用户名: 密码: 验证码:
快速热处理对直拉单晶硅中氧沉淀和内吸杂的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路特征线宽的不断减小对直拉(CZ)单晶硅片中的缺陷控制和内吸杂技术提出了愈来愈高的要求。在这种情况下,基于氧沉淀的内吸杂工艺在不断地改进。国际著名的硅片供应商——美国的MEMC公司近年来提出的基于快速热处理(RTP)的内吸杂工艺,是一个有里程碑意义的突破。它不仅具有技术上的重要性,而且还引发了一个基本的科学问题,即:RTP对直拉硅片的氧沉淀是如何影响的。在这个问题上的研究尽管已经取得了很大的进展,但是RTP对不同的直拉硅片及其在不同的热工艺过程中的氧沉淀行为的影响并没有彻底弄清楚。本论文详细地研究了不同种类的直拉硅片在各种条件下的RTP预处理和后续热处理过程中的氧沉淀行为,以及基于RTP的内吸杂工艺,获得了如下有创新意义的结果:
     研究了普通直拉硅片和掺氮直拉硅片在经过高温RTP预处理后,再经过不同的低一高两步热处理后的氧沉淀行为。结果表明:(1)在CZ硅片中由RTP引入的空位在800℃时增强氧沉淀形核的作用最强,而在NCZ硅片中氮和由RTP引入的空位在800~1000℃温度范围内可以发生协同作用,更强烈地促进氧沉淀的形核。(2)在900℃以上,氮比空位有更强的促进氧沉淀形核的能力,但有空位存在时,氮促进氧沉淀形核的能力被进一步增强。根据RTP对掺氮直拉硅片和普通直拉硅片的氧沉淀影响的不同,提出掺氮直拉硅片的基于RTP的内吸杂工艺应该有别于普通直拉硅片的,即:掺氮直拉硅片的工艺为在1250℃的RTP处理后,从800℃以1℃/min速率升温至1000℃并保温16小时;而普通直拉硅片的工艺则为在1250℃的RTP处理后,再经过800℃/4 h+1000℃/16 h两步处理。
     研究了N_2气氛下的RTP预处理的温度和降温速率,对硅片经低—高两步退火后氧沉淀和洁净区形成的影响,提出了直拉硅片的基于N_2气氛下RTP的内吸杂工艺。与Ar气氛下的RTP相比,较低温度的N_2气氛下的RTP预处理就能使硅片在随后的低—高两步退火过程中形成高密度的氧沉淀。当减小RTP的降温速率时,在硅片近表面能形成洁净区。在合适的降温速率下,RTP的温度越低,硅片中形成的洁净区宽度越大,但体微缺陷(BMD)密度越低。因此,选择合适的RTP温度和降温速率,结合后续低—高两步热处理,就可以在硅片内形成一定宽度的洁净区和合适密度的BMD区。上述结果纠正了以前国际上普遍接受的“N_2气氛下的RTP预处理不能用于直拉硅片的内吸杂工艺”的观点。
     研究了在不同气氛下两步高温RTP预处理对轻掺硼和重掺硼CZ硅片在后续热处理中氧沉淀和洁净区形成的影响。对于轻掺硼硅片来说,如果硅片先在Ar气氛下进行第一步RTP时,第二步RTP的气氛决定了氧沉淀和洁净区的形成;如果在N_2或O_2气氛下进行第一步RTP,则第二步RTP无论在哪种气氛下进行,经过后续低—高两步热处理后都能获得洁净区和高密度的BMD区,只是DZ宽度有所差异。对于重掺硼CZ硅片来说,只经过一步Ar气氛下的RTP预处理后,再通过低一高两步退火,硅片内仅形成高密度的BMD区而不能形成洁净区;而当RTP预处理的气氛变为O_2时,硅片内的BMD密度则很低。折衷上述两种情况,重掺硼CZ硅片经历先在Ar气氛紧接着在O_2气氛下的高温RTP预处理后,再通过低—高两步热处理,即可形成高密度的BMD区和一定宽度的洁净区。
     研究了表面有氮化硅薄膜的直拉硅片经历高温RTP后,在随后的低—高两步退火中BMD和洁净区的形成情况。结果表明:与通常的硅片经过1250℃的RTP预处理的情况相比,有氮化硅薄膜的硅片经过1200℃的RTP后,在随后的低—高两步热处理中产生的氧沉淀量与前者的相当,并能形成一定宽度的洁净区。初步认为:在RTP过程中,氮化硅薄膜的硅-氮键发生断裂,随后氮原子从硅片表面向体内扩散。在空位和氮的共同作用下,硅片的氧沉淀被显著地促进。
     研究了轻掺硼CZ硅片和重掺硼CZ硅片经过两种氧沉淀形核热处理,即:同在800℃的常规炉退火和RTP后,在1000℃热处理时氧沉淀的情况。对于轻掺硼硅片而言,RTP处理1小时和常规热处理4小时导致相当的氧沉淀量,表明RTP的光辐照促进了氧沉淀的形核过程,这可能与氧扩散被增强有关。对于重掺硼CZ硅片而言,RTP与常规炉退火相比,前者不仅促进了氧沉淀的形核,而且使后续高温热处理形成的氧沉淀及其诱生缺陷在硅片截面上的分布情况发生了改变,与常规炉退火导致的BMD在硅片截面上均匀分布的情况不同,它具体表现为:在硅片的近表面区域形成了大量的氧沉淀、位错环以及尺寸较大的层错,而在体内区域形成的是大量的氧沉淀以及少量的层错和伴生位错环的大尺寸氧沉淀。
     研究了CZ硅中的氧沉淀在RTP和常规炉退火过程中的消融以及在后续常规炉退火过程中的氧沉淀的再生长。结果表明:从间隙氧浓度升高的角度来看,RTP在短时间内消融氧沉淀的效果可以与长时间的常规炉退火的相比拟;另一方面,氧沉淀经两种热处理方式消融后再生长的情况也有所不同,具体表现为:经RTP消融处理后,由于小的氧沉淀未被完全消融,在氧沉淀再生长退火过程中,未消融的小的氧沉淀和较大的氧沉淀能够同时长大,因而BMD密度显著增加;而经常规炉退火消融处理后,小的氧沉淀被完全消融,体内残留较大的氧沉淀,它们作为氧沉淀再生长的核心,所以经过氧沉淀再生长退火后,BMD密度基本不变,但氧沉淀尺寸显著增大。
The ever-smaller feature size of integrated circuit imposes on increasingly stringent requirements on the defect control and internal gettering(IG)capability of Czochralski(CZ)silicon wafers.Under the circumstance,the IG process based on oxygen precipitation in CZ silicon wafers has been continuously improved.In recent years,the MEMC company in America,a leading silicon supplier,has presented a patented IG process based on rapid thermal process(RTP),which is believed to be a milestone in the defect engineering of silicon wafers.Such a process is not only of technological importance but also arouses a fundamental issue on the effect of RTP on oxygen precipitation in CZ silicon.Despite the great progress made in the research on this issue,the exact effects of RTP on oxygen precipitation in different kinds of CZ silicon wafers subjected to various thermal cycles have not substantially clarified.In this dissertation,the oxygen precipitation behaviors in CZ silicon wafers subjected to different RTPs and subsequent thermal anneals and,moreover,the RTP-based IG processes have been detailedly investigated.In the following,the primary results achieved herein are listed.
     The effects of prior RTP at high temperatures on the oxygen behaviors in CZ and NCZ silicon wafers subjected to low-high(L-H)two-step anneal were investigated.It was shown that:(1).The RTP-induced vacancies in CZ silicon enhanced the nucleation for oxygen precipitation most significantly at 800℃,while,for NCZ silicon,the vacancies coact with the nitrogen atoms to enhance the nucleation for oxygen precipitation most significantly in the temperature range of 800~1000℃.(2). At temperatures above 900℃,the nitrogen atoms are superior to the vacancies in terms of the enhancement of nucleation for oxygen precipitation and,moreover,the co-existing of nitrogen atoms and vacancies in CZ silicon will more significantly enhance the nucleation for oxygen precipitation.In view of the different effects of RTP-induced vacancies on the oxygen precipitation behaviors in CZ and NCZ silicon wafers,it is believed that the RTP-based IG process for NCZ silicon wafer should be somewhat different from that for CZ silicon wafer,that is,the one for NCZ silicon wafer is RTP at 1250℃followed by the ramping anneal from 800 to 1000℃with a rate of 1℃/min and then with a 16 h isothermal anneal;while,that for CZ silicon wafer is RTP at 1250℃followed by 800℃/4 h + 1000℃/16 h anneal.
     The influences of temperature and cooling rate of RTP under N_2 ambient on oxygen precipitation and formation of DZ in CZ silicon wafers subjected to the subsequent L-H two-step anneal were investigated,as a result,the IG process based on the RTP under N_2 ambient for CZ silicon wafers was proposed.In comparison with the RTP under Ar ambient,the RTP under Ar ambient at the lower temperatures could lead to high density of oxygen precipitates generated in CZ silicon wafer subjected to the subsequent L-H two-step anneal.Moreover,with a low cooling rate of RTP,a DZ could be formed in the near-surface region with CZ silicon wafer.With an appropriate cooling rate,the RTP at lower temperatures led to a wider DZ but a lower density of bulk microdefects(BMDs).Accordingly,the RTP under N_2 ambient at appropriate temperatures and with desirable cooling rates could result in a width of DZ and an appropriate density of BMDs in CZ silicon wafers subjected to the subsequent L-H two-step anneal.This result reclaims the formerly widespread accepted viewpoint that the RTP under N_2 ambient cannot be applied to the IG process for CZ silicon wafers.
     The effect of two consecutive RTP under different ambients on oxygen precipitation and formation of DZ during the subsequent thermal cycles for the lightly and heavily boron-doped CZ silicon wafers were investigated.Regarding the lightly boron-doped CZ silicon wafers,if the first-step RTP was performed under Ar ambient, then the oxygen precipitation and formation of DZ were determined by the second-step RTP ambient;while,if the first-step RTP was performed under N_2 or O_2 ambient,then high density of BMDs and DZ could be formed during the L-H two-step anneal subsequent to the RTP under any ambient,but the width of DZ were different. As for the heavily boron-doped CZ silicon wafers,if with only one-step RTP under Ar ambient,then a high density of BMDs was formed but DZ was not generated after the subsequent L-H two-step anneal;however,if the RTP ambient was changed as O_2,the density of BMDs formed by the subsequent L-H two-step anneal was quite low.
     Therefore,for the heavily boron-doped CZ silicon wafers,making a trade-off between the above two cases,a width of DZ and a high density of BMDs could be formed by the L-H two-step anneal subsequent to the two-step RTP consecutively performed under Ar and O2 ambients.
     The formation of BMDs and DZ in the silicon nitride film coated CZ silicon wafers subjected to the high temperature RTP followed with L-H two-step anneal was investigated.With the same L-H two-step anneal,the amount of precipitated oxygen (△[O_i])in the silicon nitride film coated CZ silicon wafers with a prior RTP at 1200℃was comparable to that in the silicon wafers with a prior RTP at 1250℃and, moreover,a width of DZ was generated in the silicon nitride film coated CZ silicon wafers.It is preliminarily believed that the silicon-nitrogen bonds within the silicon nitride film were broken by the RTP and,moreover,the released nitrogen atoms diffused into the silicon wafers.Furthermore,due to the coaction of in-diffused nitrogen atoms and the vacancies induced by the RTP,oxygen precipitation in silicon wafers was significantly enhanced.
     Oxygen precipitation during the 1000℃anneal subsequent to the nucleation anneal at 800℃by the RTP or conventional furnace anneal(CFA)for the lightly and heavily boron-doped CZ silicon wafers were respectively investigated.Regarding the lightly boron-doped CZ silicon wafers,the RTP at 800℃for 1 h and the CFA at 800℃for 4 h led to the comparative△[O_i],indicating that the optical radiation of RTP enhanced the nucleation of oxygen precipitates most likely due to the enhanced oxygen diffusion.As for the heavily boron-doped CZ silicon wafer,compared with the CFA, the RTP not only enhanced the nucleation of oxygen precipitates but also altered the cross-sectional distribution of BMDs formed in the subsequent 1000℃anneal. Concretely speaking,the nucleation by the CFA led to quite uniform distribution of BMDs across the silicon wafer,whereas,the nucleation by the RTP resulted in not uniform cross-sectional distribution of BMDs,that is,a large number of oxygen precipitates and dislocation loops as well as large-sized stacking faults formed in the near-surface region of silicon wafer,while,a large number of oxygen precipitates and a small amount of staking faults as well as large-sized oxygen precipitates accompanied with dislocation loops were generated in the bulk region.
     The dissolution of oxygen precipitates in CZ silicon by the high temperature RTP and CFA and the regrowth of oxygen precipitates during the subsequent CFA were investigated.In terms of the increase in[O_i],the effect of RTP for a short period of time on the dissolution of oxygen precipitates could be equivalent to that of CFA for a long time.On the other hand,the regrowth of oxygen precipitates after the RTP was quite different from that after the CFA.For the dissolution of oxygen precipitates by the RTP,due to the very short period of thermal cycle,even for the small-sized oxygen precipitates,they were not dissolved completely.Therefore,for the regrowth of oxygen precipitates,the undissolved small and large sized oxygen precipitates simultaneously acted as the nuclei,thus leading to increased number of BMDs.While, for the dissolution of oxygen precipitates by the CFA,the small-sized oxygen precipitates were substantially dissolved.Thus,during the regrowth of oxygen precipitates,only the residual large sized oxygen precipitates acted as the nuclei. Consequently,the resulting BMDs kept nearly the same density as those after the dissolution by CFA.
引文
[1]The International Technology Roadmap for Semiconductors(ITRS),Semiconductor Industry Association(SIA),San Jose,CA,1999.
    [2]S.M.Hu and W.J.Patrick,Effect of oxygen on dislocation movement in silicon,J.Appl.Phys.,46(1975)1869-1874.
    [3]S.M.Hu,Dislocation pinning effect of oxygen atoms in silicon,Appl.Phys.Lett.,31(1977)53-55.
    [4]T.Y.Tan,E.E.Gardner and W.K.Tice,Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si,Appl.Phys.Lett.,30(1977)175-177.
    [5]K.Hoshi,N.Isawa,T.Suzuki and Y.Okubo,Czochralski silicon crystals grown in a transverse magnetic field,J.Electrochem.Soc.,132(1985)693-700.
    [6]http://www.memc.com.
    [7]R.Falster and V.V.Voronkov,The engineering of intrinsic point defects in silicon wafers and crystals,Mater.Sci.Eng.B,73(2000)87-94.
    [8]R.Falster and V.V.Voronkov,MRS Bulletin,25(2000)25.
    [9]W.G.Pfan,Principles of Zone-Melting,Tans.Am.Inst.Min.Metal.Eng.,194(1952)747.
    [10]F.Shimura,Semiconductor Silicon Crystal Technology,Academic Press(1989).
    [11]Czochralski,Z.Phys.Chem.,92(1917)219.
    [12]P.E.Tomaszewski,Jan Czochralski-father of the Czochralski method,J.Cryst.Growth.,236(2002)1-4.
    [13]S.Chandrasekhar and K.M.Kim,Growth of large diameter necks for large size CZ silicon,Semiconductor silicon,eds.H.R.Huff,H.Tsuya and U.Gssele(Electrochem.Soc.,Pennington,1998)Electronics Division PV,98(1998)p.411-417.
    [14]G K.Teal and J.B.Little,Growth of germanium single crystals,Phys.Rev.,78(1950)647-648.
    [15]G.K.Teal and E.Buehler,Growth of silicon single crystal and of single crystal silicon p-n junctions,Phys.Rev.,87(1952)190-191.
    [16]M.Koizuka and H.Yamada-Kaneta,Gap states caused by oxygen precipitation in Czochralski silicon crystals,J.Appl.Lett.,84(1998)4255-4258.
    [17]H.Hirata and K.Hoshikawa,Three-dimensional numerical analyses of effects of cusp magnetic field on the flows:oxygen transport and heat transfer in a Czochralski silicon melt,J.Cryst.Growth,125(1992)181-207.
    [18]M.D.McCluskey,Local vibrational modes of impurities in semiconductors,J.Appl.Phys.,87(2000)3593-3617.
    [19]A.Borghesi,B.Pivac,A.Sassella and A.Stella,Oxygen precipitation in silicon,J.Appl.Phys.,77(1995)4169-4174.
    [20]F.M.Livinton,S.Messoloras,R.C.Newman,B.C.Park,R.J.Stewart,M.J.Binns,W.P.Brown and J.G.Wilkes,An infrared and neutron scattering analysis of the precipitation of oxygen in dislocation-free silicon,J.Phys.C,17(1984)6253-6276.
    [21]K.Choe,Oxygen incorporation and precipitation behavior in heavily boron-doped Czochralski silicon crystals,J.Cryst.Growth,147(1995)55-63.
    [22]H.Walitzki and H.Rath,Control of oxygen and oxygen precipitation behavior of heavily doped silicon substrate materials,in Semconductor Silicon,1986(The Electrochem.Soc.,Pennington,NJ.1986)p.86.
    [23]C.W.Pearce,R.J.Jaccodine,A.J.Filo and W.Lin,Oxygen content of heavily doped silicon,Appl.Phys.Lett.,46(1985)887-889.
    [24]K.Abe,T.Matsumoto,S.Maeda,H.Nakanishi,K.Terashima and K.Hoshikawa,Oxygen solubility in Si melts:Influence of boron addition,J.Cryst.Growth,181(1997)41-47.
    [25]C.Liu,H.Wang,Y.Li,Q.Wang,B.Ren,Y.Xu and Q.Que,Study on the oxygen concentration reduction in heavily Sb-doped silicon,J.Cryst.Growth,196(1999)111-114.
    [26]Y.Yatsurugi,N.Akiyama,Y.Endo and T.Nozaki,Concentration,solubility,and equilibrium distribution coeffecient of nitrogen and oxygen in semiconductor silicon,J.Electrochem.Soc.,120(1973)975-979.
    [27]T.Abe,K.Kikuchi,S.Shirai and S.Muaroka,in Semiconductor Silicon 1981,edited by H.R.Huff,R.J.Kriegler and Takeishi,Ecs,Pennington,NJ 54(1981).
    [28]W.Lin and M.Stavola,Oxygen segregation and microscopic imhomogeneity in Czochralski silicon,J.Electrochem.Soc.,132(1985)1412-1416.
    [29]W.Lin and D.W.Hill,Oxygen segregation in Czochralski silicon growth,J.Appl.Phys.,54(1983)1082-1085.
    [30]T.Carlberg,Calculated solubilities of oxygen in liquid and solid silicon,J.Electrochem.Sot.,133(1986)1940-1942.
    [31]K.A.Jaclcson,屠海令,万群等译校,半导体工艺,科学出版社,1999年,p.26.
    [32]T.Takano and M.Maki,Semiconductor Silicon,edited by Huff H.R.and Burgess R.R.,ECS,Princeton,NJ,(1973)469.
    [33]C.Maddalon-Vinante and D.Barbier,Charged particle activation analysis study of the oxygen outdiffusion from Czochralski-grown silicon during classical and rapid thermal annealing in various gas ambient,J.Appl.Phys.,74(1993)6115-6119.
    [34]J.C.Mikkelsen,Diffusivity of oxygen in silicon during steam oxidation,Appl.Phys.Lett.,40(1982)336-338.
    [35]J.Gass,H.H.Muller,H.Stussi and S.Schweitzer,Oxygen diffusion in silicon and the influence of different dopants,J.Appl.Phys.,51(1980)2030-2037.
    [36]M.Stavola,J.R.Patel,L.C.Limerling and P.E.Freeeland,Diffusivity of oxygen in silicon at the donor formation temperature,Appl.Phys.Lett.,42(1983)73-75.
    [37]R.C.Newman,J.H.Tucker and F.M.Livinston,Radiation-enhanced diffusion of oxygen in silicon at room temperature,J.Phys.C,16(1983)151-156.
    [38]S.T.Lee and D.Nichols,Outdiffusion and diffusion mechanism of oxygen in silicon,Appl.Phys.Lett.,47(1985)1001-1003.
    [39]S.A.McQuaid,M.J.Binns,C.A.Londos,J.H.Tucker,A.R.Brown and R.C.Newman,Oxygen loss during thermal donor formation in Czochralski silicon:New insights into oxygen diffusion mechanisms,J.Appl.Phys.,77(1995)1427-1442.
    [40]K.Sumino,in Semiconductor Silicon,edited by H.R.Huff,R.J.Kriegler and Takeishi,ESC (1981)p.208.
    [41]R.C.Newman,Oxygen diffusion and precipitation in Czochralski silicon,J.Phys.:Condens.Matter,12(2000)335-365.
    [42]S.T.Lee,P.Fellinger and S.Chen,Enhanced and wafer-dependent oxygen diffusion in CZ-Si at 500-700℃,J.Appl.Phys.,63(1988)1924-1927.
    [43]S.T.Lee and P.Feilinger,Enhanced oxygen diffusion in silicon at thermal donor formation temperature,Appl.Phys.Lett.,49(1986)1793-1795.
    [44]A.Ourmazd,W.Schroter and A.Bourret,Oxygen-related thermal donors in silicon:A new structural and kinetic model,J.Appl.Phys.,56(1984)1670-1681.
    [45]V.P.Markevich,L.F.Makarenko and I.L.Murin,Some new features of thermal donor formation in silicon at T < 800 K,Phys.Status Solid A,97(1986)173-176.
    [46]U.Gosele and T.Y.Tan,Oxygen diffusion and thermal donor formation in silicon,Appl.Phys.A:Solids Surf.,28(1982)79-92.
    [47]U.Gosele,K.Y.Ahn,B.P.R.Marioton,T.Y.Tan and S.T.Lee,Do oxygen molecules contribute to oxygen diffusion and thermal donor formation in silicon?,Appl.Phys.A:Solids Surf,48(1989)219-228.
    [48]H.Helmreich and E.Sirtl,Semiconductor Silicon,edited by H.Huff and E.Sirtl(The Electrochemical Society,Princeton,NJ,1977)(1977)p.626.
    [49]A.S.Oates,M.J.Binns,R.C.Newman,J.H.Tucker,J.G.Wilkes and A.Wilkinson,The mechanism of radiation-enhanced diffusion of oxygen in silicon at room temperature,J.Phys.C,17(1984)5695-5705.
    [50]R.C.Newman,J.H.Tucker,A.R.Brown and S.A.McQuaid,Hydrogen diffusion and the catalysis of enhanced oxygen diffusion in silicon at temperatures below 500℃,J.Appl.Phys.,70(1991)3061-3070.
    [51]L.Zhong and F.Shimura,Hydrogen enhanced out-diffusion of oxygen in Czochralski silicon,J.Appl.Phys.,73(1993)707-710.
    [52]W.Wijaranakula,Oxygen diffusion in carbon-doped silicon,J.Appl.Phys.,68(1990)6538-6540.
    [53]T.One and G.A.Rozgonyi,Oxygen diffusion in heavily antimony-,arsenic-,and boron-doped Czochralski silicon wafers,Appl.Phys.Lett.,74(1999)3648-3650.
    [54]X.Yu,D.Yang,X.Ma,H.Li,Y.Shen,D.Tian,L.Li and D.Que,Intrinsic Gettering in Germanium- doped Czochralski Silicon Crystals,J.Cryst.Growth,250(2003)359-363.
    [55]L.Liu,K.Tanahashi,H.Yamada-Kaneta,Y.Kangawa and K.Kakimoto,Enhancement of the diffusion of oxygen and boron in silicon crystals under irradiation of infrared laser light,J.Appl.Phys.,99(2006)073103.
    [56]W.Kaiser,P.H.Keck and C.F.Lange,Infrared Absorption and oxygen content in silicon and germanium,Phys.Rev.,101(1956)1264-1628.
    [57]R.W.Shaw,R.Bredeweg and P.Rossetto,Gas Fusion Analysis of Oxygen in Silicon:Separation of Components,J.Electrochem.Soc.,138(1991)382-385.
    [58]W.Kaiser and P.H.Keck,Oxygen content of silicon single crystals,J.Appl.Phys.,28(1957)882-887.
    [59]C.W.Peace,R.J.Jaccodine,A.J.Filo and W.Lin,Oxygen content of heavily doped silicon,Appl.Phys.Lett.,46(1985)887-889.
    [60]J.Hoste and C.Vandecasteele,The determination of trace elements by charged particle activation analysis,Nucl.Instrum.Meth.,41-42(1989)1182-1188.
    [61]F.Shimura,T.Higuchi and R.S.Hockett,Outdiffusion of oxygen and carbon in Czochralski silicon,Appl.Phys.Lett.,53(1988)69-71.
    [62]A.Baghdadi,W.M.Bullis,M.C.Croarkin,Y.Li,R.I.Scace,R.W.Series,P.Stallhofer and M.Watanabe,Interlaboratory determination of the calibration factor for the measurement of the interstitial oxygen content of silicon by infrared absorption,J.Electrochem.Soc.,136(1989)2015-2024.
    [63]P.Stallhofer and D.Huber,Oxygen and carbon measurements on silicon slices by the IR method,Solid State Tech.,8(1983)233-237.
    [64]F.Schomann and K.J.Graft,Correction factors for the determination of oxygen in silicon by ir-spectrometry,J.Electrochem.Soc.,136(1989)2025-2031.
    [65]W.M.Bullis and L.B.Coates,Semiconductor manufacturing:An Automation Primer,Solid State Tech.,5(1987)69-70.
    [66]D.Lee,D.Hwang,S.Lee,Y.Mun,B.Lee and H.Yoo,The study on the radial distribution of delta [Oi]in heavily doped silicon wafer using X-ray diffraction,Materials Science in Semiconductor Processing,4(2001)47-49.
    [67]K.Sueoka,N.Ikeda,T.Yamamoto and S.Kobayashi,Growth Process of Polyhedral Oxide Precipitates in Czochralski Silicon Crystals Annealed at 1100℃,Jpn.J.Appl.Phys.,33(1994)1507-1510.
    [68]J.P.Hirth and W.A.Tiller,Ledge growth,strain accommodation,and stacking fault formation during silicon oxidation,J.Appl.Phys.,56(1984)947-952.
    [69]H.D.Chiou,Oxygen Precipitation behavior and control in silicon crystals,Solid.State.Tech.,3(1987)77-81.
    [70]F.Shimura,Oxygen in silicon,Semiconductors and semimetals,eds.R.K.Willardson,E.R.Weber,A.C.Beer,New York,Academic Press(1994)p.434.
    [71]C.Li,X.Ma,J.Xu,X.Yu,D.Yang and D.Que,Effect of Rapid Thermal Process on Oxygen Precipitation in Heavily Boron-Doped Czochralski Silicon Wafer,Jpn.J.Appl.Phys.,42(2003)7290-7291.
    [72]F.Shimura,Carbon enhancement effect on oxygen precipitation in Czochralski silicon,J.Appl.Phys.,59(1986)3251-3254.
    [73]X.Yu,D.Yang,X.Ma,J.Yang,L.Li and D.Que,Grown-in defects in nitrogen-doped Czochralski silicon,J.Appl.Phys.,92(2002)188-195.
    [74]S.Hahn,M.Arst,K.N.Ritz,S.Shatas,H.J.Stein,Z.U.Rek and W.A.Tiller,Effect of high carbon concentration upon oxygen precipitation and related phenomena in CZ Si,J.Appl.Phys.,64(1988)849-855.
    [75]C.Cui,D.Yang,X.Yu,X.Ma,L.Li and D.Que,Effect of nitrogen on denuded zone in Czochralski silicon wafer,Semicond.Sci.Technol.,19(2004)548-553.
    [76]F.Shimura and R,S.Hockett,Nitrogen effect on oxygen precipitation in Czochralski silicon,Appi.Phys.Lett,48(1986)224-226.
    [77]R.Falster,V.V.Voronkov and F.Quast,On the properties of the intrinsic point defects in silicon:a perspective from crystal growth and wafer processing,Phys.Star.Sol.(b),222(2000)219-244.
    [78]C.Cui,D.Yang,X.Ma,R.Fan and D.Que,Oxygen precipitation in neutron-irradiated Czochralski silicon annealed at elevated temperature,Phys.Stat.Sol.(a),202(2005)2442-2447.
    [79]V.V.Voronkov and R.Falster,Vacancy-type microdefect formation in Czochralski silicon,J.Cryst.Growth,194(1998)76-88.
    [80]R.Falser and V.V.Voronkov,The engineering of intrinsic point defects in silicon wafers and crystals,Mater.Sci.Eng.B,73(2000)87-94.
    [81]A.J.R.deKock and W.M.Vande-Wijgert,The influence of thermal point defects on the precipitation of oxygen in dislocation-free silicon crystals,Appl.Phys.Lett.,38(1981)888-890.
    [82]C.Y.Kung,Effect of thermal history on oxygen precipitates in Czochralski silicon annealed at 1050℃,J.Appl.Phys.,65(1989)4654-4665.
    [83]X.Ma,X.Yu,R.Fan and D.Yang,Formation of pnp bipolar structure by thermal donors in nitrogen containing p-type Czochraiski silicon wafers,Appl.Phys.Lett.,81(2002)496-468.
    [84]E.M.Murray,Denuded zone formation in P <100> silicon,J.Appl.Lett.,55(1984)536-541.
    [85]S.M.Hu,Effects of ambients on oxygen precipitation in silicon,Appl.Phys.Lett.,36(1980)561-564.
    [86]J.S.Kang and D.K.Schroder,The effects of gas ambients on the formation of surface and bulk defects in silicon,J.Appl.Phys.,64(1988)6673-6678.
    [87]S.Isomae,S.Aoki and K.Watanabe,Depth profiles of interstitial oxygen concentrations in silicon subjected to three-step annealing,J.Appl.Phys.,55(1983)817-824.
    [88]H.Zimmermann and R.Falster,Investigation of the nucleation of oxygen precipitates in Czochralski silicon at an early stage,Appl.Phys.Lett.,60(1992)3250-3252.
    [89]S.Kishino,Y.Matsushita,M.Kanamori and T.Lizuka,Thermally induced microdefects in Czochralski-Grown silicon:nucleation and growth behavior,Jpn.J.Appl.Phys.,121(1982)1-12.
    [90]K.Aihara,H.Takeno,Y.Hayamizu,M.Tamatsuka and T.Masui,Enhanced nucleation of oxide precipitates during Czochralski silicon crystal growth with nitrogen doping,J.App.Phys.,88(2000)3705-3707.
    [91]N.Inoue,J.Osake and K.Wada,Oxide micro-precipitates in as-grown CZ silicon,J.Eleetrochem.Soc.,129(1982)2780-2788.
    [92]J.Vanhellemont and C.Claeys,A theoretical study on the critical radius of precipitates and its application to silicon oxide in silicon,J.Appl.Phys.,62(1987)3960-3964.
    [93]J.Vanhellemont,On the impact of interface energy and vacancy concentration on morphology changes and nucleation of silicon oxide precipitates in silicon,Appl.Phys.Lett.,68(1996)3413-3415.
    [94]D.Yang,X.Ma,R.Fan,J.Zhang,L.Li and D.Que,Oxygen precipitation in nitrogen doped Czochralski silicon,Physica 8,273-274(1999)308-313.
    [95]S.Hahn,F.A.Ponce,W.A.Tiller,V.Stojanoff,D.A.P.Bulla and W.E.Castro,Effects of heavy boron doping upon oxygen precipitation in Czochralski silicon,J.Appl.Phys.,64(1988)4454-4465.
    [96]W.Wijaranakula,Oxygen precipitation and defects in heavily doped Czochralski silicon,J.Appl.Phys.,72(1992)2713-2723.
    [97]G.S.Oehrlein,J.L.Lindstrom and J.W.Corbett,Carbon-oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon,Appl.Phys.Lett.,40(1982)241-243.
    [98]S.Hahn,M.Arst,K.N.Ritz,S.Shatas,H.J.Stein,Z.U.Rek and W.A.Tiller,Effect of high carbon concentration upon oxygen precipitation and related phenomena in Cz Si,J,Appl.Phys.,64(1988)849-855.
    [99]K.V.Ravi,The heterogeneous precipitation of silicon oxides in silicon,J.Electrochem.Soc.,121(1974)1090-1098.
    [100]H.Li,D.Yang,X.Ma,X.Yu and D.Que,Gernanium effect of oxygen precipitation in Czochralski silicon,J.Appl.Phys.,96(2004)4161-4165.
    [101]C.Cui,D.Yang,X.Yu,X.Ma,L.Li and D.Que,Effect of nitrogen on denuded zone in Czochralski silicon wafer,Semicond Sci.Technol.,19(2004)548-553.
    [102]C.Cui,D.Yang,X.Ma,X.Yu and D.Que,Effect of the V-O complexes on oxygen precipitation in neutron-irradiated silicon,2004 International Conference on Solid-State and Integrated-Circuit Technology,Beijing,October 18-21,(2004)2395-2398.
    [103]N.Inoue,K.Wada and J.Osaka,In Defects and Properties of Semiconductors:Defect Engineering,edited by J.Chikasa,K.Sumino,K.Wada,KTK Scientic Publisher,Tokyo(1987)p.187.
    [104]W.Lin and A.S.Oates,Anomalous oxygen precipitation in Czochralski silicon,Appl.Phys.Lett.,56(1990)128-130.
    [105]T.Y.Tan and C.Y.Kung,Oxygen precipitation retardation and recovery phenomena in Czochralski silicon:Experimental observations,nuclei dissolution model,and relevancy with nucleation issues,J.Appl.Phys.,59(1986)917-931,
    [106]F.S.Ham,Theory of diffusion-limited precipitation,J.Phys.Chem.Solids,6(1958)335-351.
    [107]W.A.Tiller,S.Hahn and F.A.Ponce,Thermaldynamic and kinetic considerations on the equilibrium shape for thermally induced microdefects in Czochralski silicon,J.Appl.Phys.,59(1986)3255-3266.
    [108]K.Sueoka,N.Ikeda and T.Yamamoto,Morpholoty and size distribution of oxide precipitates in as-grown Czochralski silicon crystals,Appl.Phys.Lett.,65(1994)1686-1688.
    [109]K.Sueoka,N.Ikeda,T.Yamamoto and S.Kobayashi,Morphology and rowth process of thermally induced oxide precipitates in Czochralski silicon,J.Appl.Phys.,74(1993)5437-5440.
    [110]K.Sakai,T.Yamagami and K.Ojima,Observation of change in shape of oxygen precipitates in high-temperature annealed silicon by transmission election microscopy,Appl.Phys.Lett.,74 (1999)1675-1676.
    [111]O.D.Gryse,P.Clauws,J.V.Landuyt,O.Lebedev,C.Claeys,E.Simoen and J.Vanhellemont,Oxide phase determination in silicon using infrared spectroscopy and transmission electron microscopy techniques,J.Appl.Phys.,91(2002)2493-2498.
    [112]W.Bergholz,J.L.Hutchison and G R.Booker,In Semiconductor Silicon 1986,edited by H.R.Huff,T.Abe,and B.O.Kolbesen(Electronchem.Soc.,Pennington,N.J)(1986)p.874.
    [113]H.Bender and J.Vanhellemont,Rod-like defects in silicon:Coesite or hexagonal silicon?,Phys.Status Solidi A,107(1988)455-467.
    [114]A.Ourmazd,O.W.Taylor and J.Berk,Si→SiO_2 transformation:Interfacial structure and mechanism,Phys.Rev.Lett.,59(1987)213-216.
    [115]K.H.Yang and H.F.Kappert,Minority carrier lifetime in annealed silicon crystals containing oxygen,Phys.Stat.Sol.(α),50(1978)221-235.
    [116]F.A.Ponce,T.Yamashita and S.Hahm,Structure of thermally induced microdefects in Czochralski silicon after high-temperature annealing,Appl.Phys.Lett.,43(1983)1051-1053.
    [117]H.L.Tsai,Precipitate morphologies in heat-treated Czochralski silicon crystals,J.Appl.Phys.,58(1985)3775-3778.
    [118]S.Hahn,F.A.Ponce,W.A.Tiller,V.Stojanoff,D.A.P.Bulla and W.E.Castro,Effects of heavy boron doping upon oxygen precipitation in Czochralski silicon,J.Appl.Phys.,64(1988)4454-4465.
    [119]P.E.Freeland et.al.,Semiconductor 1977,New Jersey,Electrochem.Soc.,1982.
    [120]阙端麟,陈修治,硅材料科学与技术,浙江大学出版社,2000年,p.500.
    [121]F.Cristiano,J.Grisolia,B.Colombeau,M.Omri,B.D.Mauduit,A.Claverie,L.F.Giles and N.E.B.Cowern,Formation energies and relative stability of perfect and faulted dislocation loops in silicon,J.Appl.Phys.,87(2000)8420-8428.
    [122]M.Mica,M.L.Polignano,G.Carnevale,P.Ghezzi,M.Brambilla,F.Cazzaniga,M.Martineili,G.Pavia and E.Bonera,Crystal defects and junction properties in the evolution of device fabrication technology,J.Phys.:Condens.Matter,14(2002)13403-13410.
    [123]A.R.Jerome,C.Levade,G.Vanderschaeve,Ⅰ.P.Garcon and B.Forgerit,A TEM study of slip lines in power MOS devices,J.Phys.:Condens.Matter,12(2000)10279-10286.
    [124]Ⅰ.Yonenaga and K.Sumino,Influence of oxygen precipitation along dislocations on the strength of silicon crystals,J.Appl.Phys.,80(1996)734-738.
    [125]F.Shimura,Thermally induced stacking faults distributed iinhomogeneouslly in Czochralski silicon crystals,J.Appl.Phys.,72(1992)1642-1644.
    [126]G.A.Rozgonyi,S.Mahajan,M.H.Read and D.Brasen,Source of oxidation-induced stacking faults in Czochralski silicon wafer,Appl.Phys.Lett.,29(1976)531-533.
    [127]J.P.Patel,K.A.Jackson and H.Reiss,Oxygen precipitation and stacking-fault formation in dislocation-free silicon,J.Appl.Phys.,48(1977)5279-5288.
    [128]T.Y.Tan,L.L.Wu and W.K.Tice,Nucleation of stacking faults at oxide precipitate-dislocation complexes in silicon,Appl.Phys.Lett.,29(1976)765-767.
    [129]J.Xu,X.Ma,J.Lu,C.Li and D.Yang,Extended defects in nitrogen-doped Czochralski silicon during diode process,Physica B,348(2004)226-230.
    [130]H.D.Chiou and L.W.Shire,in VLSI Sci.and Tech./1985,edited by W.M.Bullis,Broydo S,ECS,Pennington,NJ(1985)p.429.
    [131]F.Shimura,J.P.Baiardo and P.Fraundorf,Infrared absorption study on carbon and oxygen behavior in Czochralski silicon crystals,Appl.Phys.Lett.,46(1985)941-943.
    [132]F.Shimura,R.S.Hockett,D.A.Reed and D.H.Wayne,Direct evidence for co-aggregation of carbon and oxygen in Czochralski silicon,Appl.Phys.Lett,47(1985)794-796.
    [133]P.Fraundorf,G.K.Fraundorf and F.Shimura,Clustering of oxygen atoms around carbon in silicon,J.Appl.Phys.,58(1985)4049-4055.
    [134]V.V.Voronkov and R.Falster,Grown-in microdefects,residual vacancies and oxygen precipitation bands in Czochralski silicon,J.Cryst.Growth,204(1999)462-472.
    [135]A.Hara,M.Aoki,T.Fukuda and A.Ohsawa,Hydrogen effects on oxygen precipitation in Czochralski silicon crystals,J.Appl.Phys.,74(1993)913-916.
    [136]V.V.Voronkov and R.Falster,Grown-in microdefects,residual vacancies and oxygen precipitation bands in Czochralski silicon,J.Cryst.Growth,204(1999)462-474.
    [137]S.M.Hu,Anomalous temperature effect of oxidation stacking faults in silicon,Appl.Phys.Lett.,27(1975)165-167.
    [138]A.T.William,On the kinetics of the thermal oxidation of silicon Ⅲ.Coupling with other key phenomena,J.Electrochern.Soc.,128(1981)689-697.
    [139]S.M.Hu,Interstitial and vancacy concentration in the presence of interstitial injection,J.Appl. Phys.,57(1985)1069-1075.
    [140]田人和,张孝吉,吴瑜光,张荟星,物理学报,47(1998)952-955.
    [141]S.Yoon,K.Kwack,B.Ko,J.Park,J.Kim and H.Ruh,Oxygen precipitation and secondary defects in silicon by high energy ion implantation and two-step annealing,J.Appl.Phys,86(1999)2448-2452.
    [142]M.Akatsuka,M.Okui,N.Morimoto and K.Sueoka,Effect of rapid thermal annealing on oxygen precipitation behavior in silicon wafers,Jpn.J.Appl.Phys.,40(2001)3055-3062.
    [143]M.Akatsuka,M.Okui and K.Sueoka,Effect of rapid thermal annealing on oxide precipitation behavior in silicon crystal,Nuclear instruments and methods in physics research B,186(2002)46-54.
    [144]R.Falster,M.Pagani,D.Gambaro,M.Cornara,M.Olmo,G.Ferrero,P.Pichler and M.Jacob,Vacancy-assisted oxygen precipitation phenomena in Si,Solid State Phenom.,57-58(1997)129-136.
    [145]P.Fahey,G.Barbuscia,M.Moslehi and R.W.Dutton,Kinetics of thermal nitridation processes in the study of dopant diffusion mechanism in silicon,Appl.Phys.Lett.,46(1985)784-786.
    [146]徐进,杨德仁,马向阳,李春龙,阙端麟,A.Misiuk,高压热处理对氧沉淀低温形核的影响,半导体学报,23(2002)394-396.
    [147]I.V.Antonova,A.Misiuk,V.P.Popov,A.E.Plotnikov and B.Surma,Nucleation and formation of oxygen precipitates in Czochralski grown silicon annealed under uniform stress conditions,Physica B,253(1998)131-137.
    [148]F.Shimura,Y.Ohnizhi and H.Tsuya,Heterogeneous distribution of interstitial oxygen in annealed Czochralski-grown silicon crystals,Appl.Phys.Lett.,38(1981)867-869.
    [149]S.M.Hu,Precipitation of oxygen in silicon:Some phenomena and a nucleation model,J.Appl.Phys.,52(1981)3974-3984.
    [150]C.Y.Kung,L.Forbes and J.D.Peng,in Defects in Silicon,Edited by Bullis W.M.Kimerling,ECS,Pennington,NJ,(1983)p.185.
    [151]S.Kishino,Y.Matsushita and J.W.Corbett,Carbon-oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon,Appl.Phys.Lett.,40(1982)241-243.
    [152]C.Y.Kung,L.Forbes and J.D.Peng,in Defects in Silicon,Edited by Bullis W.M.Kimerling,ECS,Pennington,NJ(1983)p.185.
    [153]J.O.Borlang,in Defects in Silicon,edited by Bullis W.M.,Kimerling,ECS,Pennington,NJ (1983)p.236.
    [154]L.Rivaud,C.N.Anognostoporalos and G.R.Erikson,A transmission electron microscopy(TEM)study of oxygen precipitation induced by internal gettering in low and high oxygen wafers,J.Electrochem.Soc.,135(1988)437437-442
    [155]J.R.Matlock,in Defects in Silicon,edited by Bullis W.M.kimerling,ECS,NJ(1983)p.3.
    [156]R.Falster,V.V.Voronkov and F.Quast,On the properties of the intrinsic point degects in silicon:a perspective from crystal growth and wafer processing,Phys.Stat.Sol.(b),222(2000)219-244.
    [157]X.Yu,D.Yang,X.Ma,J.Yang,L.Li and D.Que,Grown-in defects in nitrogen-doped Czochralski silicon,J.Appl.Phys.,92(2002)188-195.
    [158]J.Takahashi,K.Nakai and K.Kawakami,Microvoid defects in nitrogen-and/or carbon-doped Czochralski-grown silicon crystals,Jpn.J.Appl.Phys.,42(2003)363-370.
    [159]X.Yu,D.Yang,X.Ma,L.Li and D.Que,Hydrogen annealing of grown-in voids in nitrogen-doped Czochralski grown silicon,Semicond Sci.Technol.,18(2003)399-403.
    [160]F.Shimura and R.S.Hockett,Nitrogen effect on oxygen precipitation in Czochralski silicon,Appl.Phys.Lett.,48(1986)224-226.
    [161]K.Sumino,Ⅰ.Yonenaga and M.Imai,Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals,J.Appl.Phys.,54(1983)5016-5020.
    [162]D.Yang,J.Chu,J.Xu and D.Que,Behavior of oxidation-induced stacking faults in annealed Czochralski silicon doped by nitrogen,J.Appl.Phys.,93(2003)8926-8929.
    [163]Q.Sun,K.H.Yao and H.C.Gatos,Effects of nitrogen on oxygen precipitation in silicon,J.Appl.Phys.,71(1992)3760-3765.
    [164]K.Nakai,Y.Inoue,H.Yokota,A.Ikari,J.Takahashi,A.Tachikawa,K.Kitahara,Y.Ohta and W.Ohashi,Oxygen precipitation in nitrogen-doped Czochralski-grown silicon crystals,J.Appl.Phys.,89(2001)4301-4310.
    [165]K.Aihara,H.Takeno,Y.Hayamizu,M.Tarnatsuka and T.Masui,Enhanced nucleation of oxide precipitates during Czochralski silicon crystal growth with nitrogen doping,J.Appl.Phys.,88(2000)3705-3707.
    [166]X.Ma,X.Yu,R.Fan and D.Yang,Formation of pnp bipolar structure by thermal donors in nitrogen containing p-type Czochralski silicon wafers,Appl.Phys.Lett.,81(2002)496-468.
    [167]K.Nakai,K.Kitahara,Y.Ohta,A.Ikari and M.Tanaka,Crystal defects in epitaxial layer on nitrogen-doped Czochralski-grown silicon substrate(Ⅱ)- Suppression of the crystal defects in epitaxial layer by conctrol of crystal growth condition and carbon co-doping,Jpn.J.Appl.Lett.,43(2004)1247-1253.
    [168]G.A.Rozgonyi,A.Karoui,A.Kvit and G.Duscher,Nano-scale analysis of precipitates in nitrogen-doped Czochralski silicon,Microelectronic engineering,66(2003)305-313.
    [169]A.Kvit,A.Karoui,G.Duscher and G.A.Rozgonyi,Umbrella"-like precipitates in nitrogendoped Czochralski silicon wafers,Appl.Phys.Lett.,84(2004)1889-1891.
    [170]A.Karoui and G.A.Rozgonyi,Oxygen precipitation in nitrogen doped Czochralski silicon wafers.Ⅱ.Effects of nitrogen and oxygen coupling,J.Appl.Phys.,96(2004)3264-3271.
    [171]W.Wijaranakula,Oxygen precipitation and defects in heavily doped Czochralski silicon,J.Appl.Phys.,72(1992)2713-2723.
    [172]T.Ono,E.Asayma,H.Horie,M.Hourai,M.Sano,H.Tsuya and K.Nakai,Behavior of defects in heavily boron doped Czochralski silicon Jpn.J.Appl.Phys.,36(1997)249-252.
    [173]S.Chandrasekhar and K.M.Kim,Growth of large diameter necks for large size CZ silicon,Semiconductor silicon,eds.H.R.Huff,H.Tsuya and U.Gssele(Electrochem.Soc.,Pennington,1998)Electronics Division PV 98-1,p.411-417.
    [174]J.A.Rossi,W.Dyson,L.G.Hellwig and T.M.Hanley,Defect density reduction in epitaxial silicon,J.Appl.Phys.,58(1985)1798-1802.
    [175]A.Getzberger and W.Shockey,Metal Precipitates in Silicon p-n Junctions,J.Appl.Phys.,31(1960)1821-1824.
    [176]D.Pomerantz,A cause and cure of stacking faults in silicon epitaxial layers,J.Appl.Phys.,38(1967)5020-5026.
    [177]R.A.Logan and M.Schwartz,Restoration of resistivity and lifetime in heat treated germanium,J.Appl.Phys.,26(1955)1287-1289.
    [178]G.Bemski and J.D.Structhers,Gold in silicon,J.Electrochem.Soc.,105(1958)588-591.
    [179]R.L.Meek and T.E.Seidel,Enhanced solubility and ion pairing of Cu and Au in heavily doped silicon at high temperatures,J.Phys.Chem.Solids,36(1975)731-740.
    [180]O.Paz,E.Hearn and E.Fays,POCl_3 and boron gettering of LSl silicon devieces:simiarities and differences,J.Eiectrochem.Soc.,126(1979)1754-1758.
    [181]R.L.Meek,T.E.Seidel and A.G.Cullis,Diffusion gettering of Au and Cu in silicon,J.Electrochem.Soc.,122(1975)786-796.
    [182]S.L.Chou and J.F.Gibbons,Study of the enhanced solubility and lattice location of gold impurities in a heavily phosphorus-diffused layer of silicon,J.Appl.Phys.,46(1975)1197-1203.
    [183]R.Falster,Platinum gettering in silicon by phosphorus,Appl.Phys.Lett.,46(1985)737-739.
    [184]E.J.Mets,Poisoning and gettering effects in silicon junction,J.Electrochem.Soc.,112(1965)420-425.
    [185]A.G.Nassibian and B.Golja,Comparison of Ar-,O-,and Cl-ion implant-damage gettering of gold from silicon using metal oxide silicon techniques,J.Appl.Phys.,53(1982)6168-6173.
    [186]J.A.Topich,Reduction of defects in ion implanted bipolar transistors by argon back side damage,J.Electrochem.Soc.,128(1981)866-870.
    [187]K.H.Yang and G.H.Schwuttke,Minority carrier lifetime improvement in silicon through laser damage gettering,Phys.Ststus Solidi(α),58(1980)127-134.
    [188]M.C.Chen and V.J.Silverstri,Post-epitaxial polysilicon and Si_3N_4 getterintg in silicon,J.Elcetrochem.Soc.,129(1982)1294-1299.
    [189]R.J.Falster,D.H.Modlin,W.A.Tiller and J.F.Gibbons,Effective gettering of gold in silicon at 900℃ by low-current corona discharge,J.Appl.Phys.,57(1985)554-558.
    [190]A.S.Salih,H.J.Kim,R.F.Davis and G.A.Rozgonyi,Extrinsic gettering via the controlled introduction of misfit dislocations,Appl.Phys.Lett.,46(1985)419-421.
    [191]H.Shiraki,Elimination of Stacking Faults in Silicon Wafers by HCl Added Dry O_2 Oxidation,Jpn.J.Appl.Phys.,14(1975)747-752.
    [192]K.V.Ravi,Future Fab.International,July(1999)p.207.
    [193]R.B.Swaroop,Advances in silicon technology for the semiconductor industry,Sol.Star.Tech.,7(1983)97-101.
    [194]G.A.Rozgonyi and C.W.Pearce,Interstitial oxygen gettering in Czochralski silicon wafers,Appl.Phys.Lett.,31(1977)343-345.
    [195]H.Tsuya,Oxygen in Silicon,edded by F.Shimura(Academic Press,San Diego,1994)Chap.14,p.619.
    [196]K.Honda,T.Nakanishi,A.Ohsawa and N.Toyokura,Catastrophic breakdown in silicon oxides:The effect of Fe impurities at the SiO_2-Si interface,J.Appl.Phys.,62(1987)1960-1963.
    [197]H.Wendt,H.Cerva,V.Lehmann and W.Pamler,Impact of copper contamination on the quality of silicon oxides,J.Appl.Phys.,65(1989)2402-2405.
    [198]D.Gilles,E.R.Weber and S.K.Hahn,Mechanism of internal gettering of interstitial impurities in Czochralski-grown silicon,Phys.Rev.Lett.,64(1990)196-199.
    [199]H.Hieslmair,A.A.Istratov,S.A.McHugo,C.Heiser and E.R.Weber,Gettering of iron by oxygen precipitates,Appl.Phys.Lett.,72(1998)1460-1462.
    [200]A.R.Bhatti,R.Falster and G.R.Booker,Solid State Phenom.,19-20(1991)51.
    [201]A.Ourmazd and W.Schroter,Phosphorus gettering and intrinsic gettering of nickel in silicon,Appl.Phys.Lett.,45(1984)781-783.
    [202]B.Shen,T.Sekiquchi,J.Tablonaski and K.Sumino,Gettering of copper by bulk stacking faults and punched-out dislocations in Czochralski-grown silicon,J.Appl.Phys.,76(1994)4540-4546.
    [203]K.Yamamoto,S.Kishino,Y.Matsushita and T.Iizuka,Lifetime improvement in Czochralski-grown silicon wafers by the use of a two-step annealing,Appl.Phys.Lett.,36(1980)195-197.
    [204]Q.Shui,D.Yang,L.Li,X.Pi and D.Que,Intrinsic gettering of Czochralski silicon annealed in argon and nitrogen atmosphere,Physica B,307(2001)40-45.
    [205]X.Ma,X.Yu,R.Fan and D.Yang,Formation of pnp bipolar structure by thermal donors in nitrogen- containing p-type Czochraiski silicon wafers,Appl.Phys.Lett.,81(2002)496-498.
    [206]L.Gong,X.Ma,D.Tian,L.Fu and D.Yang,Formation of denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals,Semicond.Sci.Technol.,20(2005)1-5.
    [207]G.A.Rozgonyi,A.Karoui,A.Kvit and G.Duscher,Nano-scale analysis of precipitates in nitrogen-doped Czochralski silicon,Microelectron.Eng.,66(2003)305-313.
    [208]X.Yu,D.Yang,X.Ma and D.Que,Effect of rapid thermal process on oxygen precipitation and denuded zone in nitrogen-doped silicon wafers,Microelectron.Eng.,69(2003)97-104.
    [209]G.Kissinger,J.Vanhellemont,G.Obermeier and J.Esfandyari,Denuded zone formation by conventional and rapid thermal anneals,Mater.Sci.Eng.B,73(2000)106-110.
    [210]C.Cui,D.Yang,X.Yu,X.Ma,L.Li and D.Que,Effect of nitrogen on denuded zone in Czochralski silicon wafer,Semicond.Sci.Technol.,19(2004)548-553.
    [211]S.A.McHugo,R.J.McDonald,A.R.Smith,D.L.Hurley and E.R.Weber,Iron solubility in highly boron-doped silicon,Appl.Phys.Lett.,73(1998)1424-1426.
    [212]T.Ono,A.Romanowski,E.Asayama,H.Horie,K.Sueoka,H.Tsuya and G.A.Rozgonyi,oxygen precipitate-induced dislocation generation in heavily boron-doped Czochralski silicon,J.Electrochem.Soc.,146(1999)3461-3465.
    [213]H.Tsuya,Present status and prospect of Si wafers for ultra large scale integration,Jpn.J.Appl.Phys.,43(2004)4055-4067.
    [214]M.Aoki,T.Itakura and N.Sasaki,Gettering of iron impurities in p/p+ epitaxial silicon wafers with heavily boron-doped substrates,Appl.Phys.Lett.,66(1995)2709-2711.
    [215]R.Hoelzl,D.Huber,K.J.Range,L.Fabry,J.Hage and R.Wahlich,Gettering of copper and nickel in p/p+ epitaxial wafers,J.Electrochem.Soc.,147(2000)2704-2710.
    [216]A.L.Smith,K.Wada and L.C.Kimerling,Modeling of transition metal redistribution to enable wafer design for gettering,J.Electrochem.Soc.,147(2000)1154-1160.
    [217]C.Li,X.Ma,J.Xu,X.Yu,D.Yang and D.Que,Effect of rapid thermal process on oxygen precipitation in heavily boron-doped Czochralski silicon wafer,Jpn.J.Appl.Phys.,42(2003)7290-7291.
    [218]P.J.Timans,Rapid thermal processing technology for the 21st century,Materials Science in Semiconductor Processing,1(1998)169-179.
    [219]T.E.Seidel,D.J.Kischner,C.S.Pai,R.V.Knoell,D.M.Maher and D.C.Jacobson,A review of rapid thermal annealing of B,BF_2 and As ions implanted in silicon,Nucl.Instrum.8,37(1985)251-260.
    [220]A.Katz and W.C.Dautremont-Smith,Stress measurements of Pt/Ti/InP and Pt/Ti/SiO_2/InP systems:In situ measurements through sintering and after rapid thermal processing,J.Appl.Phys.,67(1990)6237-6246.
    [221]G.J.P.Krooshof,F.H.P.M.Habraken,W.F.v.d.Weg,L.Van-den-hove,K.Maex and R.F.D.Keersmaecker,Study of the rapid thermal nitridation and silicidation of Ti using elastic recoil detection.Ⅰ.Ti on Si,J.Appl.Phys.,63(1988)5104-5109.
    [222]M.P.Siegal and J.J.Santiago,Effects of rapid thermal processing on the formation of uniform tetragonal tungsten disilicide films on Si(100)substrates,J.Appl.Phys.,63(1988)525-529.
    [223]V.Probst,H.Schaber,A.Mitwalsky,H.Kabza,L.V.d.hove and K.Maex,WSi_2 and CoSi_2 as diffusion sources for shallow-junction formation in silicon,J.Appl.Phys.,70(1991)708-719.
    [224]A.Ito,A.Usami,A.Kitagawa,T.Wada,Y.Tokuda and H.Kano,Effects of rapid thermal processing on molecular-beam epitaxy GaAs with SiOx encapsulation,J.Appl.Phys.,69(1991)2238-2244.
    [225]A.A.Naem,Platinum silicide formation using rapid thermal processing,J.Appl.Phys.,64(1988)4161-4167.
    [226]S.K.Lee,D.L.Kwong and N.S.Alvi,Effects of rapid thermal processing on thermal oxides of silicon,J.Appl.Phys.,60(1986)3360-3363.
    [227]R.Kwor and D.L.Kwong,Rapid thermal annealing characteristics of As~+- and BF_2~+-implanted Si,Appl.Phys.Lett.,45(1984)77-79.
    [228]A.Kamgar and S.J.Hillenius,Rapid thermal anneal induced effects in polycrystalline silicon gate structures,Appl.Phys.Lett.,51(1987)1251-1253.
    [229]F.Edelman,E.Y.Gutmanas and A.Katz,Formation of nickel silicides in the Ni/Si_3N_4/Si system during rapid thermal annealing,Appl.Phys.Lett.,53(1988)1186-1188.
    [230]C.A.Dimitriadis,Effect of conventional and rapid thermal annealing on platinum silicide Schottky barrier diodes,Appl.Phys.Lett.,56(1990)143-145.
    [231]H.Kinoshita and D.L.Kwong,Kinetic diffusion model of ion-implanted boron during rapid thermal annealing,Appl.Phys.Lett.,60(1992)1202-1204.
    [232]B.Mattson,P.Timans,S.P.Tay,J.D.Daniel and J.Kim,The future of RTP:A technology that can change the IC fab industry,9th Int.Conference on Advanced Thermal Processing of Semiconductors-RTP(2001).
    [233]E.Ehret and C.Maddalon-Vinante,Influence of rapid thermal annealing and internal gettering on Czochralski-grown silicon.Ⅱ.Light beam induced current study of recombination centers,J.Appl.Phys.,79(1996)2712-2715.
    [234]L.Lin,X.Ma,L.Zhong and D.Yang,Effects of rapid thermal processing on oxygen precipitation in Czochralski silicon wafer,Semicond Sci.Technol.,19(2004)630-633.
    [235]M.S.Carroll and J.C.Sturm,Quantification of substitutional carbon loss from Si_(0.998)C_(0.002)due to silicon self-interstitial injection during oxidation,Appl.Phys.Lett.,81(2002)1225-1227.
    [236]B.J.O'Sullivan,P.K.Hurley,C.Leveugle and J.H.Das,Si(100)-SiO_2 interface properties following rapid thermal processing,J.Appl.Phys.,89(2001)3811-3820.
    [237]M.Jacob,P.Pichler,H.Rysel and R.Falster,Determination of vacancy concentrations in the bulk of silicon wafers by platinum diffusion experiments,J.Appl.Phys.,82(1997)182-191.
    [238]M.Pagani,R.J.Falster,G.R.Fisher,G.C.Ferrero and M.Olmo,Spatial variations in oxygen precipitation in silicon after high temperature rapid thermal annealing,Appl.Phys.Lett.,70(1997)1572-1574.
    [239]C.Maddalon-Vinante and D.Barbier,Charged particle activation analysis study of the oxygen outdiffusion from Czochralski-grown silicon during classical and rapid thermal annealing in various gas ambient,J.Appl.Phys.,74(1993)6115-6119.
    [240]M.Akatsuka,M.Okui,N.Morimoto and K.Sueoka,Effect of Rapid Thermal Annealing on Oxygen Precipitation Behavior in Silicon Wafers,Jpn.J.Appl.Phys.,40(2001)3055-3062.
    [241]R.Singh,F.Radpour and P.Chou,Comparative study of dielectric formation by furnace and rapid isothermal processing,J.Vac.Sci.Technol.A,7(1989)1456-1460.
    [242]D.Yang,R.Fan,L.Li,D.Que and K.Sumino,Effect of nitrogen-oxygen complex on electrical properties of Czochralski silicon,Appl.Phys.Lett.,68(1996)487-489.
    [243]孙以材,半导体测试技术,冶金工业出版社,北京,1984年,p.56.
    [244]D.C.Miller and G.A.Rozgonyi,Handbook of Semiconductors,edited by S.P.Keller (North-Holland,Amsterdam)3(1982)p.217.
    [245]赵伯麟,薄晶体电子显微象的衬度理论,材料科学丛书,1979年。
    [246]朱宜,张存桂编著,电子显微镜的原理和使用,北京大学出版社,1983年。
    [247]F.Shimura,Oxygen in Silicon,edited by F.Shimura(Academic,San Diego,1994),Semiconductors and Semimetals,42(1994)577-617.
    [248]R.Falster,V.V.Voronkov and F.Quast,On the properties of the intrinsic point defects in silicon:a perspective from crystal growth and wafer processing,Phys.Star.Sol.(b),222(2000)219-244.
    [249]K.Sumino,Ⅰ.Yonenaga and M.Imari,Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals,J.Appl.Phys.,54(1983)5016-5018.
    [250]D.Li,D.Yang and D.Que,Effects of nitrogen on dislocation in silicon during heat treatment,Physica B,273-274(1999)553-556.
    [251]H.Wang,X.Ma,J.Xu,X.Yu and D.Yang,Effects of nitrogen doping on the dissolution of oxygen precipitates in Czochralski silicon during rapid thermal annealing,Semicond.Sci.Technol.,19(2004)715-719.
    [252]A.Karoui and G.A.Rozgonyi,Oxygen precipitation in nitrogen doped Czochralski silicon wafers.Ⅱ.Effects of nitrogen and oxygen coupling,J.Appl.Phys.,96(2004)3264-3271.
    [253]X.Ma,L.Fu,D.Tian and D.Yang,Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czoehralski silicon,J.Appl.Phys.,98(2005)084502.
    [254]A.Karoui,F.S.Karoui,G.A.Rozgonyi and D.Yang,Oxygen precipitation in nitrogen doped Czochralski silicon wafers.Ⅰ.Formation mechanisms of near-surface and bulk defects,J.Appl.Phys.,96(2004)3255-3263.
    [255]L.Fu,D.Yang,X.Ma,D.Tian and D.Que,Rapid-thermal-processing-based internal gettering for heavily boron-doped Czochralski silicon,J.Appl.Phys.,100(2006)103530.
    [256]J.R.Patel,K.A.Jackson and H.Reiss,Oxygen precipitation and stacking-fault formation in dislocation-free silicon,J.Appl.Phys.,48(1977)5279-5288.
    [257]M.L.Polignano,G.F.Cerofolini,H.Bender and C.Claeys,Getteing mechanisms in silicon,J.Appl.Phys.,64(1988)869-876.
    [258]V.V.Voronkov and R.Falster,Effect of vacancies on nucleation of oxide precipitates in silicon,Materials Science in Semiconductor Processing,5(2003)387-390.
    [259]G.A.Hawkins and J.P.Lavine,The effect of rapid thermal annealing on the precipitation of oxygen in silicon,J.Appl.Phys.,65(1989)3644-3654.
    [260]A.Markwitz,H.Baumann,E.F.Krimmel and K.Bethge,Change of surface structure of thin silicon nitride layers during electron beam rapid thermal annealing,Appl.Phys.Lett.,64(1994)2652-2654.
    [261]J.Vanhellemont and S.Amelinckx,Film-edge-induced dislocation generation in silicon substrates.Ⅱ.Application of the theoretical model for local oxidation processes on(001)silicon substrates,J.Appl.Phys.,61(1987)2170-2175.
    [262]H.Shirai,B.Drevillon and R.Ossikovski,In situ investigation of amorphous silicon/silicon nitride interfaces by infrared ellipsometry,Appl.Phys.Lett.,62(1993)2833-2835.
    [263]D.Frohman-Bentchkowsky and M.Lenzlinger,Charge transport and storage in metal-nitride -oxide-silicon(MNOS)structures,J.Appl.Phys.,40(1969)3307-3319.
    [264]H.J.Steln,Thermally annealed silicon nitride films:Electrical characteristics and radiation effects,J.Appl.Phys.,57(1985)2040-2047.
    [265]L.J.Huang,R.W.M.Kwok,W.M.Lau,H.T.Tang,W.N.Lennard,I.V.Mitchell and P.J.Schultz,Stability of ultrathin silicon nitride films on Si(100),Appl.Phys.Lett.,62(1993)163-165.
    [266]S.M.Hu,S.P.Klepner,R.O.Schwenker and D.K.Seto,Dislocation propagation and emitter edge defects in silicon wafers,J.Appl.Phys.,47(1976)4098-4100.
    [267]J.Vanhellemont,J.V.Landuyt,S.Amelinckx,C.Claeys,G.Declerck and R.V.Overstraeten,Local oxidation induced dislocation generation near[100]Si3N4 film edges,Appl.Phys.Lett.,43(1983)1120-1122.
    [268]J.Vanhellemont and S.Amelinckx,Film-edge-induced dislocation generation in silicon substrates.Ⅰ.Theoretical model,J.Appl.Phys.,61(1987)2176-2188.
    [269]J.Vanheilemont and C.Claeys,Film-edge-induced dislocation generation in silicon substrates.Ⅲ.High voltage transmission electron microscopy observations and theoretical results for(111)and (011)silicon substrates,J.Appl.Phys.,63(1988)5703-5711.
    [270]H.C.Alt and Y.V.Gomeniuk,Far-infrared absorption due to electronic transitions of N-O complexes in Czochralski-grown silicon crystals:Influence of nitrogen and oxygen concentration,Appl.Phys.Lett.,87(2005)151909.
    [271]M.Porrini,M.G.Pretto and R.Scala,Measurement of nitrogen in Czochralski silicon by mean of infrared spectroscopy,Materials Science and Engineering B,102(2003)228-232.
    [272]H.Goto,L.Pan,M.Tanaka and K.Kashima,Intrinsic gettering in nitrogen-doped and hydrogen-annealed Czochralski-grown silicon wafers,Jpn.J.Appl.Phys.,40(2001)3944-3946.
    [273]C.Maddalon-Vinante,E.Ehret and D.Barbier,Influence of rapid thermal annealing and internal gettering on Czochralski-grown silicon.Ⅰ.Oxygen precipitation,J.Appl.Phys.,79(1996)2707-2711.
    [274]R.Falster and W.Bergholz,The gettering of transition metals by oxygen-related defects J.Electronchem.Soc.,137(1990)1548-1559.
    [275]X.Ma,L.Lin,D.Tian,L.Fu and D.Yang,Effect of rapid thermal processing on high temperature oxygen precipitation behaviour in Czochralski silicon wafer,J.Phys.:Condens.Matter,16(2004)3563-3569.
    [276]W.Lin,J.L.Benton,R.Pinacho,D.A.Ramappa and W.Henley,Dominant iron gettering mechanism in p/p+ silicon wafers,Appl.Phys.Lett.,77(2000)241-243.
    [277]A.A.Istratov,H.Hieslmair and E.R.Weber,MRS Bulletin/JUNE 2000,http://www.mrs.org/publications/bullet in Mater.Res.Soc.Bullet.,(2000)33-38.
    [278]M.Sano,S.Sumita,T.Shigematsu and N.Fujino,in Semiconductor silicon,eds.H.R.Huff,W. Bergholz and K.Sumino(The Electrocbem.Soc.,Pennington,1994)(1994)p.784.
    [279]W.Wijaranakula,Effect of point defect reactions on behavior of boron and oxygen in degenerately doped Czochralski silicon,Appl.Phys.Lett.,62(1993)2974-2976.
    [280]W.D.Wruck and P.Gaworzewski,Electrical and infrared spectroscopic investigations of oxygen-related donors in silicon,Phys.Stat.Sol.(α),56(1979)557-561.
    [281]R.Singh,K.C.Cberukuri,L.Vedula,A.Rohatgi and S.Narayanan,Low temperature shallow junction formation using vacuum ultraviolet photons during rapid thermal processing,Appl.Phys.Lett.,70(1997)1700-1702.
    [282]J.Vanhellemont,O.D.Gryse and P.Clauws,Critical precipitate size revisited and implications for oxygen precipitation in silicon,Appl.Phys.Lett.,86(2005)221903.
    [283]S.Hahn,F.A.Ponce,W.A.Tiller,V.Stojanoff,D.A.P.Bulla and W.E.Castro,The effect of rapid thermal annealing on the precipitation of oxygen in silicon,J.Appl.Phys.,64(1988)4454-4465.
    [284]T.Ono and G.A.Rozgonyi,Oxygen diffusion in heavily antimony-,arsenic-,and boron-doped Czochralski silicon wafers,Appl.Phys.Lett.,74(1999)3648-3650.
    [285]F.Shimura,Oxygen in silicon,Semiconductors and semimetals,eds.R.K.Willardson,E.R.Weber,A.C.Beer,New York,Academic Press(1994)p.97.
    [286]林磊,杨德仁,马向阳,李立本,阙端麟,高温快速热处理对氧沉淀消融的作用,半导体学报,25(2004)1273-1276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700