用户名: 密码: 验证码:
外源钙对镉胁迫下水稻幼苗镉化学形态分布及谷胱甘肽含量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工矿业的发展、农业污水灌溉、污泥和磷肥的施用等,农田土壤Cd污染日趋严重,特别是稻田污染,稻米安全受到影响。Cd污染问题已成为威胁土壤生态安全和制约农业可持续发展的重要因素。如何减轻Cd对水稻的毒害,成为当前亟需解决的问题之一。因此,本文以两份对镉积累吸收能力不同的水稻保持系材料(宜香B、E2B)为供试材料,通过水培试验研究不同钙水平处理对镉胁迫下水稻幼苗根系形态、镉化学形态分布及谷胱甘肽含量的影响。主要研究结果如下:
     (1)水稻幼苗根系形态在不同Ca、Cd浓度下反应各异,材料间存在差异。单Cd胁迫下,两份水稻材料幼苗根系形态表现出低Cd浓度促进根系生长,高Cd浓度则抑制其生长;在Cd胁迫下,施入外缘Ca,两份水稻材料幼苗根系形态随着Ca浓度的增加呈现出先增加后减少的情况,材料间存在差异。具体表现为,在单Cd胁迫下,低镉处理(1mg/L)对水稻幼苗根系生长有一定的促进作用,均略有升高,但高镉(5mg/L)处理下,水稻幼苗根干重、根总长、根表面积、根体积、根尖数明显受到抑制。无论是在低镉(1mg/L)还是高镉(5mg/L)胁迫下,低中浓度Ca(80,160mg/L)明显促进了水稻幼苗根干重、根总长、根表面积、根体积、根尖数的增加,而高浓度Ca(320mmg/L)抑制了其根系的生长。在镉胁迫时不同供钙水平下,两种水稻幼苗均以直径小于或等于0.4mm的根系为主,对其直径小于或等于0.2mm的根系生长影响最大。Ca(80mg/L、160mg/L)有利于促进水稻幼苗的根系生长,缓解镉对水稻的毒害。无论是钙镉单独处理还是钙镉交互处理对于E2B根系生长影响效应明显大于宜香B,耐镉型水稻材料E2B根系各项指标总是高于镉敏感型水稻宜香B。
     (2)随着Cd胁迫水平的提高,两份水稻材料幼苗的总Cd含量和不同化学形态Cd含量均增加,材料间存在差异;在Cd胁迫下,施入外缘Ca后,总Cd含量和不同化学形态Cd含量随着Ca浓度的增加先降低后升高,材料间变化各异,各处理间均达显著性差异。在单镉胁迫下水稻幼苗根系和叶片中氯化钠提取态和醋酸提取态是优势形态,其次是水提取态和乙醇提取态,盐酸提取态最少;随Cd处理浓度的增加,水稻幼苗体内总镉含量升高,水稻幼苗根系中乙醇提取态和水提取态的比例略有下降,而在水稻幼苗叶片中,水提取态的比例逐步上升。两种材料相比较,E2B体内总Cd含量和不同化学形态Cd含量比宜香B体内的低;E2B体内乙醇加水提取态的比例比宜香B低,而醋酸加盐酸提取态的比例比宜香B高,说明其体内的Cd处于难以移动的状态。在镉胁迫下施入一定量的钙元素(80mg/L、160mg/L)后,水稻幼苗根系和叶片总镉含量呈现先降低后升高的趋势。水稻幼苗根系和叶片中氯化钠提取态和醋酸提取态依然是优势形态,其次是水提取态和乙醇提取态;水稻幼苗根系和叶片中乙醇提取态和水提取态的比例下降;水稻幼苗中醋酸和盐酸提取态的比例增加大。当钙达到320mg/L时,水稻幼苗中镉总量反而较正常供钙时高,镉的乙醇提取态和水提取态的比例较正常供钙时增加。无论是钙镉单独处理还是钙镉交互处理对于E2B体内镉总量和镉化学形态影响效应明显大于宜香B。
     (3)水稻幼苗体内谷胱甘肽(GSH)含量在不同Ca、Cd浓度和时期对Ca、Cd的反应各异,材料间存在差异,各处理间达到显著性差异。在单Cd胁迫时,水稻幼苗中GSH含量随着胁迫浓度的增加先升后降。在不同Ca、Cd处理下,低中浓度Ca(80,160mmg/L)提高了镉胁迫下水稻体内GSH含量,减缓了GSH下降的速率,降低了镉对水稻的毒害。低中浓度Ca(80,160mg/L)对低镉(1mg/L)胁迫下水稻材料的缓解效果好于高镉(5mg/L)胁迫下的水稻。高浓度Ca(320mmg/L)则抑制GSH的合成。在单镉胁迫时,水稻幼苗根系和叶片中GSH均随着时间的增加呈现先升后降的趋势;随着处理时间的延长,镉胁迫严重抑制了谷胱甘肽的合成。钙镉处理7天时水稻体内GSH含量明显大于14天时。钙对镉胁迫下水稻根系中的GSH的影响明显大于在其叶片。在整个胁迫过程中,耐镉型水稻材料E2B体内GSH含量总是高于镉敏感型水稻材料宜香B。钙镉处理7天时对宜香B影响效应比E2B大,而钙镉处理14天时则对E2B影响效应大于宜香B。
Along with the development of agriculture, irrigation of agricultural wastewater, fertilization of sludge and phosphatic fertilizer, Cd pollution for farmland soil become more and more serious. In particular, the rice safety is affected by the pollution of paddy field. Cd pollution problem has become a threat to the soil ecological safety and an important factor of restricting the sustainable development of agriculture. How to reduce the infect of Cd on rice become a urgent problems to be solved. Therefore, this article used two copies of rice with different cumulative absorbility of cadmium as experimental material, and researched the influence of the root morphology of rice seedlings, distribution of chemical form of Cd and content of GSH under Cd stress with handling by different concentration of Ca. Main research results are as follows:
     (1) The root morphology of rice seedlings has different reaction under different concentration of Ca, Cd. Only under the stress of Cd, two copies of root morphologies of rice seedlings shows that low Cd concentration promote root growth, high Cd concentration inhibit the growth. Under the stress of Cd and adding Ca, two copies of root morphologies of rice seedlings shows the situation of increasing first, then decreasing along with the increasing of Ca concentration. There is discrepancy between different materials. The specific performance is as below: Under the stress of Cd, handling with low cadmium (1mg/L) promote the growth of rice seedling root, but If handling with higher cadmium (5mg/L), it obviously retrains rice seedlings, root dry weight, total root root, Surface area and volume number. Whether in low cadmium (1mg/L) or higher cadmium (5mg/L), low concentration of Ca (80,160 mg/L) obviously promote the increasing of root dry weight, rice seedlings, total root surface, root volume, root number. And high concentration of Ca (320mg) inhibit the growth of root. Under the stress of Cd and different concentration of Ca, different under two kinds of rice seedlings, with 0.4 mm diameter than the root, the diameter of than 0.2 mm the root growth..Ca (80mg/L, 160mg/L) could promote growth of rice seedling roots and ease the infect of cadmium to rice. Either handling with Cd alone or with calcium and cadmium, the influence to E2B is significantly greater than Yixiang B, and the indexes of E2B is higher than Yixiang B.
     (2)With the increasing concentration of the cadmium ion, the total content and different charges of cadmium ion content in two kinds of rice seedlings increased. And the discrepancy was existed between two kinds of rice seedlings. When the concentration of the calcium ion increased in the instances mentioned before, the total content and different charges of cadmium ion content descended firstly and rose after separately. After the change, the significant differences existed in two kinds of rice seedlings. When the leaves and roots of rice seedlings was treated with cadmium ion solution only, the extract of sodium chloride solution and acetic acid solution is advantage form, followed by water, ethanol extract and the hydrochloric acid extract. With the increase of the concentration of the ambient cadmium ion solution, the proportion of preponderant state in the water and ethanol fraction of rice seedlings roots descended, while the proportion of preponderant state rose gradually in the water fraction of rice seedling leaves. Compared with the two kinds of examples, E2B total compared with different chemical form Cd content Cd content than the lower body is sweet B, Ethanol extraction ratio of water, add hydrochloric acid and the highest proportion of extraction, the body is difficult to move the Cd. Under cadmium stress in the amount of the element calcium 80mg/L, 160mg/L after seedling leaves and roots of rice in sodium chloride and acetic acid extraction state extraction is still advantage, followed by water extraction form ethanol extract and configuration, When 80mg/L for calcium concentration or 160mg/L, rice seedlings of ethanol extract roots and water extraction, while the proportion of rice seedlings in leaf extract and water is ethanol extraction proportion of big changes, Rice seedlings and acetic acid hydrochloric acid extraction of increasing proportion of state. When 320mg/L calcium to rice seedlings, instead of the normal amount of cadmium than for calcium, cadmium ethanol and water extraction proportion of state for calcium than normal. Either alone or with calcium cadmium to interact with E2B calcium cadmium and cadmium in chemical form of cadmium effect significantly greater than Yixiang B is.
     (3) the glutathione (GSH) content has different reaction in different concentration of Ca, Cd. There is discrepancy between different materials. When the rice seedlings were stressed by single cadmium (Cd) for 7days, the increasing cadmium concentration would enhance the content of GSH. The content level of GSH in rice seedlings being stressed for 14 days began to drop after rising first. Its roots and leaves both showed the same trends. The results showed that the synthesis of GSH was severely restrained by cadmium. The longer the stress was, the clearer the final effects were. The calcium of low and moderate concentration (80, 160 mg/L) would improve the level of GSH in rice stressed by cadmium, which slowed the degression speed of GSH and alleviated cadmium (Cd) toxicity to rice seedlings. At the same time, the results indicated that the calcium of low and moderate concentration (80, 160 mg/L) showed better alleviation to the rice seeding of low cadmium concentration (1mg/L) than that in high concentration (1mg/L). But the calcium of high concentration (320 mg/L) would restrict the synthesis of GSH. The amounts of GSH in rice plants treated by calcium and cadmium for 7 days were obviously higher than that treated for 14 days. The effects of calcium on the roots were clearly greater than on the leaves. During the whole process, the content of GSH in Cd-resistant rice species E2B always showed higher than the sensitive species YixiangB. The effects of the stress on YixiangB were more notable than E2B, when treated calcium and cadmium for 7 days. On the contrary, the effect on E2B was more remarkable than the other when treated for 14 days.
引文
[1]Guo B, Liang Y.C.,Zhu Y.G.,et al.Role of salicylic acid in alleviating oxidative damage in rice roots coryza sative subjected tO cadmium stress[J].Environmental Pollution,2007(147):743-749.
    [2]张杰,黄永杰,刘雪云.镧对镉胁迫下水稻幼苗生长及生理特性的影响[J].生态环境,2007.16(3):835-841.
    [3]任艳芳,何俊瑜,刘畅,等.镨对镉胁迫下水稻幼苗根系生长和根系形态的影响[J].生态环境学报,2010,19(1):102-107.
    [4]周青,黄晓华.钙对紫外辐胁迫下小麦幼苗若干生物学特性的影响[J].环境科学,2001,22(6):79-82.
    [5]苏梦云,范铭庆.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响[J].林业科学研究,2000,13(4):391-396.
    [6]Andersson. A.Influence of lime and soil pH on Cd availability to plantss[J] Am.Bio., 1974,3:1981.
    [7]汪洪,周卫.钙对镉胁迫下玉米生长及生理特性的影响[J].植物营养与肥料学报,2001,7(1):78-87.
    [8]李三暑,雷锦桂.镉、磷、钙在姬松茸细胞内的积累和分布特征及[J].食用菌学报,2001,8(4):24-27.
    [9]He Zhenyan, Li Jiangchuan, Zhang Haiyan.Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa[J].Plant Science,2005,(168):309-318
    [10]宗良纲,徐晓炎.水稻对土壤中镉的吸收及其调控措施[J].生态学杂志,2004,23(3):120-123.
    [11]邵国胜.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2004,18(3):239-244.
    [12]杨春刚,朱智伟,章秀福,等.重金属镉对水稻生长影响和矿质元素代谢的关系[J].植物生理科学,2005,
    [13]赵步洪,张洪熙.杂交水稻不同器官镉浓度于累积量[J].中国水稻科学,2006,20(3):306-312.
    [14]白嵩,李青芝,白岩,等.水体镉污染对水稻种苗初期生长的影响[J].吉林农业大学学报,2003,25(2):128-130.
    [15]张杰.镧对镉胁迫下水稻幼苗生长以及生理特性的影响[J].生态环境,2007,16(3):835-841.
    [16]葛才林,骆剑峰.重金属对水稻光合作用和同化物输配的影响[J].核农学报,2005,19(3):214-218.
    [17]徐红霞,翁晓燕,毛伟华,等.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响[J].中国水稻科学.2005.19(4):338-342.
    [18]刘莉.镉胁迫对水稻幼苗干物质积累和活性氧代谢的影响[J].浙江农业学报,2005,17(3):147-150.
    [19]Wu Fei-bo,Dong Jing.Genotypic Difference in the Responses of Seedling Growth and Cd Toxicity in Rice(Oryza sativa L)[J].Agricultural Sciences in China,2006,5(1):68-76.
    [20]肖美秀,林文雄,陈祥旭,等.镉在水稻体内的分配规律与水稻镉耐性的关系[J].中国农学通报,2006,22(2):379-381
    [21]杨春刚,朱智伟,章秀福,等.重金属镉对水稻生长影响和矿质元素代谢的关系[J].中国农学通报,2005,11(21):176-178
    [22]仇硕,张敏,孙延东,等.植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展[J].西北植物学报,2006,26(12):2615-2622.
    [23]Hendny A ,Bener A J,Wart C F E.Cadmium tolerance and toxicity:oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive of Holcus lanatus L[J].Acta Bol Necrl,1992,41:271-281.
    [24]熊愈辉,杨肖娥.镉对植物毒害与植物耐镉机理研究进展[J].安徽农业科学,2006,34(13):2969-2973.
    [25]史新慧,王贺,张福锁.硅提高水稻抗镉毒害机制的研究[J].农业环境科学学报,2006,25(5):1112-1116.
    [26]陈平,吴秀峰,张伟峰,等.硒对福胁迫下水稻幼苗叶片元素含量的影响[J].中国生态农业学报,2006,7(3):114-117.
    [27]贺迪,刘云国等.钙对不同浓度镐胁迫下芦苇幼苗叶绿素及抗氧化酶系统的影响[J].农业环境科学学报,2007,26(1):197-201.
    [28]杨志敏,华筠.小麦发芽期锌的毒害作用和钙的去毒害作用的研究[J].环境科学学报,1992,12(2):230-235.
    [29]王海华.钙对水稻幼苗镍毒害的缓解效应[J].农业环境科学学报,2003,22(3):357-359.
    [30]蔡妙珍,罗安程,林咸勇,等.Ca2+对过量Fe2+胁迫下水稻保护酶活性及膜脂过氧化的影响[J].作物学报,2003.29(5):447-451.
    [31]翟福勤,铜对小麦幼苗的毒害和钙的解毒作用[J].农业环境科学学报,2007,26(2):694-698.
    [32]何龙飞.铝胁迫下钙对小麦根液泡膜功能和膜脂组成的影响[J].南京农业大学学报,2000,(1):10-13
    [33]周卫,汪洪.添加碳酸钙对土壤中镐形态转化与玉米叶片镐组分的影响[J].土壤学报,2001,38(2):219-225.
    [34]宋玉泉,简伟军.Cd2+对玉米种子活力的影响及Ca2+的拮抗作用[J].应用与环境生物学报,1997,3(1):1-25.
    [35]席玉英.钙、锌对玉米幼苗吸收镉、铅的影响[J].山西大学学报(自然科学版),1994,17(1):101-103.
    [36]Korzynska - Polit E, Tukendorf A, Selstam E, et al. Calcium modifies Cd effect on runner bean plants [J]. Environmental and Experimental Botany,1998,(40): 275-286.
    [37]Foyer CH,Descourvieres P,Kuner KJ.Protection agaiast oxygen radicals: an important defense mechanism studied in transgenic plants[J].Plant Cell and Environment, 1994,17(5):507-523.
    [38]Gong M. Calmodulin-binding proteins from zea mays germs[J].Phytochemistry, 1995,40(5):1335-1339.
    [39]杨根平,高向阳.水分胁迫下钙对大豆叶片光合作用的改善效应[J].作物学报,1995,21(6):711-715.
    [40]周卫,汪洪.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响[J].植物营养与肥料学报,1999,5(4):335-340
    [41]He Zhenyan,Li Jiangchuan, Zhang Haiyan.Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa[J].Plant Science,2005,(168):309-318
    [42]Zhang Yixian.Antagonistic effect of calcium, zinc and selenium against cadmium induced chromosomal aberrations and micronuclei in root cells of Hordeum vulgare[J].Mutation Research, 1998(420):1-6
    [43]Amal H. EL-Naggar, Mostafa M. EL-Sheekh.Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid,calcium, glucose and reduced glutathione[J].Environmental Pollution, 1998 (101):169-174.
    [44]曾莹,盖钧镒,吕彗能.作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,44:265-269.
    [45]廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异[J].植物学报,2000,42(2):158-163.
    [46]Liu Yan,Guo hua-mi. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science 2004(167):217-223.
    [47]Wu Fei-bo,Dong Jing.Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity[J].Science of the Total Environment,2007,(385):228-234.
    [48]杨居荣,贺建群.农作物对Cd毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87-91.21(11):176-192.
    [49]许嘉琳,鲍子平.农作物体内铅、镉、铜的化学形态研究[J].生态学报,1991,2(3):244-248.
    [50]江行玉,王长海,赵可夫.芦苇抗镉污染机理研究[J].生态学报,2003,23(5):858-862.
    [51]Wang Xin, Liu Yunguo, Guangming Zeng. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud[J]. Environmental and Experimental Botany,2007.
    [52]汪洪,赵士诚,夏文建,等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42.
    [53]胡文琴,王恬,孟庆利.抗氧化活性肽的研究进展[J].中国油脂,2004,29(5):42-45.
    [54]Zetterstrom R,Eijkman C,Sir Hopkins F G.The Dawn of Vitamins and Other Essential Nutritional Growth Factors [J].ActaPaediatrica ,2006,95(11): 1331-1333.
    [55]陈少裕.植物谷胱甘肽的生理作用及其意义[J].植物生理学通讯.1993,29(3):210-214.
    [56]Liu Yunguo, Wang Xin,Guangming Zeng.Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.)Gaud[J].Chemosphere.2007(69):99-107.
    [57]陈坤明,宫海军.植物谷胱甘肽代谢与环境胁迫[J].西北植物学报,2004,24:1119-1130.
    [58]Ha SB,SmithA P,Howden R ,et al. Phytochelati synthetase genes from Arabidopsis and the yeast Schizosac charomyces pombe[J].Plant Cell,1999.11:1153-1164.
    [59]RauserW E..Phytochelatin[J].Annnu Rev Biochem, 1990,59:61-86.
    [60]朱为民,丁海东.Cd2+胁迫对番茄幼苗抗坏血酸-谷胱甘肽循环代谢的影响[J].华北农学报,2005,20(3):50-53.
    [61]王欣,刘云国.苎麻对镉毒害的生理耐性机制及外源精胺的缓解效应[J].农业环境科学学报,2007,26(2):487-493.
    [62]Sun Qin.Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii[J].Journal of Plant Physiology, 2007,164:1489-1498.
    [63]张宗申,利容千.外缘Ca2+预处理对高温胁迫下辣椒叶片细胞膜透性和GSH、AsA含量及Ca2+分布的影响[J].植物 生态学报,2001,25(2)230-234.
    [64]张燕,李天飞.钙对高温胁迫下烟草幼苗抗氧化代谢的影响[J].生命科学研究,2002,6(4):356-361.
    [65]Chen Z,Gaij W D R.The Aseorbic Add Redox State Controls Caaatd Cell and Stomatal Movement[J].The Plant Cell, 2004,16:1143-1162.
    [66]沈文彪,徐朗菜,叶茂柄,等.抗坏血酸过氧化物酶活性测定的探讨[J].植物生理学,1996,32(3):203-205.
    [67]李珍珍,韩阳.抗坏血酸对小麦种子老化及幼苗脂质过氧化的影响[J].辽宁大学学报,2000,27(2):170-172.
    [68]Yaneva I, mack G, Vunkova-Radeva. Changes in nitrate reductase activity and the protective effect of Molybdenum during cold stress in winter wheat grown on acid soil[J]Journal of plant physiology,1996,149(1-2):211-216.
    [69]王保义,李朝苏,刘鹏,等.荞麦叶内抗氧化系统对铝胁迫的相应[J].生态环境,2006,(4):816-821.
    [70]郑雪宜.抗坏血酸在植物耐铝和UV-B辐射中的作用[D].杭州:华南农业大学,2007.
    [71]王洪政,沈振国.根系抗坏血酸在小麦幼苗耐铝性中的作用[J].西北植物学报,2006,26(4):753-758.
    [72]Sairam P.k. Srivastava G.C, Changes in antioxidant activity in sub-cellular fractions of tolerant and susceotible wheat genotypes in response to long term salt[J]. Plant Sci.,2002:897~904.
    [73]Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-deficient oxidative stress: The root antioxidative system[J]. Physiol Plant,2001, 112(4):487-494.
    [74]Lit Van Standen J. Effects of plant growth regulators on the antioxidative systems in callus of two maize cultivars subjuected to water stress[J]. Plant Growth Regul, 1998,24:55-66.
    [75]徐伟君.高温胁迫对黄瓜幼苗抗坏血酸代谢影响的研究[D].杨凌:西北农林科技大学,2007.
    [76]邬飞波.作物栽培学与耕作学[D].杭州:浙江大学,2002.
    [77]何俊瑜.水稻突变体对镉敏感的生理生化及籽粒中镉积累的基因型差异[D].杭州:浙江大学,2006.
    [78]吴旭红,罗新义.镉胁迫对苜蓿膜脂过氧化的影响及保护系统的应答[J].中国草地,2005,27(3):37-40.
    [79]Sheller F E C, Van Heerwaarden L M, Koevoets P L M, et al. Derivatization of phytochelatins from Silene vulgaris, induced upon exposure toarsenate and cadmium: comparison of derivatization with Ellman S reagent and monobromobimane[J].Agric FoodChem,2000,48:4014-4019.
    [80]唐拴虎,黄旭,张发宝,等.根系分布及施肥模式对水稻生长发育的影响研究初报[J].广东农业科学,2006(9):5-8.
    [81]Vitoria A P,Rodriguez A P M,Cunha M,et al.Structural changes in radish seedlings exposed to cadmium[J].Biologia Plantarum,2003,47(4):561-568.
    [82]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J].植物学报,1995,37(1):14-24.
    [83]彭鸣,王焕校.镉、铅诱导的玉米(Zea mays L)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431.
    [84]袁祖丽,马新明,韩锦峰,等.镉污染对烟草叶片超微结构及部分元素含量的影响[J].生态学报,2005,25(11):2919-2927.
    [85]刘光荣,魏林根.水稻品种间耐铜毒差异性及与根系形态、生理学特征的关系[J].江西农业学报,2005,17(2):13-16.
    [86]陆景陵.植物营养学[M].中国农业大学出版社,2003.
    [87]Hepler PK.Wayne R.Calcium and plant development Aun[J].Rev Plant Physiol.1985,36:397.
    [88]王助陵,等.钙对臭氧伤害小麦的防护作用[J],西北植物学报,1993,13(3):163-169.
    [89]于辉.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布[J].应用生态学报,2008,19(10):2221-222.
    [90]He Jun-Yu, Zhu Cheng, Ren Yan-Fang, et.al. Uptake, Subcellular Distribution, and Chemical Forms of Cadmium in Wild-Type and Mutant Rice[J]. Pedosphere,2008,18(3):371-377.
    [91]杨志敏,郑绍健,胡霭堂.不同磷水平下植物体内镉的积累、化学形态及生理特性[J].应用与环境生物学报,2000,6(2):121-126.
    [92]周小勇,仇荣亮,应蓉蓉,等.锌对长柔毛委陵菜体内镉的亚细胞分布和化学形态的影响[J].农业环境科学学报,2008,27(3):1066-1071.
    [93]Pastorigm, Foyer C.Common components,networks,and pathways of cross-to leranee to stress. The central role of "redox" and abscisic acid-mediated controls[J]. PlantPhysiol,2002,129:460-468.
    [94]曾斌,王飞娟,朱诚,等.AsA-GSH循环对水稻突变体耐汞性的作用[J].作物学报,2008,34(5):823-830
    [95]晁岳恩,张敏,卢玲丽,等.谷胱甘肽在东南景天Zn/Cd超积累过程中的作用[J].浙江大学学报(农业与生命科学版),2007,33(6):597-601
    [96]May M J, Vernoux T, Leaver C, et al. Glutathione homeostasis in plants: implications for environmental sensing and plant development [J]. J Exp Bot, 1998,49: 649 - 667.
    [97]L.Sanita' di Toppi a, B. Pawlik-Skowron'ska d, E. Vurro a, Z. et al. First and second line mechanisms of cadmium detoxification in the lichen photobiont Trebouxia impressa (Chlorophyta) [J].Environmental Pollution .2008(151): 280-286
    [98]Wu Feibo, Chen Fei, Wei Kang, Zhang Guoping.Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes(Hordeum vulgare L.) differing in cadmium tolerance[J]Chemosphere, 2004(57):447-454.
    [99]E.Sko'rzyn'ska-Polit a, A.Tukendorfa, E.Selstam b, T.Baszyn' ski a.Calcium modifies Cd effect on runner bean plants[J]. Environmental and Experimental Botany,1998,(40)275-286
    [100]陈贵林,贾开志.钙和钙调素拮抗剂对高温胁迫下茄子幼苗抗氧化系统的影响[J].中国农业科学,2005,38(1):197-202.
    [101]Gong M, LuitA H, Vander KnightM r, et al. Heat shock induced changes in intracellular Ca2+ level in tobacco seedlings in relation to themotolerance[J]. Plant Physiol, 1998, 116: 4292437.
    [102]康国章,陶均,孙谷畴.H202和Ca2+对受低温胁迫香蕉幼苗抗冷性的影响[J].园艺学报2002,29(2):119-122.
    [103]高洪波,陈贵林.钙调素拮抗剂与Ca2+对茄子幼苗抗冷性的影响[J].园艺学报,2002,29(3):243-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700