用户名: 密码: 验证码:
混凝土重力坝在水下冲击波作用下的损伤及防护决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在世界范围内的高坝建设仍处于发展的阶段,一批150m-300m左右的高坝已经建成或正在建设中。这些高坝水库在和平时期,提供能源、通航、灌溉为社会创造巨大财富,但一旦发生破坏,将给国家和人民的生命财产带来巨大的损失和灾难。毋容置疑,水库大坝是现代军事对抗中的主要打击目标之一。而且未来战争,以远程攻击和精确打击为主的战争模式已基本形成,因此,预测混凝土重力坝在水下强冲击波作用下的损伤,建立完善的防护工程体系,有着重要的科学意义和工程价值。
     本文通过物理模型试验手段,对混凝土重力坝在水下强冲击波作用下的损伤特征进行了研究,并提出了防护方案及应急决策系统的框架。
     首先,对远距离深水爆炸引起的混凝土坝危险性进行了估计。通过经验公式计算了大计量炸药水下爆炸时作用在坝体上的冲击波压强,在弹性坝体条件下,用ANSYS软件数模了在冲击波作用下不同库水位时大坝的应力和应变场。还对断裂后的坝块运动和溃坝流量进行了估算。
     其次,分析论证了模型试验的可行性,在模型试验中成功的使用多个锤的机械冲击模拟水下强冲击波,设计了一个简易的装置用来测定坝面冲击力,并用切片多自由度动力计算方法,计算验证了试验结果的可靠性,还在相同冲击下对坝基两种不同接触条件(锚固和弱连接条件)做了对比模型试验,比较了坝基接触条件对坝体损伤的影响。尽管模型与原型的损伤相似性还无法被验证,但是可以通过本文的试验方案近似预测混凝土坝的损伤,并为确定防护措施提供比较可靠的依据。
     接着,针对高坝灾难控制这一核心的工程问题,试选用软质聚氨酯材料作为保护材料,对混凝土高坝在水下爆炸冲击波作用下的防护进行了研究。测量了软质聚氨酯材料的主要力学性质,通过两类对比试验(目标为刚性墙和模型坝),观察了在水下冲击波作用下软质聚氨酯材料作为保护结构的作用,然后提出了在水下爆炸强冲击波作用下,使用软质聚氨酯材料的设计方案。
     最后,文中设计了系统的总体结构框架。由于深水核爆条件下混凝土重力坝风险管理决策支持系统是一个复杂的大跨度的系统,因此对大坝的危险性、易损性计算模型提出了设计思路,提出了混凝上坝结构损伤谱的构建方法,采用多属性效用理论对决策分析模型进行了设计,该模型可为决策者提供应急决策服务。
At present, worldwide dam construction is still in development stage, about a number of150m-300m high dam has been built or are under construction. In times of peace, they are often designed and built to store water for hydroelectric power, drinking and irrigation in adjacent areas, to add water recreation spaces, to create waterway for the short-distance transport of people and goods across deep canyons in mountainous regions, and to regulate the river during a flood event. On the other hand, the breaching and an accidental damage of a dam can lead to a catastrophic flood event, displace millions of people and environmental pollution. And in the future, war tactics will include more long-range and precision attacks than in the past. Dams are also vulnerable targets to man-made explosion events, particularly with the advent of advanced long-range and precision missile technologies. Therefore, it has important scientific significances and high practical engineering application values to study damages prediction and protection decision-making of the concrete gravity dam by the action of far-field deep-water explosion.
     This paper presents the model test investigation of the concrete gravity dam structure by the action of an underwater shock wave, and protection scheme and emergency decision-making system's frame was proposed.
     First of all, the risk of the concrete dam by the action of long-range deep-water explosion was estimated. In this paper the pressure of shock wave acting on the dam is calculated using a common used empiric formula. On the supposition of elasticity, the stress-strain and displacements is simulated with ANSYS software with different reservoir level. In the end of this part a quantitative estimated on the movement of fractured dam.
     Second, the feasibility of the model test and test theories were analyzed. To study the effect of a strong underwater shock wave on a concrete dam, in model test mechanical impact tests have been successfully implemented using multiple hammers to mimic underwater shock wave effects on concrete dams. A new device was deployed for a direct measurement of the impact force at the upstream face of dams. Dynamic analysis according to a case was conducted, by calculating the results verify the effectiveness device for a direct measurement of the impact force. Two kinds of contact condition between dam and base such as weak contact and anchoring contact are selected to carry out destructive tests of concrete gravity model dam under impact loading, compared with base-dam contact condition to dam damage influence. Although the damage similarity of the model and prototype is not verified, this method may be used to approximately forecast the damage of concrete dam and offer evidence to define a protection project.
     Then, to focus on the key engineering problem of process control of dynamic catastrophe of high dams, studied on the property of the flexible polyurethane foam as a material to protect the concrete gravity dam acting by strong underwater shock wave. The first, the main mechanical parameters of flexible polyurethane foam were measured. Second, two kind comparison tests(target:rigid wall and dam) were completed to examine the effect of flexible polyurethane foam layer on protection of structures from action by shock wave. Finally, the design scheme for thickness of the flexible polyurethane foam protection layer of the concrete dam in non-contact underwater explosion was proposed.
     Finally, the dam risk management decision support system under the deep water nuclear explosion condition is a complex, large-scale system. In this paper the overall structure of the system framework was designed. The idea of the risk, the vulnerability computing model of the dam was designed. And spectrum of structural damage of the concrete dam construction method was proposed. A multi-attribute utility theory was used to design the decision-making model in the early stage. System will provide to an emergency decision-making services to decision makers.
引文
[1]河内.蚍蜉撼树谈何易--从技术角度看台湾攻击三峡大坝的可能性[J].舰船武器,2004(08):62-64.
    [2]张晓锐,李敏勇,常玉国.传统与未来作战模式的机理分析[J].舰船电子工程,2010,30(1):6-10.
    [3]罗霄.未来战争模式及对策浅议[J].现代防御技术,2005,33(3):2-4.
    [4]石少卿,张湘冀,刘颖等.硬质聚氨酯泡沫塑料抗爆炸冲击作用的研究[J].振动与冲击,2005,24(5):56-57.
    [5]陈在铁.高拱坝的主要失效模式与失效风险研究[D].南京:河海大学,2007.
    [6]潘超.关于硅重力坝在爆炸冲击作用下的仿真分析[D].武汉:武汉大学,2005.
    [7]方卫华.大坝安全监测的若干问题探讨[J].水利技术监督,2001(1):26-29.
    [8]蔚维斌,李珍照.混宁土坝安全综合评价指标体系探讨[J].大坝与安全,1995(3):33-34.
    [9]Cole.R.H. Underwater Explosions[M]. NewJersey:LISA, Princeton University Press.1948.
    [10]库尔.水下爆炸[M].罗耀杰,韩润泽,官信译.第一版,北京:国防工业出版社.1960.
    [11]李文贺.舰船水下爆炸冲击波载荷作用下动力响应研究[D].大连:大连理工大学,2009.
    [12]郑思顼.水下爆炸冲击波对船体结构的损伤研究[D].大连:大连理工大学,2008.
    [13]李翼琪,马素贞.爆炸力学[M].科学出版社,PP.318-355,1992.
    [14]颜事龙,张金城.工业炸药水下爆炸能量估算[J].爆破器材.1992,22(2):1-4.
    [15]汪大力,张涛,颜事龙等.球形装药水下爆炸初始冲击波能量计算[J].淮南矿业学院学报,1995,15(3):47-51.
    [16]周睿.冯顺山,吴成.条形药包冲击波峰值超压工程计算模型[J].工程爆破,2001,7(4):19-23.
    [17]吴成,李京,冯顺山.一条形药包冲击波参数的简单计算模型探讨[J].矿冶.2002,11(1):8-11.
    [18]张鹏翔,顾文彬,叶序双.浅层水中爆炸直达波压力峰值计算方法探讨[J].解放军理工大学学报(自然科学版).002,3(1):57-59.
    [19]钱胜国.近自由水面水下爆炸时水中冲击波特性[J].爆炸与冲击,1983,4:148-153.
    [20]张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究[J].爆炸与冲击,2004,24(2):183-187.
    [21]顾文彬,叶序双,刘文华.界面对浅层水中爆炸冲击波峰值压力影响的研究[J].解放军理工大学学报(自然科学版).2001,2(5):61-63.
    [22]王振宇.水下爆炸作用下结构的动态响应分析[D].哈尔滨:哈尔滨工程大学.2008.
    [23]Snay.H.G. TheSealingofUnderwaterExPlosionPhenomena[R]. AD-271468.1961,1124-1132.
    [24]BR ITT J R. Bottom reflect ion of underwater explosion shock w aves[J]. Computer Program.1971 (6):66-108.
    [25]Swisdak M.M. Explosion effects and properties (part Ⅱ):Explosion effects in water, ADA-056694 [R].Springfie1d:NT I S,1986.
    [26]Slifko J B. Pressure-Pulse Characteristics of Deep Explosions as Functions of Depth and Range[R].AD-661804,1967.
    [27]Heaton.K.C. Effeets of Non-Sphericity and Radiative Energy Loss on the Migration of the Gas Bubble from Underwater Explosion[R]. AD-A166823.1986:1145-1164P.
    [28]Zukas, J.A. High Velocity Impact Dynamics, Johwiley&Sons, New York,1990.
    [29]Taylor.G.I. The Pressure and Impulse of Submarine Explosion waves on Plates[J]. Underwater Explosion Research, Vol.I, office of Naval Research,1950:1155-1173.
    [30]Snay.H.G, Christian.E.A. The Response of Air-Bached Plates to High-Amplitude Underwater shock waves. NAVROD Report 1952:321-333.
    [31]Schechter.R.S, Bort.R.L. The Response of Two Fluid-Coupled Plates to an Incident Pressure Pulse[R]. Naval Research Laboratory Memorandum Report4647,1981:3594-3652.
    [32]Goldsmith. M. Impact, the Theory an Physical Behavior of Colliding Bodies[M]. Edward Arnold Publishers. Ltd.,1960.
    [33]Huang, H. Transient interaction of plane acoustic waves with a spherical elastic shell[J]. The Journal of the Acoustical Society of America 1969(45),661-670.
    [34]Huang.H. Transient Bending of a Large Elastic Plate by an Incident Spherical Pressure Wave[J]. Journal of Applied Meehanies.1974,41(3):772-776.
    [35]Huang, H. Transient response of two fluid-coupler cylindrical elastic shell to an incident pressure pulse. Journal of Applied Mechanics 1979(46),513-518.
    [36]Huang, H. Transient response of two fluid-coupler cylindrical elastic shell to an incident pressure pulse[J]. Journal of Applied Mechanics 1979(46),513-518.
    [37]Huang, H., Kiddy, K.C. Transient interaction of a spherical shell with an underwater explosion shock wave and subsequent pulsating bubble[J]. Shock and Vibration 1995(2),451-460.
    [38]Geers, T.L. Residual potential and approximate methods for three-dimensional fluid-structure interaction problems[J]. The Journal of the Acoustical Society of America1971(49),1505-1510.
    [39]Geers, T.L. Doubly asymptotic approximations for transient motions of submerged structures[J]. The Journal of the Acoustical Society of America 1978(64),1500-1508.
    [40]Geers, T.L., Felippa, C.A.. Doubly asymptotic approximations for vibration analysis of submerged structures[J]. The Journal of the Acoustical Society of America 1983(73),1152-1159.
    [41]Lam KY, Zhang ZJ, Gong SW, Chen ES. Transient response of a twolayered elastic cylindrical shell impinged by an underwater shock wave[C]. Composites Part B:Engineering 1998;29B:673-85.
    [42]Gong SW, Lam KY. Transient response of composite submerged hull subjected to underwater explosive shock[J]. Composite Structures 1998.41:27-37.
    [43]Lam KY, Zhang ZJ, Gong SW, Chen ES. Transient response of orthotropic composite cylinder exposed to underwater shock wave[J]. Composite Structures 1998,43:179-94.
    [44]Gong SW, Lam KY. Transient response of composite ship section subjected to underwater explosive shock[J]. Composite Structures 1999,46:65-71.
    [45]Liang, C.C., Lai, W.H., Hsu, C.Y. Study of the nonlinear response of a submersible pressure hull[J]. International Journal of Pressure Vessels and Piping,1998(75); 131-149.
    [46]Liang, C.C., Hsu, C.Y., Lai, W.H. A study of transient responses of a submerged spherical shell under shock waves[J]. Ocean Engineering,2000(28); 71-94.
    [47]Liang, C.C., Tai,Y.s.,. Shock responses of a surface ship subjected to noncontact underwater explosions. Ocean Engineering,2006(33);748-772.
    [48]吴有生,彭兴宁,赵本立.爆炸载荷作用下舰船板架的变形与破损.中国造船[J].1995,36(4):55-63.
    [49]李玉节,张效慈,吴有生等.水下爆炸气泡激起的船体鞭状运动.中国造船.2001,42(3):1-9.
    [50]刘建湖,赵本立,吴有生.船舶结构在水下爆炸冲击波作用下的非线性响应[C].第五次全国爆轰与冲击动力学学术艺论文集.1997,301.308.
    [51]张效慈,李玉节,赵本立.深水爆炸水动压力场对潜体结构的动态影响.中国造船,1997(4):61-68.
    [52]姚熊亮,瞿祖清,陈起富.爆炸载荷下航母飞行甲板的弹塑性动力响应[J].哈尔滨工程大学学报,1996,,17(3):21-30.
    [53]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究[J].中国造船,2001,42(2):49-55.
    [54]朱锡,刘燕红,张振中等.非接触爆炸载荷作用下舰船板架的塑性动力响应[J].武汉造船,1998:1-4.
    [55]张振华,朱锡,冯刚等.水下爆炸冲击波作用下自由环圆柱壳动态响应的数值仿真研究[J].振动与冲击,2005,24(1):45-48.
    [56]余晓菲,刘土光,余宏坤.圆柱壳在水下爆炸载荷下的流—固祸合响应分析[J].振动与冲击.2007,26(7):125—128,196.
    [57]胡春红,冯新等,周晶等.水下爆炸作用下结构响应的数值计算研究综述[J].工程爆破,2007,13(1):31.34.
    [58]高明涛,李昕,周晶.水下钻孔爆破水中冲击波的数值模拟研究[J].水电能源科学,2009,,27(4):139-141.
    [59]钱学森.土岩爆破文集[M].北京:水利工业出版社,1980.
    [60]张振华,汪玉.舰艇结构在水下爆炸冲击作用下损伤响应的相似问题研究框架及其工程应用[J].海军工程大学学报,2010,22(6):79-82.
    [61]Rentz.T.R. Experimental Investigation into the Dynamic Response of Stiffened Flat Plate Loaded Impulsively by an Underwater Shockwave[R].AD-A151321.1984:1124-1129.
    [62]Malakhof.A. Method and system for Determining effect of underwater Explosion on Submerged Structures[R]. Patent, AD-D013205.1984:265-274.
    [63]Giford.L.N, Carlbery.J.R, Wiggs.A.J,etal. Explosive testing of full thickness precacked weldments. David Taglor Research Center report DTRC-SSPD-88-172-42.1988.
    [64]Houlston.R. Shaten.J.E. Structural response of panels to shock Loading[C].55th Shock and Vibration Bulletin(Part 2).1985:689-695.
    [65]Houlston R.Damage Assessment of Naval Steel Panels Subjected to Tree-field and Enhanced Air-blast Loading[C]. Advances in Marine Structures-2, Elsevier Science Publishers Ltd.,1991
    [66]R.Rajendran. Linear elastic shock response of plane plates subjected to underwater explosion. International Journal of Impact Engineering,25(2001):493-506.
    [67]Ramajeyathilagam K. Non-Linear transient dynamic response of rectangular plates under shock loading. International Journal of Impact Engineering,24 (2000):999-1015.
    [68]Talley.M.A.Deep Depth UNDEX Simulator Study. Proceedings of the 62nd shock and vibration symposium.1991,4:16-28.
    [69]彭兴宁.船舶结构对水下非接触爆炸的响应.舰船力学情报,994,(3):26.
    [70]HooFatt.M.S, Liao.S.W. Plastie Failure of Cylindrical Shells Subjeeted to Air-Blast Loading[C]. Proeeedings of the 64th Shock and Vibration SylnPosium,1993,11:467-82.
    [71]HooFatt.M.S. Plastic Tripping and Fracture of Ring-Stiffened Cylindrieal Shells subject to Explosive Loading(In).Sloshing,Fluid-Strueture Interaction and structural Response Due to Shock and Impact Loads,1994.272,153- 165,ASME.
    [72]HooFatt.M.S. Shock-Wave Damage of Ring-Stiffened Cylindrical Shells[J]. J.of Ship Research, 1994,38(3):245-252.
    [73]HooFatt.M.S. Detachment of stiffeners from Ring-stiffened shells subject Pressure Pulse Loading[C]. Proceedings of the 65th Shock and Vibration Symposium,1994, Vol.1:3-18,SanDiego,CA.
    [74]Stettler.J.W. Damping Meehanisms and Their Effeets on the Whipping Response of a Submerged Submarine Subjected to an Under water ExPlosion," Ms.Thesis of MIT,1995.
    [75]Stultz.Jr.G.K, Atkatsh.R.S, Chan.K.K. Single Hul lVersus Double Hull Design Shock Response of Underwater Vessels[C]. Proeeedings of the 65th Shoek and Vibration Symposium, SanDiego, CA, 1994,1:207-216.
    [76]李国华,李玉节,张效慈.舰船设备冲击环境的能源研究[J].船舶力学.1998,1(2):37-54.
    [77]李国华,李玉节,张效慈.浮动冲击平台水下爆炸冲击谱测量与分析[J].船舶力学,2000,4(2):51-56
    [78]张效慈,李玉节,赵本立.深水爆炸动水压力场对潜体结构的动态影响[J].中国造船,1997,38(4):61-68.
    [79]顾文斌,郑向平,刘建青等.浅层水中爆炸冲击波对混凝土墩斜碰撞作用实验研究[J].爆炸与冲击,2006,26(4):361-366.
    [80]李裕春,程克明,沈蔚等.水中冲击波对混凝土结构破坏的实验研究[J].材料工程,2008,12:19-23.
    [81]李健,荣吉利.水下爆炸圆柱壳塑性动态响应实验及数值计算[J].北京理工大学学报,2008,28(8):659-662.
    [82]张绮蓉.马锦华.水下非接触爆炸对舰船总纵强度与局部强度影响的分析[1n],“028G艇实船度验资料”,中华人民共和国国家标准GJB2329-95,舰船抗核加固总要求.
    [83]朱锡,白雪飞,黄若波.船体板架在水下接触爆炸作用下的破口研究.中国造船.2003,44(1):46-52.
    [84]张振华.舰艇结构水下抗爆能力研究[D].南京:海军工程大学.2004.
    [85]范书立.混凝土重力坝的动力模型破坏试验及可靠性研究[D].大连:大连理工大学,2007.
    [86]倪汉根,金崇磐.大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994.
    [87]倪汉根.泊桑比对频率及振型影响的估计[J].大连理工大学学报,1977,(3):43-49.
    [88]倪汉根,周晶,王炳乾.双曲拱坝动力特性的初步研究[J].大连理工大学学报,1983,22(3):23-29.
    [89]夏颂佑.动态坝工结构模型材料的探讨[S].河海大学学报,1984,(2):1-11.
    [90]江泉,杜成斌.马良箔.分缝拱坝模型动力试验研究和分析[J].河海大学学报,1998,26(3):95-99.
    [91]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [92]Raphael.J.M. Properties of Plaster celite mixtures for models[A].Sym Posiumon Conerete Dams Models,Lisbon,Portugal,1963.15.1-15.30.
    [93]M.C.Cruz Azevedo.EstevesFerreira.Construction of models of conerete dams for elastietests[A]. SymPosiumonConcreteDamsModels,Lisbon,PortUgal,1963.26.1-26.28.
    [94]V.M.Lyatkher, A.D.KaPstan, Semenov I V. Seismic stability for the Toktoguldam[J]. Gidrotekllxlieheskoe Stroitel's tvo(Hydrotechnical Construetion),1977.5(2):8-14.
    [95]Niwa.A, Clough R.W. Shaking table researeh on conerete dam models[R].Report No:UCB/EERC 80-05,Earthquake Engineering Researeh Center,University of Califomia,Berkeley,1980.
    [96]P.A.Gutidze.Model investigations of seismie action on the conerete arch dam of the Inguri hydroelectriestation[J].Gidrotekhniehesko Stroitel's tvo(Hydrotechnical Construetion),1985,(11): 26-30.
    [97]David W.Harris,NathanSnorteland,Timothynole..shakingtable 2-D models of a conere gravity dam[J]. Earthquake Engineering and Structural Dynamies,2000,29(6):769-78.
    [98]张镜剑.用脆性材料进行水工结构的断裂破坏模型试验[J].华北水利水电学院学报,1984,(1):19-22.
    [99]赵中级.重力坝上游坝面和坝踵水平裂缝断裂力学分析[J1.华北水利水电学院学报,1982,(1):5-8.
    [100]张林,何显松,胡成秋,等.碾压混凝土与石膏的断裂特性在拱坝模型开裂相似中的应用[J].四川大学学报,2001,33(3):5-8.
    [101]林忠和.双曲拱坝整体结构模型超载试验研究[J].水利科技,1996,(2):11-14.
    [102]张立翔,邱流潮,封伯吴,等.重力坝大孔口坝段抗震试验研究[J].地震研究,1999,22(2):171-181.
    [103]杜青,毕佳,谭跃虎,等.石膏相似材料的模型试验[J].施工技术,2005,34(11):71-72.
    [104]B. E. Gel'fand, K. Takayama. Similarity Criteria for Underwater Explosions[J]. Combustion, Explosion, and Shock Waves,2004,40(2):214-218.
    [105]张效慈.水下爆炸试验相似准则[J].船舶力学,2007,11(1):109-118.
    [106]林皋.研究拱坝震动的模型相似律[J].水利学报,1958,(1):79-104.
    [107]夏颂佑,张楚芳,张鸣歧.动态结构模型相似条件若干问题的探讨[J].河海大学学报,1980,(1):59-72.
    [108]黄维平,王连广.人工质量在砖混结构振动台试验中的作用[J].地震工程与工程振动,2001,21(3):99-103.
    [109]吕西林.周德源.砌体结构墙体模型的振动台试验及相似关系研究[J].工程抗震,1993,(3):12-16.
    [110]黄维平,鸟卜瑞峰,张前国.配重不足时的动力试验模型与原型相似关系问题的探讨[J].地震工程与工程振动,2994,14(4):64-71.
    [111]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [112]张磊,胡时胜,陈德兴等.混凝十材料的层裂特性[J].爆炸与冲击,2008,28(3):193-199.
    [113]张磊.混凝土层裂强度的研究[D].合肥:中国科学技术大学,2006.
    [114]Rossi P. Influence of Craeking in the presenee of free water on the mechanical behavior of conerete [J].Mag Concr Res,1991:43:53-7.
    [115]Rossi P. et al.The dynamic behavior of conerete:influence of free water [J]. Mater Struet.1992:25:509-14.
    [116]Rossi P. A physical phenomenon which can explain the mechanical behaviour of concrete under strain rates[J]. Mater Struet,1991,24:422-424.
    [117]闫东明.混凝土动力学性能试验与理论研究[D].大连:大连理工大学,2006.
    [118]Rossi P.Pierre,Van Mie.et al.Eeffet of loading rate on the sternhgt of conerete subjected to unixaial tension.[J] Materials and Sturetures/Materiauxet Construetions,1994,27(169):260-264.
    [119]Rossi P. Strain rate effects in concrete struetures:the LCPC experience[J]. Materials and Struetures/materiauxET Construetion.1997 Supplement:54-62.
    [120]Dan Zheng,Qingbin Li. An explanation for rate effete of concrete strength based on fraeture toughness in cluding free water viseosity[J].Engineering Fraeture Meehanies,2004),71:2319-2327.
    [121]李庆斌,郑丹.混凝土动力强度提高的机理探讨[J].工程力学,2005,22(增刊).
    [122]Kaplan,M.F. Carek Propagation and the facture of conerete.[J]ACI Jounral,1961,58(11):591-610.
    [123]Kelse,C.Naus,D.J.Lott, et al.Behavior of Materials[A]. In:proeeeding of the Intenrational Conefernce on Mechanieal Behavior of Material[C].Vol.4,Kyoto,1971,August,15-20.
    [124]Glucklich,J.Inbooks,A.EandNewman,K.(eds.)Proe.Int.Con.f.The Structure of Conerete. Londno[A]. SePt.,1965,Cement and Conerete Assoeiation [C], London,1968:176-189.
    [125]于晓中,居襄.断裂力学在水工结构设计中的应用[J].水利学报,1980,5:86-87.
    [126]Wittmann,.FH.Srtuetuer of Concrete with Respect to Crack Fomration[A]. In:Fracutre Meehanie of Coneerte[C].Eds.By Wittmann,F.H.,1989,Elsevier Science Publishers.
    [127]Zielinski A.J. Fraeture of conerete and mortar under uniaxial impact tensile loading[D].Doetoral Thesis,The Netherlands:Delft University of Technology,1990.
    [128]李兆霞.工程材料的应变率效应及其损伤本构模拟计算[J].河海大学学报,994,22(计算力学专辑):75-82.
    [129]肖诗云,林皋,王哲等.应变率对混凝土抗拉特性影响[J].大连理工大学学报,2001,41(6):721-725.
    [130]Hild,F.,Denoual,C.,Forquin,P.,et al.On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials[J]. Comput.Struet,2003,81(12),1241-1253.
    [131]A.Brara., J.R.Klepaezko. Experimental charaeterization of conerete in dynamic tension[J]. Mechnaies of Materials,2006,38:253-267.
    [132]Gao Lin,Jing Zhou,Chuiyi Fan.Dyanamic model rupture test and safety evaluation of concrete gravity dams[J].Dam Engineering,1993,(4):173-186.
    [133]Jing Zhou,Gao Lin.Seismie fraeture analysis and model testing of concrete gravity dams[J].Dam Engineering,1992,3(1):35-46.
    [134]朱彤,林皋,马恒春,等.龙滩大坝的动力模型破坏试验研究[J].水电站设计,1995,11(2):48-54.
    [135]林皋,周晶,胡志强.丰满大坝抗震安全性评价[J].大坝与安全,1999,(3):31-35.
    [136]周晶,林皋,王承伦.双曲拱坝的地震破坏模型试验[J].大连理工大学学报,1992,32(2):218-233.
    [137]朱彤,周晶.有构造峰的高拱坝强震破坏模型试验研究[A].第五届全国地震工程会议论文集.1998.
    [138]J.zhou,G.Lin,A.D.Jerrerson,et al..Experimental investigation into seismic failure of high arch dams[J].Journal of Structural Engineering,ASCE,2000,126(8):926-935.
    [139]A.Niva, R.W.Clough. Non-linear seismic response of arch dams[J].Earthquake Engineering and Engineering and Struetural Dynamics,1982,10(2):267-281.
    [140]R.A.Mir,C.A.Taylor. An experimental investigation into earthquake-induced failure of medium to low height concrete gravity dams[J].Earthquake Engineering and Structural Dynamics,1995,24(3): 373-393.
    [141]孙建运.爆炸冲击荷载作用下钢骨混凝土柱性能研究[D].上海:同济大学,2006.
    [142]吴斌,韩强等编著.结构中的应力波[M].北京:科学出版社.2001.
    [143]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,34(6):8-10.
    [144].Keith,A.L-The Blast Resistance of Unrein forced Ungrouted One-way Concrete Masonry Unit Wall[D].Ph.D.thesis, Rensselaer Polytechnic Institue,Troy, New York,USA,2003.
    [145].Norris,G.H, Hansen,R.J.,et al. Struetural Design for Dynamic Loads[M].MeGraw-Hil BookCo.,NewYork,N.Y,1959.
    [146]Bigg,J.M. Introduction to Structural Dynamics[M]. McGraw Hil BookCo.,NewYork,N.Y,1964.
    [147]钢筋混凝土结构构件在冲击荷载下的性能—清华大学抗震抗爆工程研究室科学研究报告集(第四集)[M].北京:清华大学出版社,1986.
    [148]江水德.核爆冲击波作用下土中浅埋结构承载力研究[D].北京:清华大学博士学位论文,1993.
    [149]汪小虎.核爆炸冲击波作用下房屋倒塌碎片分布与钢筋混凝土结构动力分析[D].北京:清华大学博士学位论文,1991.
    [150]姜芳,钢筋混凝土材料动态力学性能的实验研究[D].北京:北京理工大学硕士学位论文,2003.
    [151]林大超,爆炸地面振动的随机演变理论及应用研究[D].北京:北京理工大学博士学位论文,2001.
    [152]吴开腾,爆炸与冲击问题的三维数值模拟及算法研究[D].北京:北京理工大学博士学位论文,2002.
    [153]楼伪涛.地下核试验中若干动力学问题的研究[D].合肥:中国科学技术大学博士学位论文,2001.
    [154]方正.爆炸荷载作用下碾压混凝土围堰结构动态特性的试验及数值模拟[D].北京:中国科学院力学研究所硕士学位论文,2001.
    [155]林润德,等.钢筋混凝土结构内粘钢板加固技术可行性分析[J].爆炸与冲击,1997,17(3):43-48.
    [156]王怀忠.核爆地冲击效应下远场深理防护结构与介质动力相互作用的数值分析[D]:上海:同济大学博十学位论文,2003.
    [157]MILTZ J., GRUENBAUM G. Evaluation of cushion properties of plastic foams compressive measurements[J]. Polym. Eng 1981,21,1010-1014.
    [158]WHITE S W., KIM S K., BAJAJ A K.,et al. Experimental tech-niques and identification of nonlinear and viscoelastic properties of flexible polyurethane foam[J]. Nonlinear Dynamics,2000,22:281-313.
    [159]Han Zhao. A study of specimen thichness effects in the impact tests on polymers by numeric simulations[J]. Ploymer,1998,39(5):1103-1106.
    [160]王宝珍,胡时胜.软质聚氨酯泡沫的冲击力学性能[J].高分子材料科学与工程,2009,25(12):48-51.
    [161]Gibson L J., Ashby M F. Cellular Solids:Structure & Properties. [s.1.]. Pergamon Press,1988.
    [162]E.Wu., W.s Jiang. Axial crush of metallic honeycombs[J]. Int J of Impact Eng,1997,19:439-456.
    [163]Han Zhao., G.Gary. Crushing behaviours of aluminium honeycomb under impact loading[J]. Int J of Impact Eng.1998.21:827-836.
    [164]任志刚,楼梦麟,田志敏.聚氨酯泡沫复合夹层板抗爆特性分析[J].同济大学学报,2003,31(1):6-10.
    [165]胡时胜,刘剑飞.王悟.硬质聚氨酯泡沫塑料的缓冲吸能特性评估[J].爆炸与冲击,1998,18(1):43-47.
    [166]王海福,冯顺山.爆炸载荷下聚氨酯泡沫材料中冲击波压力特性[J].爆炸与冲击,1999,19(1):79-83.
    [167]卢子兴,田常津,韩铭宝等.聚氨酯泡沫塑料冲击力学性能的实验研究[J].高分子材料科学与工程,1995,11(6):76-81.
    [168]洪云.大坝安全管理技术研究[D].南京:河海大学博士论文,2004.
    [169]赵焕臣,徐树柏,金生,层次分析法[M].北京:科学出版社,1986.
    [170]T.L. Saaty. The Analytic Hierarchy Process[M]. McGraw, Inc.,1980.
    [171]何金平,李珍照,施玉群.大坝结构实测性态综合评价中的权重问题[J].武汉大学学报(工学版),2001,6:14-17.
    [172]吴中如,顾冲时著,大坝安全综合评价专家系统[M].北京:科学技术出版社,1997.12.
    [173]L.A.zadeh. Fuzzy sets and their Applications to cognitive and Decision processes[M],New York, 1997.
    [174]吴中如著,水工建筑物安全监控理论及其应用[M],北京:高等教育出版社,2003.1.
    [175]蔚维斌、李珍照,大坝安全综合评判多层次、多目标决策方法的研究叨,大坝观测与土工测试,1996,4:19-22.
    [176]Miehael M. Explosion Effects and Properties: PartⅡ Explosion Effects in the Water AD-A056694. 1978.
    [177]梁卓中,戴毓修,刘子豪.炸药水下爆炸效应之研究[J].中国造船暨轮机工程学刊,2005,24(1):39-57.
    [178]Parka IK, Kima JC, Ana CW, Cho DS. Measurement of naval ship responses to underwater explosion shock loadings[J]. Shock and Vibration,2003,10:365-377.
    [179]廖振鹏,刘晶波.离散网格中的弹性波动(Ⅰ)[J].地震工程与工程振动,1986,6(2):2-16.
    [180]沈怀至,张楚汉,寇立夯.基于功能的混凝土重力坝地震破坏评价模型[J].清华大学学报(自然科学版),2007,47(12):2114—2118.
    [181]沈怀至,张楚汉,金峰.基于性能的重力坝坝基交界面地震抗滑稳定评价[J].水力发电学报,2009,28(1):137—142.
    [182]范书立,陈明阳,陈健云等.基于能量耗散碾压混凝土重力坝地震损伤分析[J].振动与冲击,2011,30(4):271-275.
    [183]吴放鹏.混凝土强度与坚硬基岩胶结面抗剪强度关系的研究[C].华东岩土工程学术大会论文集,
    1990,443-457.中国江苏无锡
    [184]于晓中,居襄.混凝土的强度和破坏[J].水利学报,1983,(2):22-35.
    [185]陆路,李昕,周晶.水下核爆作用下混凝土重力坝模型破坏试验[J].大连理工大学学报,2011,25(6):854-860.
    [186]H.Kolsky. Stress wave in solids[M]. Oxford press.1953.
    [187]JOSIFFON S, SZANTO M. Dynamic compression characteristics of flexible foams[J]. J. Appl. Polym. Sci,1987,34,2025-2036.
    [188]郑守仁.三峡水利枢纽工程安全及长期使用问题研究[J].水利水电科技进展.2011.31(6):1-7.
    [189]寇立夯.基于性能的高坝抗震设计若干关键问题研究[D].北京:清华大学,2009.
    [190]沈怀至.基于性能的混凝土坝—地基系统地震破损分析与风险评价[D].北京:清华大学,2007.
    [191]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.
    [192]吴中如,顾冲时.综论大坝安全综合评价专家系统[J].水电能源科学.2000,18(2):2-5.
    [193]康玲,王乘,吴中如.统一建模语言在大坝安全辅助决策系统中的应用[J].水利学报.2002,(8):87-96.
    [194]向衍,吴中如.基于数据仓库技术的大坝安全决策支持系统[J].水电能源科学.2002,20(4):14-16.
    [195]温志萍,吴中如,顾冲时.大坝安全分析和评估资源管理系统[J].河海大学学报(自然科学版).2008,36(5):641-645.
    [196]陶涛,朱廷举,纪昌明.洪灾风险管理决策支持系统的总体设计与构思[J].水利水电科技进展,2002,22(1):6-8.
    [197]刘强,沈振中,聂琴等.基于灰色模糊理论的多层次大坝安全综合评价[J].水电能源科学.2008,26(6):76-79.
    [198]陶能付,夏颂佑.坝的地震灾害损失预测研究[J].河海大学学报,26(1),88-92.
    [199]Wai-Fah Chen, Charles Scrawthorn.Earthquake Engineering handbook[M]. Boca Raton, FL:CRC Press,2003.
    [200]何文炯.风险管理.北京:中国财政经济出版社[M],2005.
    [201]Keenly R L. Decisions with Multiple Objects:Preferences and Value Trade-Offs [M]. New York: Cambridge University Press,1999.
    [202]Rahaman A. Multi-attribute utility analysis-A major decision aid technique [J].Nuc Ene,2003,42(2): 87-93.
    [203]郭文英.期望效用理论的发展[J].首都经济贸易大学学报,2005,7(5):11-14.
    [204]Winterfeldt D V, Edwards W. Decision Analysis and Behavioral Research [M]. New York: Cambridge University Press,1986.
    [205]袁永博.工程项目管理的信息技术研究和系统开发[D].大连:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700