用户名: 密码: 验证码:
联合地基GPS和MODIS研究成都地区大气可降水量变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成都的热力和动力作用对四川地区的气候变化有重要的影响,而成都地区大气可降水量变化是揭示成都平原热力、动力作用及区域水循环机制的重要信息。为进一步提高成都地区大气可降水量变化研究结果的空间分辨率和精度,本文利用近年发展起来的地基GPS大气探测技术,联合高空间分辨率卫星遥感数据(MODIS),定量反演了成都地区大气可降水量变化。
     本文的研究内容主要分为以下四个部分:
     1、通过解算成都地区成都(CHDU)、简阳(JYAN)、郫县(PIXI)、邛崃(QLAI)、人寿(RENS)、中江(ZHJI)共6个站的地基GPS大气可降水量探测资料,获得了这些站的大气可降水量;分析了成都站的大气可降水量的变化特征、地基GPS探测结果的精度及大气可降水量与地面气象要素之间的关系。结果表明:①成都站2005年7月大气可降水量变化为31.6~62.3mm,8月36.9~62.5mm,9月23.1~58.2mm;②成都站地基GPS探测与同一时刻无线电探空结果的平均差值为0.45mm,均方根误差为2.82mm,相关系数为98.27%,二者的线性关系式为:GPS=1.018×SONDE-0.328;③大气可降水量变化与降水密切相关,降水往往发生在大气可降水量发生跳跃递增、持续递增或者出现骤变时刻。
     2、探讨利用MODIS近红外波段反演大气可降水量的方法,得到了两通道比值加权法和三通道比值加权法的MODIS大气可降水量产品。对该两种方法结果进行统计,并与成都站SONDE大气可降水量进行比较分析,结果显示,三通道比值加权法可靠性更高。
     3、将成都站地基GPS大气可降水量与MODIS大气可降水量进行了比较分析。研究发现地基GPS大气可降水量与MODIS大气可降水量的变化趋势较一致(相关系数为85.4%),但均方根误差却达2.98mm,且MODIS大气可降水量明显偏低,有些几乎相差一半。因此,需要对MODIS大气可降水量进行订正。经订正得到的MODIS大气可降水量的精度明显提高,两者在数值上很接近,相关系数达到89.8%,均方根误差也减到了2.15mm。
     4、由于MODIS的空间分辨率较高,其大气可降水量结果更能较为详细地反映大气可降水量变化。因此,将地基GPS大气可降水量面与MODIS大气可降水量进行联合分析,不仅能增强成都地区大气可降水量变化研究的可靠性,还可以有效提高成都地区大气可降水量变化的空间分辨率。
     综上所述,与利用少量的地基GPS站点获得的成都地区大气可降水量变化结果相比,将地基GPS和MODIS联合进行大气可降水量变化研究,可有效提高大气可降水量的时间分辨率、空间分辨率及可靠性,且具有全天候、长期、稳定、成本低等优点。
The thermal and dynamical effect of Chengdu is very important for the weather and climate change in Sichuan. Studying atmospheric precipital water vapor (PWV) variability over Chengdu region is one of the most important ways to realize the thermal and dynamical effect, weather and climate change, as well as regional water cycle over Chengdu plain. In order to improve spatial resolution and precision of PWV over Chengdu region, in this paper, using ground-based GPS, associated with MODIS image of high spatial resolution, retrieval the PWV variability over Chengdu region.
     Contents of this paper including the following four aspects:
     Firstly, the ground-based GPS data in Chengdu (CHDU), Jianyang (JYAN), Pixian (PIXI), Qionglai (QLAI), Renshou (RENS) and Zhongjiang (ZHJI) are processed to obtain the PWV of the six stations; the PWV variability of CHDU stations covered area are analysed and compared with the Radiosonde (SONDE) data. The relationships between PWV and ground meteorology factors are studied. It shows that: the change scope of PWV in station CHDU is about 31.6mm to 62.3mm in July, 36.9mm to 62.5mm in August, and 23.1mm to 58.2mm in September; average difference between the results of ground-based GPS and the Radiosonde data on CHDU station is 045mm, with the RMS of 2.82mm, correlation coefficient of 98.27 % , a model can be fitted between ground-based GPS and SONDE, i.e.GPS = 1.018×SONDE-0.328; ground actual precipitation is well related with the change of PWV, and an abrupt increase, durative increase and abrupt change of PWV is companied with precipitation.
     Secondly, discussed the means of retrieving PWV using MODIS image, we procured the PWV of two-channel ratio weighted method and three-channel ratio weighted method of Chengdu region in the end. Compared the results of the two kinds weighted method to the PWV of SONDE over CHDU station, and compared the results of the two kinds weighted method, it shows that the PWV of three-channel ratio weighted method have higher dependability.
     Thirdly, compared the PWV of the ground-based GPS with PWV of MODIS in CHDU station. It shows that the changing trend between them are consistent with a correlation coefficient of 85.4%, but the RMS is 2.98mm, and the PWV of MODIS are low obviously, almost half of ground-based GPS results sometimes. Obviously the PWV of MODIS needs to correct, the precision of corrected PWV of MODIS increased obviously. The two are adjacent at numerical value, its relativity coefficient is 89.8%, and RMS reduce to 2.15mm.
     Fourthly, due to the PWV of MODIS has higher spatial resolution, its results can reflect PWV variability more detailedly. So we can associate with the PWV of ground-based GPS and MODIS to research the Chengdu region, not only increase the dependability of PWV variability, but also enhance the spatial resolution of PWV variability.
     In conclusion, compared with the PWV of observations data based on a few ground-based GPS stations, associate with ground-based GPS and MODIS research PWV variability, it can enhance the temporal resolution, spatial resolution, dependability, and have many excellence, such as all-weather, permanent, stabilization, low cost, and so on.
引文
[1]李国平,黄丁发,刘碧泉.成都地区地基GPS观测网遥感大气可降水量的初步试验[J].武汉大学学报.信息科学版,2006.12,31(12):1086-1089
    [2]李国平,黄丁发,刘碧泉.地基GPS遥感的成都地区夏季可降水量的日循环合成分析[J].水科学进展,2006.3,17(2):160-163
    [3]Danel E.Wolfe,Seth I.Gutman.Developing an Operational,Surface-Based,GPS,and water Vapor Observing System for NOAA:Network Design and Results[J].Journal of Atmospheric and Oceanic Technology.2000,Vol.17,426-440.
    [4]Bevis M,Businger S,Herring T A,Rocken C,Anthes R A and Ware R H.GPS meteorology:Remote sensing of atmospheric water vapor using the global positioning system[J].Geophys.Res.,1992,97:15787-15801
    [5]杨红梅,葛润生,徐宝祥用单站探空资料分析对流层气柱水汽总量[J].气象,24(9):8-11
    [6]Yuei-an Liou,Yu-tun Teng,Teresa Van Hove,James C.Liljegren.Comparison of Precipitable Water Vapor Observations in the Near.Tropics by GPS,Microwave Radiometer,and Radiosondes[J].Journal of Applied Meteorology.2001,Vol.40,5-15
    [7]Rocken,Christian;VanHove,Teresa;Johnson,James;Solheim,Fred;Ware,Randolph;Bevis,Mike;Chiswell,Steve;Businger,Steve,GPS/STORM-GPS sensing of atmospheric water vapor for meterology,Journal of Atmospheric and Oceanic Technology[J].Bos.1995,12(3):468-478
    [8]A G A Van der Hoeven.Et al.Analysis and Comparison of Integrated Water Vapor Estimation from GPS.http://www.yahoo.com
    [9]Yuei-an Liou,Yu-tun Teng,Teresa Van Hove,James C.Liljegren.Comparison of Precipitable Water Vapor Observations in the Near Tropics by GPS,Microwave Radiometer,and Radiosondes[J].Journal of Applied Meteorology.2001,Vol.40,5-15
    [10]Rocken C.,T VanNove,and R Ware,Near real-time GPS sensing of atmospheric water vapor[J].Geophys Res Lett,1997,24,3221-32241
    [11]李成才,毛节泰,李建国,夏青.全球定位系统遥感水汽总量[J].科学通报.1999,Vol.44(3):333-336
    [12]王小亚,朱文耀,严豪健等.地面GPS探测大气可降水量的初步结果[J].大气科学.1999,Vol.23(5),605-612
    [13]何平,徐宝祥,周秀骥等.地基GPS反演大气水汽总量的初步试验[J].应用气象学 报.2002,Vol.13(2),179-183
    [14]梁丰,李成才,王迎春,毛节泰,方宗义.应用区域地区全球定位系统观测分析北京地区大气总水汽量[J].大气科学,2003,27(2),236-244
    [15]李延兴,徐宝祥,胡新康.用地基GPS观测站遥测大气含水量和可降雨量的理论基础与试验结果[J].中国科学(A辑).2000.Vol.30(增刊),107-110
    [16]丁金才,黄炎,叶其欣.2002年台风Ramasun影响华东沿海期间可降水量的GFS观测和分析[J].大气科学.2004.Vol 128(14),613-624
    [17]袁招洪,丁金才,陈敏.GPS观测资料应用于中尺度数值预报模式的初步研究[J].气象学报.2005,Vol.62(2),200-212
    [18]毕研盟,毛节泰,杨光林.地基GPS遥感观测安徽地区水汽特征[J].气象科技.2004,Vol.32(4),225-228
    [19]宋淑丽,朱文耀,丁金才,程宗颐.上海GPS综合应用网对2002年长江三角洲地区入梅过程的监测.天文学进展[J].200321(2),180-184
    [20]袁招洪,丁金才,陈永林.中尺度数值预报模式预报水汽与GPS观测的比较研究[J].大气科学.2004,Vol.28(3),433-440
    [21]严豪健,朱文耀,黄王成.上海天文台GPS气象学的研究现状[J].中国科学院上海天文台年刊:2000,Vol.21,24-34
    [22]Danel E.Wolfe,Seth I.Gutman.Developing an Operational,Surface-Based,GPS,and Water Vapor Observing System for NOAA:Network Design and Results[J].Journal of Atmospheric and Oceanic Technology.2000,Vol.17,426-440.
    [23]刘玉洁,杨忠东.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001:66-73
    [24]http://www.eqsc.gov.cn/html/jz/images/SCMODIS/synopsis.htm
    [25]郭志梅.利用地基GPS资料反演大气可降水量的初步研究[D].南京信息工程大学.理学硕士,2005.5:5-6
    [26]Bevis,M.,S.Businger,S.Chiswell,T.Herring,R.Anthes,C.Rocken,and R.Ware,GPS Meteorology:Mapping Zenith Wet Delays onto Precipitable Water[J].Appl.Meteor.,1994,33,379-386
    [27]Rocken,C.,R.Ware,Hove,F.Solheim,C.Alber,and J.Johnson,Sensing Atmospheric Water Vapor with the Global Positioning System[J].Geophys Res.Lett.1993,20,2631-2634
    [28]Rocken,C.,T.Van Hove,J.Johnson,F.Solheim,and R.Ware.M.Bevis,S.Businger,SChiswell,GPS Storm-GPS sensing of Atmospheric Water Vapor or Meteorology[J]. Ocean. Atmos. Tech., 1995,12,468-478
    [29] Gutman, S.I., R. B.Chadwick, D. E. Wolfe, A. M. Simon, T. Van Hove, and C. Rocken, Tmward an operational water vapor remote sensing system using GPS [J]. FSL Forum, Dec. 1994,29-33
    [30] Duan, J., M. Bevis, P. Fang, YBook, S. Chiswell, S. Businger, and C. Rocken, T. Van Hove, F. Solheim, and R. GPS Metorology: Direct Estimation of the Absolute Value of Precipitable Water Vapor [J]. Appl. Meteor., 1996, 35, 830-838
    [31] Niell, A., Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths [J]. Geophys. Res., 1996,101,3,227-3,246
    [32] Davis, J., G Elgered, A. Niell, and C. Ground-based measurement of gradients in the wet radio reractivity of air [J]. Radio Sci, 1993,28,1003-1018
    [33] Elosegui, p., Rius, A., Davis, J., Ruffint, G, Keihm, S., Burki, B., An experiment for estimation of the spatial and temporal variations of water vapor using GPS and WVR data[J]. Phys. Chem. Earth, 1998, 23,125-130
    [34] Braun, J., A technique for determining single satellite, single sation information from double difference residuals [J]. EOS Trans. Am Geophy. Union, 1999,79, F183
    [35] Elosegui, P., J. Davis, L. Gradinarsky, G Elgered, J. Johnson, D. Tahmoush, and A. rius, Sensing Atmospheric Structure using Small Scale Space Geodetic Networks[J]. Geophys. Res. Lett, 1999
    [36] Fang, P., M. Bevis, Y.Bock, S. Gutman, and Wolfe, GPS meteorology: Reducing systematic errors in geodetic estimates for zenith delay [J]. Geophys. Res. Lett., 1998, 25, 3583-3596
    [37] McPherson, R., E.Kalnay, and S.Lord, the Potential Role of GPS/MET Observations in Operational Numerical Weather Prediction, the Global Positioning System for the Geosciences NRC report [J]. 1997,111-113
    [38] Businger, S., S. Chiswell, M. Bevis, J. Duan, R. Anthes, C. Rocken, R. Ware, M. Exner, T. Van Hove ,and F. soheim, The Promise of GPS in Atmospheric Monitoring. Bull [J]. Am. Meteor. Soc. 1996, 77, 5-18
    [39] Park, S., and K. Droegemeier, Sensitivity of 3-D convective storm evolution to water vapor and implications for variational data assinvlation [J]. Preprints, 11 th Conf. On NWP, Norfolk, VA, 1996, 137-139
    [40] Croolc, N., Sensitivity of moist convection forced by boundary low-leval thermodynamic fields[J].Mon Wea.Rev.1996,124,1767-1785
    [41]Kuo,Y-h.,X.Zou,and Y-R.Guo,Variational Assimilation of precipitable using a Monhydrostatic Mesoscale Adjoint Model[J].Mon.Weather Rev.,1996,124,122-147
    [42]Christoph Reiger,Gerd Gendt,Galina Dick,and Tomassini,Near Real Time Water Vapor Monitoring for weather Forecasts[J].GPS World Jan.2002.18-27
    [43]Yuan,L.,Anthes,R.Ware,C.Rochen,W.Bonner,M.Bevis;and S.Businger,Sening Climate Change Using the Global Positioning System[J].Geophys.Res.,1993,98,14,925-14,937
    [44]方宗义,张运刚,夏青等,全球定位系统(GPS/MET)研究[J].国家卫星中心,1992,12
    [45]李成才,毛节泰,GPS地基遥感大气水汽总量的分析[J].应用气象学报,1998,3
    [46]Li,J.,and J.Mao,The Approach to Remote Sensing of Water Vapor Based on GPS and Linear Regression of Tm in the Eastern Region of China[J].Acta Meteorologca Sinica,1998,12,450-458
    [47]Bevis M,Businger S,Herring T A,Rocken C,Anthes R A and Ware R H.GPS meteorology:Remote sensing of atmospheric water vapor using the global positioning system[J].Geophys.Res.,1992,97:15787-15801.
    [48]Rocken,C.,ET.al.,Sensing Atmospheric Vapor with the Global Positioning System[J].Geophys.Res.Lett.,1993,30 2631-2634
    [49]Bernese GPS Sofler0are(Version 4.2)Operation Manual
    [50]何平,徐宝祥,周秀骥等.地基GPS反演大气水汽总量的初步试验[J].应用气象学报.2002,Vol.13(2),179-183
    [51]梁丰,李成才,王迎春,毛节泰,方宗义.应用区域地区全球定位系统观测分析北京地区大气总水汽量[J].大气科学,2003,27(2),236-244
    [52]杨景梅,邱金桓用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学,2002,26(1),9-21
    [53]Smith,W.,Note on relationship between total precipitable water and surface dew point[J].Appl.Meteor.,1966,5,726-727
    [54]Won,T.The simulation of hourly global radiation from hourly reported meteorological parameters-Canadian Prairie Area[J].Conference,3~(rd),Canadian Solar Energy Society Inc.,Edmonton,Alberta,1977
    [55]Cole,models R.J.Direct solar radiation data as input into mathematical describing the thermal performance of buildings[J].Part Ⅱ:Development of relationships, Build.Environ.,1976,11,181-186
    [56]Kaufman Y J,Gao B C.Remote sensing of water vapor in the near IR from EOS/MODIS [J].IEEE Tram,Geosci remote sensing,1992,30(6):871-884
    [57]姜立鹏,覃志豪,谢雯.针对MODIS近红外数据反演大气水汽含量研究[J].国土资源遥感,2006(3)
    [58]Bo-Cai Gao,Yoram J.Kaufman,The MODIS Near-IR water vapor Algorithm,ID:MOD05-Total Perceptible Water...ltpwww.gsfe.nasa.gov/MODIS-Atmosphere/_does /atbd_mod03.pdf.
    [59]Frouin R,deschamps P Y,Lecomte P.Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption near 940nm:Theory and Airborne Verification[J].Journal of Applied Meteo,1990,29:448-460
    [60]Gao B.C,Goetz A.F.H,Column Atmospheric Water Vapor and Vegetation Liquid Water Retrievals from Airborne Imaging Spectrometer Data[J].Journal of Geophysical Research,1990(95):3549-3564
    [61]Yorman J.Kaufman.Bo-Cai,Remote Sensing of Water Vapor in Near IR from EOS/MODIS[J].IEEE Transactions on Geosciences and Remote Sensing,1992.5(30):871-884
    [62]刘焱雄,HBIz,陈永奇.地基GPS技术遥感香港地区大气水汽含量[J].武汉测绘科大学学报,1999,24(3)
    [63]Bo-Cal Gao,Y.J.Kaufman.The MODIS Near-IR Water Vapor Algorithm,http://modisatmos.gsfc.gov/MOD05L2/atbd.Html,1998
    [64]梁宏,刘晶淼,李世奎.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J].自然资源学报,2006,21(4):526-534
    [65]盛裴轩,毛节泰,李建国.大气物理学[M].北京大学出版社,2003,34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700