOURIANOFF, H. A. ATWATER: Field-effect electroluminescence in silicon nanocrystals [J]. International Journal of Materials Research 2005, 4:143-146.
    [102]. J. ZHAO, J. ZHANG, C. JIANG, et al: Electroluminescence from isolated CdSe? ZnS quantum dots in multilayered light-emitting diodes [J]. Journal of Applied Physics 2004, 96:3206.
    [103]. J. H. YU, J. JOO, H. M. PARK, et al: Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism [J]. Journal of the American Chemical Society 2005, 127:5662-5670.
    [104]. T. TSURUOKA, C. H. LIANG, K. TERABE, et al: Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy [J]. Applied Physics Letters 2008, 92:091908.
    [105]. Z. QUAN, Z. WANG, P. YANG, et al: Synthesis and characterization of high-quality ZnS, ZnS: Mn2+, and ZnS: Mn2+/ZnS (core/shell) luminescent nanocrystals [J]. Inorganic chemistry 2007, 46:1354-1360.
    [106]. S. V. POL, V. G. POL, J. M. CALDERON-MORENO, et al: Facile synthesis of photoluminescent ZnS and ZnSe nanopowders [J]. Langmuir 2008, 24:10462-10466.
    [107]. P. M. F. J. COSTA, P. B. CACHIM, U. K. GAUTAM, et al: The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: II. Slenderness ratio and crystalline filling effects [J]. Nanotechnology 2009, 20:-.
    [108]. Y. C. FANG, S. Y. CHU, H. C. CHEN, et al: Effects of the S/Zn Ratio on the Photoluminescence Properties of Color-Tunable ZnS:Mn Nanophosphors [J]. Journal of the Electrochemical Society 2009, 156:K55-K58.
    [109]. S. KAR, S. SANTRA, H. HEINRICH: Fabrication of high aspect ratio core-shell CdS-Mn/ZnS nanowires by a two step solvothermal process [J]. Journal of Physical Chemistry C 2008, 112:4036-4041.
    [110]. Z. Q. DENG, J. J. QI, Y. ZHANG, et al: Synthesis, structure and growth mechanism of ZnS nanowires with high aspect ratio [J]. Acta Physico-Chimica Sinica 2008, 24:193-196.
    [111]. L. W. WANG, Z. XU, F. TENG, et al: Simultaneous determination of rate ratio of recombination to capture and trap depth from thermo-luminescence of ZnS: Cu, Co [J]. Spectroscopy and Spectral Analysis 2005, 25:1537-1541.
    [112]. B. O. DABBOUSI, M. G. BAWENDI, O. ONITSUKA, et al: Electroluminescence from CdSe quantum‐ dot/polymer composites [J]. Applied Physics Letters 1995, 66:1316.
    [113]. S. A. BLANTON, M. A. HINES, P. GUYOT‐ SIONNEST: Photoluminescence wandering in single CdSe nanocrystals [J]. Applied Physics Letters 1996, 69:3905.
    [114]. M. A. HINES, P. GUYOT-SIONNEST: Synthesis and characterization of strongly luminescingZnS-capped CdSe nanocrystals [J]. The Journal of Physical Chemistry 1996, 100:468-471.
    [115]. T. V. BUTKHUZI, T. G. TCHELIDZE, E. G. CHIKOIDZE, et al: Silver Doped p-Type ZnS Crystals [J]. Physica Status Solidi B: Basic Research 2002, 229:365-370.
    [116]. J. S. JIE, W. J. ZHANG, Y. JIANG, et al: Photoconductive characteristics of single-crystal CdS nanoribbons [J]. Nano letters 2006, 6:1887-1892.
    [117]. C. TSAKONAS, C. B. THOMAS: Role of sulfur vacancies on the electrical characteristics of sputtered films of ZnS [J]. Journal of Applied Physics 2009, 78:6098-6103.
    [118]. G. POZZA, D. AJòMARCO: Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass [J]. Solid State Communications 1996, 97:521-525.
    [119]. Y. HUANG, X. FENG, Z. XU, et al: Growth and spectra properties of Nd3+-doped PbWO4 single crystal [J]. Solid State Communications 2003, 127:1-5.
    [120]. G. JIA, C. TU, Z. YOU, et al: Thermal properties and polarized spectral analysis of Tm3+: SrWO4 crystal [J]. Solid State Communications 2005, 134:583-588.
    [121]. K. SU, T. D. TILLEY, M. J. SAILOR: Molecular and Polymer Precursor Routes to Manganese-Doped Zinc Orthosilicate Phosphors [J]. Journal of the American Chemical Society 1996, 118:3459-3468.
    [122]. S. LEININGER, B. OLENYUK, P. J. STANG: Self-assembly of discrete cyclic nanostructures mediated by transition metals [J]. Chemical Reviews 2000, 100:853-908.
    [123]. S. JIN, D. WANG, W. CHEN: Synthesis, luminescence, and structural characterization of Zn and Cd coordination polymers of flexible bis (imidazolyl) derivatives [J]. Inorganic Chemistry Communications 2007, 10:685-689.
    [124]. Q. H. JIN, L. L. ZHOU, L. J. XU, et al: Investigation of Isomeric Polymers [Cd 2 (mbt) 4] n and [Cd (mbt) 2] n: The Crystal Structure of Catena-tetra (2-Mercaptobenzothiazole) Dicadmium,{[Cd (- 2-C 7 H 4 NS 2) 2][Cd (- 2-C 7 H 4 NS 2)(3- 2-C 7 H 4 NS 2)]} n [J]. Journal of Chemical Crystallography 2010, 40:432-436.
    [125]. GONG-RU LIN, CHUN-JUNG LIN, CHI-KUAN LIN, et al: Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2 [J]. Journal of Applied Physics 2005, 97:094306.
    [126]. W. H. CHANG, A. T. CHOU, W. Y. CHEN, et al: Room-temperature electroluminescence at 1.3 and 1.5 mu m from Ge/Si self-assembled quantum dots [J]. Applied Physics Letters 2003, 83:2958.
    [127]. DEANE B. JUDD, DAVID L. MACADAM, GUTNTER. WYSZECKI, et al: Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature [J]. Journal of the Optical Society of America 1964, 54:1031.
    [128]. R. A. BARON, M. S. REA, S. G. DANIELS: Effects of indoor lighting (illuminance and spectral distribution) on the performance of cognitive tasks and interpersonal behaviors: The potential mediating role of positive affect [J]. Motivation and Emotion 1992, 16:1-33.
    [129]. S. W. LOCKLEY, G. C. BRAINARD, C. A. CZEISLER: High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light [J]. Journal of Clinical Endocrinology andMetabolism 2003, 88:4502-4505.
    [130]. Z. B. DENG, X. M. DING, S. T. LEE, et al: Enhanced brightness and efficiency in organic electroluminescent devices using SiO buffer layers [J]. Applied Physics Letters 1999, 74:2227.
    [131]. AMANDA J. NORELL BADER, ANTON A. ILKEVICH, ILYA V. KOSILKIN, et al: Precise Color Tuning via Hybrid Light-Emitting Electrochemical Cells [J]. Nano Letters 2010:null.
    [132]. Y. ZHU, C. L. YUAN, P. P. ONG: Room temperature visible photoluminescence from undoped ZnS nanoparticles embedded in SiO matrices [J]. Journal of Applied Physics 2002, 92:6828.
    [133]. RONG WEI XUAN, JIAN PING XU, XIAO SONG ZHANG, et al: Continuously voltage-tunable electroluminescence from a mono-layer of ZnS quantum dots [J]. Applied Physics Letters 2011.
    [134]. B. O. DABBOUSI, J. RODRIGUEZ-VIEJO, F. V. MIKULEC, et al: (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. The Journal of Physical Chemistry B 1997, 101:9463-9475.
    [135]. LIU SHU MAN, XU ZHENG, WAGEH S., et al: Synthesis and Characterization of CdSe Nanocrystals [J]. Journal of Optoelectronics·Laser 2003, 14:46-49.
    [136]. M. GAO, C. LESSER, S. KIRSTEIN, et al: Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films [J]. Journal of Applied Physics 2000, 87:2297.
    [137]. W. CHUNG, K. PARK, H. J. YU, et al: White emission using mixtures of CdSe quantum dots and PMMA as a phosphor [J]. Optical Materials 2010, 32:515-521.
    [138]. XU ZI-QIANG, DENG HONG, XIE JUAN, et al: Al-doping Effects on Optical Properties of C-axis Orientated ZnO:Al Thin Films Prepared by the Sol-gel Method [J]. Journal of Optoelectronics·Laser 2006, 17:257-260.
    [139]. HU XUE-JUN, TAN HAI-SHU: Color Variable Light-emitting Deives from Organic/inorganic Composite Film [J]. Journal of Optoelectronics·Laser 2005, 16:918-921.
    [140]. L. SPANHEL, M. A. ANDERSON: Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids [J]. Journal of the American Chemical Society 1991, 113:2826-2833.
    [141]. A. NAKAMURA, T. OHASHI, K. YAMAMOTO, et al: Full-color electroluminescence from ZnO-based heterojunction diodes [J]. Applied Physics Letters 2007, 90:093512-093512-093513.
    [142]. M. L. TU, Y. K. SU, S. S. WU, et al: Violet electroluminescence from poly (N-vinylcarbazole)/ZnO-nanrod composite polymer light-emitting devices [J]. Synthetic Metals 2011.
    [143]. M. C. JEONG, B. Y. OH, M. H. HAM, et al: Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes [J]. Applied Physics Letters 2006, 88:202105.
    [144]. Y. RYU, T. S. LEE, J. A. LUBGUBAN, et al: Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes [J]. Applied Physics Letters 2006, 88:241108.
    [145]. H. SUN, Q. F. ZHANG, J. L. WU: Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure [J]. Nanotechnology 2006, 17:2271.
    [146]. Y. J. HONG, J. M. JEON, M. KIM, et al: Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructure arrays for light-emitting device applications [J]. New Journal of Physics 2009, 11:125021.
    [147]. L. XU, Q. LIAO, J. ZHANG, et al: Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods [J]. The Journal of Physical Chemistry C 2007, 111:4549-4552.
    [148]. J. R. SADAF, M. Q. ISRAR, S. KISHWAR, et al: White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode [J]. Nanoscale Research Letters 2010, 5:957-960.
    [149]. H. ZHOU, H. ALVES, D. M. HOFMANN, et al: Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure [J]. Applied Physics Letters 2002, 80:210-212.
    [150]. E. A. MEULENKAMP: Synthesis and growth of ZnO nanoparticles [J]. The Journal of Physical Chemistry B 1998, 102:5566-5572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700