用户名: 密码: 验证码:
基于Perlin噪声函数的三维表面纹理生成及分类
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过程纹理生成一直是计算机虚拟现实领域中一个至关重要的问题,它主要用于模拟自然界中常见的大理石、云朵、树木表皮等纹理。大多数的过程纹理都是基于某类噪声函数的,本文采用的被广泛应用的Perlin噪声函数是其中最强大的一种。在过去,由于过程纹理计算量很大,在实时绘制中很少使用。但是GPU的出现,促进了过程纹理在实时渲染中的广泛应用。目前噪声函数作为生成过程纹理的重要工具主要针对二维的过程纹理生成,三维过程纹理的生成仍在有待探索。
     纹理分类是涉及数字图像处理、机器学习、模式识别等多门学科的内容的热点问题,它的目的是识别出具有不同纹理特征的物体的各种表现形式。纹理分类在计算机视觉、图像处理及计算机图形学领域和工程技术方面有着非常广泛的应用背景。分类的方法主要包括使用聚类的方法、基于机器学习的方法等。目前三维表面纹理分类技术的研究是图像处理领域的前沿方向,有着广阔的研究前景。
     本文首先介绍了虚拟现实中的过程纹理生成,以及模式识别领域中纹理分类的几种方法和相关背景研究,进而展开对三维表面纹理的生成和分类研究。在前期Perlin噪声函数生成的Cellular Texture的基础上,运用GPU编程技术,提出了三维过程纹理的构造方法。并且基于朗伯模型将生成结果,应用到三维纹理重光照中。针对Cellular Texture构造函数的结构特点,本文使用函数参数的组合系数作为表达纹理的特征向量,实现了基于SVM和聚类分析的两种分类器的三维表面纹理分类算法,并进行了大量的实验。实验结果证明本文提出的三维表面纹理生成和分类算法是行之有效的,并为今后进一步的研究打下了一定的基础。
Procedural texture generation has been a critical issue in the field of computer virtual reality, which is mainly used to simulate the common nature marble, clouds, trees and other skin texture. Most of the procedural texture functions are based on certain types of noise. Perlin noise used in this paper is the most powerful one, which is widely used. In the past, the process of texture is rarely used in real-time rendering for its large number calculation. However, the emergence of GPU promotes wide applications of procedural texture in real-time rendering. Recently, noise function is mainly directed as an important tool for generating procedural texture towards two-dimensional aspect, three-dimensional procedural texture generation is still waiting to be explored.
     Texture classification is a hot issue related to digital image processing, machine learning, pattern recognition and many other subjects. The purpose is to recognize various manifestations of an object, which have different kinds of texture features. Texture classification has broad applications in computer vision, image processing, computer graphics and engineering technology, the methods of which includes clustering, machine learning, and so on. Still, three-dimensional surface texture classification study is the forefront of image processing in the field direction, and has broad researching prospects.
     This article firstly introduces several research methods and relevant background of texture classification in the field of pattern recognition feature extraction, and that of texture generation in the field of virtual reality, then expand to the research on three-dimensional surface texture. This paper use GPU programming to propose a construction method of three-dimensional procedural texture, such as Cellular Texture, which is the following formation of Perlin noise function. And the results based on Lambertian model will be applied to three-dimensional texture re-lighting. For the structural characteristics of Cellular Texture constructor, we treat the factors' combination of the function arguments as an the feature vector of texture expression, to achieve surface texture classification algorithm based on classifier of SVM and on clustering analysis, finally make a lot of experiment. Experimental results show that the algorithm of the proposed three-dimensional surface texture classification and generation is effective, and set a foundation for the future research.
引文
[1]A. Zalesny, L. Van Gool. A compact model for viewpoint dependent texture synthesis. SMILE 2000. Workshop on 3D Structure from Images, Lecture Notes in Computer Science 2018,2000.123-143..
    [2]X. Tong, J. Zhang, L. Liu, et al. Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Transactions on Graphics (TOG). Proc. of the 29th annual conference on Computer graphics and interactive techniques,2002. Vol.21 Issue 3, pp.665-672.
    [3]X. Liu, Y. Yu, H. Y. Shum. Synthesizing Bidirectional Texture Functions for Real-World Surface, SIGGRAPH2001.
    [4]A Schodl, R Szeliski, D H Salesin et al. Video textures. Proc of ACM SIGGRAPH. Los Angeles:ACM Press,2000.362-368
    [5]L Ying, A Hertzmann, H Biermann et al. Texture and shape synthesis on surfaces. Europe Graphic Work on Rendering. Paris:CA Press,2001.135-141
    [6]L. Y. Wei, M. Levoy. Texture synthesis over arbitrary manifold surfaces. Proc of ACM SGGRAPH. Los Angeles:ACM Press,2001.355-363
    [7]K. J. Dana, B. Van Ginneken, S. K. Nayar, J. J. Koenderink. Reflectance and Texture of Real-World Surfaces. ACM Transactions on Graphics,1999,18(1):1-34.
    [8]K. Perlin. An image synthesizer. Computer Graphics. SIGGRAPH'85 Proceedings (July 1985), B. A. Barsky, Ed., vol.19, pp.287-296.
    [9]K. Perlin, E. M. Hoffert. Hypertexture. Computer Graphics SIGGRAPH'89 Proceedings (July 1989), J. Lane, Ed., vol.23, pp.253-262.
    [10]K. Perlin. Perlin noise. http://freespace.virgin.net/hugo.elias/models/m_perlin.html
    [11]M. Fairclough. Cloud Cover. http://freespace.virgin.net/hugo.elias/models/m_clouds.html
    [12]T. Worley. A Cellular Texture Basis Function. Proc. Of SIGGRAPH 1996, (July 1996). ACM Press,291-294.
    [13]B. Chan, M. McCool. Worley Cellular Textures in Sh. ACM SIGGRAPH 2004 Posters, (August 2004), p.18
    [14]M.-Landis. Cellular Texture Components for DarkTree 2.5 http://amber.rc.arizona.edu/ darktree/cellular.html
    [15]M. Chantler. The effect of illuminant direction on texture classification. PhD thesis, Dept.of Computing and Electrical Engineering, Heriot-Watt University,1994.
    [16]T. Leung, J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, Vol.43, No.1,2001.
    [17]J. Dong, Mike Chantler. Estimating Parameters of Illumination models for the synthesis of 3D surface texture.Proceedings of the 2004 International Conference on Computer and Information Technology,September 2004.
    [18]K.J. Dana, et al. Reflectance and Texture of Real-World Surfaces. ACM Transactions on Graphics,1999.18(1):1-34.
    [19]K.J. Dana, S.K. Nayar.3d textured surface modeling. IEEE Workshop on the Integration of Appearance and Geometric Methods in Object Recognition,1999:46-56.
    [20]J. Dong, M. Chantler. On the relations between four methods for representing 3D surface textures under multiple illumination directions. in Proceedings of the 2004 International
    [21]J. Dong. Three-dimensional surface texture synthesis. PhD thesis. Department of Computer Science. Heriot-Watt University, Edinburgh, UK. Spence A. D.
    [22]M. J. Chantler. Optimal illumination for three-image photometric stereo acquisition of surface texture. The 3rd International workshop on texture analysis and synthesis. France: Nice,2003.89-94.
    [23]J. Dong, Mike Chantler. Capture and synthesis of 3D surface texture. International Journal of Computer Vision (IJCV),2005,62(1-2),177-194
    [24]M. Oren, S. Nayar. Generalization of the Lambertian Model and Implications for Machine Vision. SIGGRAPH 1994, Revised March 4,1994.
    [25]M. Oren, S. Nayar. Generalization of Lambert's reflectance model. SIGGRAPH 1994: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp.239-246,1994.
    [26]K. Ershov, K. Kolchin, Myszkowski. Rendering Pearlescent Appearance Based On Paint-Composition Modelling. Computer Graphics Forum 20(3), pp.227-238,2001.
    [27]F. E. Nicodemus, J.C. Richmond, J. J. Hsai, Geometrical considerations and nomenclature for reflectance. U.S. Dept. of Commerce, National Bureau of Standards Monograph 160, 1977.
    [28]Z. Lin, T. T. Wong, H. Y. Shum, Relighting with the reflected irradiance field:representation, sampling and reconstruction. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001. Vol.1, pp.561-567.
    [29]C. Gullon. Height recovery of rough surfaces from intensity images. PhD thesis, Heriot-Watt University, Edinburgh, Scotland,2003.
    [30]J. H. Lambert, Photometria sive de mensura et gradibus Zuminus,colorum et umbrae (Eberhard Klett, Augsburg, Germany,1760).
    [31]S. Ershov, K. Kolchin, K. and Myszkowski. Rendering Pearlescent Appearance Based On Paint-Composition Modelling. Computer Graphics Forum 20(3), pp.227-238,2001.
    [32]K. E. Torrance, E. M. Sparrow. Theory for off-specular reflection from roughened surfaces. Journal of Opt. Soc. Am.57,1967,1105-1114.
    [33]B. Phong. Illumination for computer generated pictures. Communications of the ACM,18(6), 1975.311-317.
    [34]R. L. Cook, K. E. Torrance. A Reflectance Model for Computer Graphics. ACM Transactions on Graphics (TOG),1982,1(1):7-24.
    [35]S. K.Nayar, K.Ikeuchi, T. Kanade. Surface Reflection:Physical and Geometrical Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(7): 611-634.
    [36]X. D. He, K.E.Torrance, F. X. Sillion. Greenberg, D. P. A comprehensive physical model for light reflection. Proceedings of SIGGRAPH 1991,175-185.
    [37]M. Oren, S. K. Nayar. Generalization of Lambert's reflectance model. Proceedings of the 21st annual conference on Computer graphics and interactive techniques,1994.239-246.
    [38]R.Woodham. Analysing images of curved surfaces. Artificial Intelligence,1981,17:117-140.
    [39]B. Horn, M. Brooks, Shape from shading. MIT Press, Cambridge, MA.1989.
    [40]S. K. Nayar, K. Ikeuchi, T. Kanade. Determining Shape and Reflectance of Hybrid Surfaces by Photometric Sampling, IEEE Journal of Robotics and Automation,1990,6(4):418-431.
    [41]G. Kay, T.Caelli. Estimating the parameters of an illumination model using photometric stereo. Graphical models and image processing,1995,57(5):365-388.
    [42]H. Rushmeier, G. Taubin, A. Gueziec. Applying Shape from Lighting Variation to Bump Map Capture. Proceedings of the 8th Eurographics Rendering Workshop, Saint-Etienne, France,1997.35-44.
    [43]H. Saito, K. Omata, S. Ozawa. Recovery of shape and surface reflectance of specular object from rotation of light source. In Proceedings of Second International Conference on 3-D Digital Imaging and Modeling (3DIM99), Ottawa,1999.526-535.
    [44]S. Lin, S. W. Lee, Estimation of diffuse and specular appearance. Computer Vision,1999. The Proceedings of the 7th IEEE International Conference,1999,2:855-860.
    [45]K. Ikeuchi, K. Sato. Determining reflectance properties of an object using range and brightness images. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1991, 13(11):1139-1153.
    [46]J. Lu, J. Little. Reflectance function estimation and shape recovery from image sequence of a rotating object. Proceedings of the 5th International Conference on Computer Vision,1995. 80-86.
    [47]Y. Sato, M.D. Wheeler, K. Ikeuchi. Object shape and reflectance modeling from observation. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques,1997.379-387.
    [48]R. Ramamoorthi, P. Hanrahan. A signal-processing framework for inverse rendering International Conference on Computer Graphics and Interactive Techniques. Proceedings of the 28th annual conference on Computer graphics and interactive techniques,2001.117-128.
    [49]K. Nishino, Y. Sato, K.Ikeuchi. Eigen-Texture method:appearance compression and synthesis based on a 3D model. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2001,23(11):1257-1265.
    [50]R. Epstein,P.W Hallinan, A.L. Yuille.5±2 eigen images suffice:an empirical investigation of low-dimensional lighting models. In Proceedings of the Workshop on Physics-Based Modeling in Computer Vision,1995.108-116.
    [51]Z. Zhang. Modeling geometric structure and illumination variation of a scene from real images. Proceedings of International Conference on Computer Vision (ICCV'98), Bombay, India,1998.1041-1046.
    [52]A. S. Georghiades, P. N. Belhumeur, D. J. Kriegman. Illumination-based image synthesis: creating novel images of human faces under differing pose and lighting. In Proceedings of Workshop on Multi-View Modeling and Analysis of Visual Scenes,1999.47-54.
    [53]R. Ramamoorthi, Analytic PCA construction for theoretical analysis of lighting variability in images of a Lambertian object. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002,24(10):1322-1333.
    [54]S. B. Kang. A survey of image-based rendering techniques. Technical Report. Cambridge Research Laboratory, CRL 97/4.1997.
    [55]L. McMillan, S. Gortler. Image-based rendering:A new interface between computer vision and computer graphics. ACM SIGGRAPH Computer Graphics,1999.33(4):61-64.
    [56]M. L. Koudelka, P. N. Belhumeur, S. Magda,, D. J. Kriegma. Image-based modeling and rendering of surfaces with arbitrary BRDFs. Computer Vision and Pattern Recognition. CVPR 2001. In Proceedings of the 2001 IEEE Computer Society Conference on,2001,1: 8-14.
    [57]W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, L. McMillan. Image-based 3D photography using opacity hull. ACM Transactions on Graphics, Proceedings of the 29th annual conference on Computer graphics and interactive techniques,2002,,21(3):427-437.
    [58]T. Wong, C. Fu, P. Heng, C.Leung, The plenoptic illumination function, IEEE Transactions on Multimedia,2002,4(3):361-371.
    [59]A. Rao and G. Lohse, "Identifying high level features of texture perception," CVGIP: Graphical Models and Image Processing, vol.55, pp.218-233, May 1993.
    [60]G. Lohse, H. Rueter, K. Biolsi, and N. Walker," calssifying visual knowledge representations: A foundation for visualization research," in Visualization'90:Proceediings of the First Conference on Visualization, pp.131-138, IEEE Computer Society Press,1990. San Francisco, CA.
    [61]G. Lohse, N. Walker, K. Biolsi, and H. Rueter. Classifying graphical information. Behaviour and Information Technology, vol.l0,pp.419-436,1991.
    [62]A. Rao, G. Lohse, Towards a texture naming system:identifying relevant dimensions of texture perception. IBM Research Technical Report,1993.forth-coming.
    [63]吴琼,程文娟多维特征空间聚类在工业物料识别中的应用合肥工业大学学报(自然科学版)2002年04期
    [64]郑瑶函,叶正麟,汤力,潘璐璐 纹理元提取与纹理合成的自由参数估计计算机工程与应用2004年36期
    [65]Z. Wang, Zh. Wang, Y. Mao. A Description Based on Texture Direction and Clustering and Segmentation to Directional Texture Images [J]. Journal of Image and Graphics,2002,7(12): 1279-1284.
    [66]K. Karu. Is there any texture in the image [J]. Pattern Recognition,1996,29(9):1437-1446
    [67]刘保权,刘学慧,吴恩华基于GPU的实时深度图像前向映射绘制算法Journal of Software, Vol.18, No.6, June 2007, pp.1531?1542
    [68]孙悦,马久河基于GPU的图像快速显示技术信号与信息处理2008.7Crystal S.Oh, Yang-Hee Nam GPU-based 3D Oriental Color-Ink Rendering ICAT2005
    [69]Chih-Chung Chang, Chih-Jen Lin, LIBSVM:a Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [70]S. Brooks, N. Dodgson. Self-similarity based texture editing. in Proceedings of the 29th annual conference on Computer graphics and interactive techniques.2002.
    [71]J. Dong, et al. Self-Similarity Based Editing of 3D Surface Textures. in Proceedings of the 4th International Workshop on Texture Analysis and Synthesis.2005.
    [72]李宏东等译.模式分类,第二版,电子工业出版社,2003.
    [73]A K Jain, R C Dubes. Algorithms for Clustering Data. NJ:Prentiee-Ha 1988.
    [74]P. Berkhin. Survey of Clustering Data Mining Techniques, Accrue Software Research Paper, 2002.
    [75]N. Cristianini, J. S. Taylor. An introduction to support vector machines and other kernel based learning methods. Cambridge University Press,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700