用户名: 密码: 验证码:
冷弯薄壁型钢结构住宅组合墙体的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由冷弯薄壁型钢墙架柱和石膏板、OSB板通过螺钉连接而成的组合墙体,是冷弯薄壁型钢结构住宅体系中主要的竖向承重单元。本文对组合墙体的稳定性能进行了研究,并提出了设计方法。
     文中采用拟板法,将冷弯薄壁型钢结构住宅组合墙体简化为一个正交异性板肋体系的力学模型,运用截面形心法得到该正交异性板的等效刚度计算公式,并考察了影响等效刚度的各个因素。通过有限元分析,验证了简化计算模型与等效刚度计算公式的正确性。
     从板的理论出发,推导组合墙体在竖向荷载作用下的稳定性,分析表明其主要与墙体的高厚比有关。文中推导了组合墙体计算高度的确定方法,通过对组合墙体厚度、墙架柱间距、墙面板材、门窗洞口等参数的分析,得到了组合墙体等效弹性模量、承重墙与否及门窗洞口等影响因素对允许高厚比的修正系数,给出了提高组合墙体稳定性的相应措施。
     本文提出通过高厚比验算来保证组合墙体稳定性的设计方法,并给出设计实例,可供实际工程参考。
The assembled wall, which is composed of cold-formed steel wall studs, gypsum board and orient strand board(OSB) fixing with screws, is the main vertical bearing structure in the cold-formed steel residential buildings. In this article the stability of the assembled wall is researched, and a design method is offered.
     Using the pseudo-plate method, the cold-formed steel stud wall assembly is simplified into a mechanical model of orthotropic plate system. Moreover, the formulas to calculate the equivalent stiffness of the orthotropic plate are presented by using the sectional center method, while the influencing factors of the equivalent stiffness are considered. By using the finite element analysis, the simplified model and the formulas have been verified to be valid.
     Studying from the theory of the plate, the stability of the wall under vertical load is deduced, and the analysis shows that it is mainly related to the depth-thickness ratio of the wall. The method to determine the calculated height of the wall is derived. By analysing the parameters such as the depth of the wall, the spacing of the studs, the materials of the wall boards and the size of the hole, etc, the correction factors of the allowable depth-thickness ratio which is affected by the equivalent elastic modular, whether it is load bearing wall or not, and the hole size of its door and windows is presented. And the corresponding measure to improve the stability of the assembled walls has also been put forward.
     The design method to assure the stability of the wall by checking the depth-thickness ratio is presented, also a design example is offered, for the reference in practical projects.
引文
[1] North American Steel Framing Alliance. Prescriptive Method for Residential Cold-Formed Steel Framing[S]. Year 2000 Edition.
    [2]周绪红,石宇,周天华,刘永健,周期石,狄谨,卢林枫.低层冷弯薄壁型钢结构住宅体系[J].建筑科学与工程学报,2005, 22(2):1-14.
    [3]弓晓芸,严虹.国外工业化钢结构住宅应用探讨.工业建筑, 2001, 31(8):17-19.
    [4]何保康,李风,丁国良.冷弯型钢在房屋建筑中的应用与发展.中国钢铁年会论文集, 2001:64-66.
    [5]王炎.我国轻钢结构住宅的现状与发展[J].中国水运(学术版), 2006, 6(5):213-214.
    [6]刘承宗,周志勇.我国轻钢建筑及其发展问题探讨.工业建筑, 2000, 30(4):18-23.
    [7]弓晓芸,严虹.浅谈轻钢结构低层住宅[J].钢结构, 2001(6):27-29.
    [8]薛发.国外低层钢结构住宅发展概况[J].工程建设与设计, 2004(4):46-48.
    [9] AISI/COS/PM 2001, standard for cold-formed steel framing-prescriptive method for one or two family dwelling[S].
    [10] AISI 2001, commentary for the standard for cold-formed steel framing-prescriptive method for one or two family dwellings[S].
    [11]国家建筑钢结构产业“十五”计划和2010年发展规划纲要[R].住宅产业, 2000(9).
    [12]《中国建筑技术政策》(1996年~2010年)[S].
    [13] JG/T182-2005,低层冷弯薄壁型钢结构装配式住宅技术要求[S].(待出版)
    [14]周绪红,石宇,周天华,刘永健,狄谨.中国低层冷弯薄壁型钢住宅产品标准介绍[J]. 2005年第二届中国国际钢结构大会.
    [15]周绪红,娄乃琳,刘永健,狄谨,石宇.低层轻型钢结构装配式住宅及其产品标准[J].住宅产业, 2004, 58(11):本刊专题.
    [16]于炜文.冷成型钢结构设计[M].北京:中国水利水电出版社, 2003.
    [17] Giles G, Green. Light Gage Steel Columns in Wall-Braced Panels[R]. Bulletin No. 35, part2, Engineering Experiment Station, Cornell University, 1947, 10.
    [18] Timoshenko, S.P., and Gere. Theory of elastic stability, 2nd Ed[M]. McGraw-Hill, New York.
    [19] Simman A , Pekoz T. Diaphragm Braced Members and Design of Wall Studs[J]. Journal of Structural Division, Proceedings ASCE, 1976, January, V102(1):77-92.
    [20] American Iron and Steel Institute. Specification for the design of cold-formed steel structural members[S]. Washington:American Iron and Steel Institute, 1986.
    [21] American Iron and Steel Institute. Specification for the design of cold-formed steel structural members[S]. Washington:American Iron and Steel Institute, 1996.
    [22] Miller T H, Pekoz T. Behavior of Cold-Formed Steel Wall Stud Assembles[J]. Journal of Structural Engineering, ASCE, 1993, V119(2):641-651.
    [23] Miller T H, Pekoz T. Behavior of Gypsum-Sheathed Cold-Formed Steel Wall Studs [J]. Journal of Structural Engineering, ASCE, 1994, V120(5):1644-1650
    [24] Lee Y K. Behavior of gypsum-sheathed cold-formed steel wall stud panels[R]. PhD thesis, Oregon State University, 1999, Oreg.
    [25] Lee Y K, Miller T H. Limiting Heights for Gypsum-Sheathed, Cold-Formed Steel Wall Studs[J]. Practice Periodical on Structural Design and Construction, ASCE 2001, 6(2):83-89
    [26] Lee Y K, Miller T H. Axial Strength Determination for Gypsum-Sheathed, Cold-formed Steel Wall Stud Composite Panels [J]. Journal of Structural Engineering, ASCE, 2001, June, V127(6):608-615
    [27] Telue Y, Mahendran M. Behavior of Cold-formed Steel Wall Frames Lined With Plasterboard [J]. Journal of Constructional Steel Research, 2001, 57:435- 452
    [28] Telue Y, Mahendran M. Behavior and Design of Cold-formed Steel Wall Frames Lined With Plasterboard on Both Sides [J]. Engineering Structures, 2004, 26:567– 579
    [29] Tian Y S, Wang J, Lu T J, Barlow C Y. An Experimental Study on the Axial Behavior of Cold-formed Steel Wall Studs and Panels[J]. Thin-Walled Structure, 2004, 42:557-573
    [30] Tarpy T S, Hauenstein S F. Effect of Construction Details on Shear Resistance of Steel-stud Wall Panels[R]. Vanderbilt University. Nashville, TN, USA. A research project sponsored by AISI. 1978. Project No. 1201-412.
    [31] Tarpy T S and Girard J D. Shear Resistance of Steel-Stud Wall Panels[J]. Sixth International Specialty Conference on Cold-formed Steel Structures. University of Missouri-Rolla, MO. 1982:449-465.
    [32] Tissell J R. Structural Panel Shear Walls[R]. Report No.154, APA. Tacoma, WA, USA. 1993.
    [33] Serrette R. Light Gauge Steel Shear Wall Tests[R]. Department of Civil Engineering, Santa Clara, University, Santa Clara, CA, 1994.
    [34] Reynaud Serrette, Kehinde Ogunfunmi. Shear Resistance of Gypsum-sheathed Light-gauge Steel Stud Walls[J]. Journal of Structure Engineering, 1996, 122(4):383-389.
    [35] Serrette R, Nguyen H, Hall G. Shear Wall Values for Light Weight Steel Framing[R]. Report No. LGSRG-3-96, Light Gauge Steel Research Group, Department of Civil Engineering, Santa Clara University. Santa Clara, CA, USA, 1996.
    [36] Serrette R, Hall G, Nguyen H. Dynamic Performance of Light Gauge Steel Framed Shear Walls[J]. In Proceedings of the 13th International Specialty Conference on Cold-formed Steel Structures. St. Louis, MO, USA, 1996:487-498.
    [37] Serrette R, Encalada J, Juadines M and Nguyen H. Static Racking Behavior of Plywood, OSB, Gypsum, and Fiberbond Walls with Metal Framing[J]. Journal of Structure Engineering, 1997, 123(8):1079-1086.
    [38] Serrette R, Hall G, Nguyen H. Additional Shear Wall Values for Light Weight Steel Framing[R]. American Iron and Steel Institute, Washington DC, 1997.
    [39] American Iron and Steel Institute. Shear Wall Design[S]. Publication RG-9804, 1998.
    [40]日本铁鋼聨盟编.薄板輕量形鋼造建築物设计の手引き[M].日本:技报堂出版,2001.
    [41] Emad F Gad, Adrian M Chandler, Colin F Duffield and Graeme Stark. Lateral behavior of Plasterboard-clad Residential Steel Frames[J]. Journal of Structural Engineering, 1999, 125(1):32-39.
    [42] Y S Tian, J Wang, T J Lu. Racking Strength and Stiffness of Cold-formed Steel Wall Frames[J]. Journal of Constructional Steel Research, 2004, 60:1069-1093.
    [43] Natividad Pastor, Antonio Rodriguez-Ferran. Hysteretic Modeling of X-braced Shear Walls[J]. Thin-Walled Structures, 2005, 43:1567-1588.
    [44] Emad F Gad. Performance of Brick-Veneer Cold-Formed Steel-Framed Domestic Structures Subjected to Earthquake Loading[D]. Department of Civil and Environment Engineering, University of Melbourne, Australia, 1997.
    [45] Gad E F, Duffield C F, Chandler A M and Stark G. Testing of Cold-Formed Steel-Framed Domestic Structures[A]. The Proceedings of the 11th European Conference on Earthquake on Mechanics of Structures and Materials, Melbourne, Australia, 1998:323-329.
    [46] Emad F Gad, Adrian M Chandler and Colin F Duffield. Modal Analysisi of Steel-Framed Residential Structures for Application to Seismic Design[J]. Journal of Vibration and Control, 2001, 17(1):91-111.
    [47] L A Fulop, D Dubina. Performance of Wall-stud Cold-formed Shear Panels under Monotonic and Cyclic Loading Part II:Numerical Modeling and Performance Analysis[J]. Thin-walled structures, 2004, 42:339-349.
    [48] DBJ/CT 011-2001, MB-1轻钢龙骨体系低层装配式房屋技术规程[S].
    [49]钟亚军.冷弯型钢低层住宅房屋体系墙体立柱的性能研究[D].西安建筑科技大学, 2003.
    [50]刘前进,何保康,周天华等.低层冷弯型钢房屋墙体立柱承载力试验研究[J].钢结构, 2004, V19(4):26-29.
    [51]何保康,郭丽峰等.轻钢密立柱墙体抗剪性能试验研究[J].建筑结构增刊, 2004(8):338-341.
    [52]石宇.低层冷弯薄壁型钢结构住宅组合墙体抗剪承载力研究[D].西安:长安大学, 2005.
    [53]周天华,石宇,何保康等.冷弯型钢组合墙体抗剪承载力试验研究[J].西安建筑科技大学学报, 2006, 38(1):83-88.
    [54]周绪红,石宇,周天华,狄谨.冷弯薄壁型钢结构住宅组合墙体受剪性能研究[J].建筑结构学报, 2006, V27(3):42-47.
    [55]秦雅菲.冷弯薄壁型钢低层住宅墙柱体系轴压性能理论与试验研究[D].上海:同济大学,2006.
    [56]秦雅菲,张其林,秦中慧,季俊.冷弯薄壁型钢墙柱骨架的轴压性能试验研究和设计建议[J].建筑结构学报, 2006, V27(3):34-41.
    [57]周绪红,李艳敏,石宇,刘永健,庄轶.竖向荷载作用下冷弯薄壁型钢墙架柱的承载力[J].建筑科学与工程学报, 2006, V23(3):7-13.
    [58]李艳敏.冷弯薄壁型钢墙柱体系轴向性能研究[D].西安:长安大学, 2007.
    [59]刘古岷,张若晞,张田申.应用结构稳定计算[M].北京:科学出版社, 2004.
    [60]陈骥.钢结构稳定理论与设计(第三版)[M].北京:科学出版社, 2006.
    [61]吴连元.板壳理论[M].上海:上海交通大学出版社, 1989.
    [62]成祥生.应用板壳理论[M].山东:山东科学技术出版社, 1989.
    [63] C.P.汉斯,吴肇之译.实用薄板理论[M].北京:人民交通出版社, 1982.
    [64]吴连元.板壳稳定理论[M].武汉:华中理工大学出版社, 1996.
    [65]王俊奎,张志民.钣壳的弯曲与稳定[M].北京:国防工业出版社, 1980.
    [66]曹治杰,余传禧.正交异性板的计算[M].北京:中国铁道出版社, 1988.
    [67] Timoshenko, S.P., and Gere, J.M.,中译本.弹性稳定理论(第二版)[M].北京:科学出版社, 1965.
    [68]殷惠光,张跃峰.冷弯薄壁型钢建筑体系的墙架结构设计[J].工程建设与设计, 2004(12):8-10.
    [69] Tat-Ching Fung, Kang-Hai Tan and Tat-Seng Lok. Elastic Constants for Z-Core Sandwich Panels[J]. Journal of Structural Engineering, ASCE, 1994, October, V120(10):3046-3054.
    [70]吴炜.钢桥受压加劲板稳定与加劲肋设计方法研究[D].上海:同济大学,2006.
    [71] Canadian Wood Council et al. Development of Design Procedures for Vibrations Controlled Spans using Engineered Wood Members[R]. Final Report Prepared for Canadian Construction Material Center and Industry Partnership Consortium. 1996.
    [72] ATC, Design guide 1:Minimizing Floor Vibrations[S]. Applied Technology Council, Redwood, California, USA. 1999.
    [73] W.H.Thomas. Poisson’s ratios of an oriented strand board[J]. Wood Sci Technol, 2003(37):259-268.
    [74]博嘉科技.有限元分析软件-ANSYS融会与贯通[M].北京:中国水利水电出版社, 2002
    [75]易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社, 2002
    [76]陈精一,蔡国忠.电脑辅助工程分析-ANSYS使用指南[M].北京:中国铁道出版社, 2001
    [77] GB 50003-2001,砌体结构设计规范[S].
    [78]施楚贤.砌体结构理论与设计(第二版)[M].北京:中国建筑工业出版社, 2003.
    [79]唐岱新.砌体结构设计规范理解与应用[M].北京:中国建筑工业出版社, 2002.
    [80] GB 50018-2002,冷弯薄壁型钢结构技术规范[S].
    [81] GB/T 9775-1999,纸面石膏板[S].
    [82] GB/T 4897.1-2003,刨花板[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700