用户名: 密码: 验证码:
疣粒野生稻和药用野生稻的比较基因组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以疣粒野生稻(O. meyeriana, GG)和药用野生稻(O. officinalis, CC)为主要研究对象,利用稻属基因组中的中高度重复序列、基因组总DNA以及单拷贝序列RFLP分子标记进行细胞遗传定位和序列分析,旨在阐明这些序列在疣粒野生稻基因组和药用野生稻基因组中的分布和结构特点。进而为系统研究稻属不同染色体组序列结构、功能及其进化关系提供基础,并根据研究结果对不同遗传成分进行同源性聚类,一为稻属不同染色体组的识别和鉴定提供了依据,二确定从细胞水平进行比较基因组学研究的可行性。
     主要研究结果如下:
     1、利用斑点野生稻(O. punctata, BB)和药用野生稻(CC)的C_0t-1 DNA和基因组总DNA(gDNA)作为探针,分别对疣粒野生稻(GG)进行荧光原位杂交(FISH)。结果显示G基因组与B、C基因组关系都很远,相对于B基因组,G基因组与C基因组的关系更近。
     2、基于FISH信号,对疣粒野生稻进行了比较染色体核型分析。疣粒野生稻染色体数目为2n=24,核型为2n=24=10m+2sm。B、C基因组C_0t-1 DNA在疣粒野生稻染色体上均有信号分布,说明稻属中度和高度重复序列和功能基因一样,在不同种中也存在着同源性和保守性,并在进化过程中得以保存下来。C_0t-1 DNA-FISH信号主要存在端粒区,说明B、C和G基因组间着丝粒区序列存在分歧。疣粒野生稻基因组不被B、C基因组的C_0t-1 DNA和基因组总DNA覆盖的区域,可能是该种在长期进化过程中,由于存在加倍、重排和基因选择性丢失等现象形成具有种的特异性的基因组成分。
     3、根据Tan等(2005)构建的比较分子遗传图,分别选用栽培稻(O. sativa L., AA)第3和第5染色体上各紧密连锁的5个RFLP混合标记为探针,对药用野生稻有丝分裂中期染色体进行原位杂交,基本确定了药用野生稻比较染色体核型中第3和第5染色体,分别为常规染色体核型分析中第9和第4染色体。药用野生稻染色体数目为2n=24,核型为2n=24=8m+4sm。同时结合本实验室蓝伟侦的实验结果,即栽培稻C_0t-1 DNA在栽培稻第3、第5染色体和在药用野生稻第3、第5染色体的分布特征以及药用野生稻C_0t-1 DNA在自身第3、第5染色体的分布特征,简单阐述了基因组重复序列在稻属中的进化特点。
In this paper, the two wild rice O. meyeriana (GG), and O. officinalis (CC) were used as research materials. In order to clarify the repetitive sequences in the genome distribution and structural characteristics, C_0t-1 DNA, genomic DNA(g DNA) and RFLP (restriction fragment length polymorphism) markers were utilized for sequence analysis and cytogenetic positioning. According to the homogeneity of the different species, the further studies of structure, function and evolutional relationship among various rice genomes are helpful to recognize and distinguish different rice genus and confirm the feasibility of the comparative genomics research based on cytology.
     The results are as follows:
     1. The C_0t-1 DNA and g DNA from O. punctata (BB) and O. officinalis (CC) were used as probes to make fluorescence in situ hybridization (FISH) analyses of O. meyeriana (GG) genome. The result showed that the evolutional relationship between B, C and G genomes were remote, and the differentiation between C and G genomes comparatively was less than that between B and G genomes. 2. The comparative karyotype analysis of O. meyeriana was carried out based on the
     FISH results. The O. meyeriana was 2n=24 and the karyotype of O. meyeriana was 2n=24=10m+2sm. The distribution of C_0t-1 DNA from B and C genome in O. meyeriana chromosomes indicated that the high and moderate repetitive sequences in Oryza genus were conservative in various rice species and were conserved during evolution over millions of years in crop species as the functional genes. The main distribution of C_0t-1 DNA -FISH signal in the telomere domain implied the differentiation of centromere sequences between B, C and G genomes. There was uncovered area in O. meyeriana genomes by C_0t-1 DNA and g DNA from B and C genomes, with which we concluded that it is the specific and exclusive sequence in G genome by duplication, recombination, and gene selective deletion during millions of years of evolution.
     3. According to the comparative molecular genetic map constructed by Tan (2005), 5 RFLP markers from the chomosome 3 and 5 of O. sativa L.(AA) separately were mixedly labeled as probe for FISH. Chomosome 3 and 5 of O. officinalis were defined, which were defined chomosome 9 and 4 by nomal karyotype analysis. The chomosome number of O. officinalis was 2n=24 and the karyotype of O. officinalis was 2n=24=8m+4sm. In addition, the result simply illustrated the evolutional properties of repetitive sequences in the rice genus.
引文
[1]陈瑞阳,宋文芹,李秀兰等.染色体图谱.科学出版社, 2003, pp1-30.
    [2]陈成斌,广西野生稻资源品质研究.绵阳农学学报, 1990, 7(1): 23-28.
    [3]丁颖.广东野生稻及由野生稻育成之新种,中华农会会报, 1933, (114), 13.
    [4]董正伟,柳哲胜,王德彬等.利用栽培稻C0t-1 DNA和基因组DNA比较分析斑点野生稻和短药野生稻基因组.植物遗传资源学报, 2007, 8 (3): 343-346.
    [5]关妮,邱小芬,宋发军等.两种CCDD型野生稻的基因组原位杂交比较分析.周口师范学院学报, 2007, 24(5): 94-97.
    [6]高露,王德彬,刘新琼等.栽培稻、斑点野生稻、药用野生稻基因组比较分析.湖北农业科学. 2007, 46, 4(7): 491-494.
    [7]广东省农业科学院水稻所野生稻组.普通野生稻种质资源抗性鉴定.广东农业科学, 1989(2): 3-6.
    [8]高桥成人,角田重三郎.水稻生物学.武汉:武汉大学出版杜. 1988.
    [9]何光存.细胞工程与分子生物学相结合——野生稻优异种质资源利用的有效途径.生物工程进展, 1998, 18(2): 41-45.
    [10]黄运平,覃瑞.野生稻资源的研究与利用.湖北农业科学, 2002, (4): l6-19.
    [11]贾东亮,舒理慧,宋运淳等.栽培稻与疣粒野生稻杂种F1代的基因组原位杂交鉴定.武汉植物学研究, 2001, 19(3): l77-18.
    [12]金危危,覃瑞,等.一种提高水稻FISH检出率的新方法—RFLP混合发展标记.遗传(Beijing), 2001, 23(3): 263-265.
    [13]蓝伟侦,覃瑞,李刚等.利用C基因组Cot-1 DNA对稻属A,B,C和D基因组的比较分析,科学通报, 2006a, 51(12): 1422-1431.
    [14]蓝伟侦,何光存,吴士筠等.利用水稻Cot-1 DNA和基因组DNA对栽培稻、药用野生稻和疣粒野生稻基因组的比较分析.中国农业科学, 2006b, 39(6): 1083-1090.
    [15]蓝伟侦,柳哲胜,李刚等. Bph15在非洲栽培稻、药用野生稻和宽叶野生稻中的BAC-FISH比较物理定位.作物学报, 2007.
    [16]李常宝,张大明,葛颂等.双探针原位杂交揭示稻属BB、CC和EE基因组之间的分化.植物学报, 2000, 42 (9): 988-990.
    [17]黎裕,王天宇,贾继增.植物比较基因组的研究进展.生物技术通报, 2000(5): 11-14.
    [18]梁明山,曾宇,周翔等.遗传标记及其在作物品种鉴定中的应用.植物学通报, 2001, 18(3): 257-265.
    [19]刘雪贞,潘大建,吴惟瑞等.广西普通野生稻雄性不育性的利用研究.广东农业科学, 2001, (3):7-9.
    [20]刘国庆,朱立煌. Fiber-FISH在植物基因组研究中的应用.生物工程进展, 2001, 21(3).
    [21]娄希祉,刘学明,王述民.世界植物遗传资源概况.作物品种资源, 1996(4): 1~6.
    [22]卢宝荣.稻种遗传多样性的开发利用及保护.生物多样性, 1998, 6: 63-72.
    [23]卢宝荣,葛颂,桑涛等.稻属分类的现状及存在问题.植物分类学报, 2001, 39(4): 373-388.
    [24]卢永根,万常娟,张桂权.我国三个野生稻种粗线期核型的研究.中国水稻科学, 1990, 4(3): 97-105.
    [25]罗崇善.我国三系资源的类型与利用.作物杂志, 1988, (3): 1-4.
    [26]吕忠进,成美英.核酸原位杂交技术及其发展,生物技术, 1993, 3(1): 1-4.
    [27]毛龙,周清,王显平.胡含高秆野生稻与栽培稻杂交后代的RFLP分析.植物学报, 1994, 36(1): 11-18.
    [28]庞汉华,应存山.中国野生稻的种类、地理分布与研究利用.见应存山.中国稻种资源.北京:中国农业科技出版社, l993:l7-l8.
    [29]彭绍裘等.野生稻多抗(病)性鉴定野生稻资源研究论文选编.中国科学技术出版社, 1990,37-39.
    [30]祁仲夏,等.稻属基因组间相关性的AFLP分析.南开大学学报(自然科学版), 2001, 34(3): 74~80.
    [31]奇文清,李悉学.植物染色体原位杂交技术的发展与应用,武汉植物学研究, 1996, 14(3): 269-278.
    [32]钱韦,谢中稳,葛颂,洪德元.中国疣粒野生稻的分布、濒危现状和保护前景.植物学报, 2001, 43(12): 1279-1287.
    [33]覃瑞,魏文辉,宋运淳. BAC-FISH在植物基因组研究中的应用.生物化学与生物物理进展, 2000a, 27(1).
    [34]覃瑞,魏文辉,金危危等.与Gm-6和Pi-5(t)连锁的栽培稻BAC克隆在药用野生稻中的FISH定位.科学通报, 2000, 45(22):2237-2240.
    [35]覃瑞,魏文辉,宁顺斌等.利用水稻BAC克隆对Gm-2和Gm-6在药用野生稻中的FISH定位.中国农业科学, 2001, 34(1): 1-4.
    [36]全国野生稻资源考察协作组.我国野生稻资源普查与考察.中国农业科学, 1984, 6: 1-8.
    [37]萨姆布鲁克,拉塞尔.分子克隆实验指南(第三版).黄培堂等译. 2002,北京:科学出版社.
    [38]佘朝文,宋运淳.植物荧光原位杂交技术的发展及其在植物基因组分析中的应用.武汉植物学研究, 2006, 24 (4): 365-376.
    [39]孙传清,王象坤,吉村淳等.普通野生稻和亚洲栽培稻遗传多样性的研究.遗传学报, 2000, 27(3): 227-23437.
    [40]孙传清,李自超,王象坤.普通野生稻和亚洲栽培稻核心种质遗传多样性的检测研究.作物学报, 2001, 27(3): 313-31.
    [41]孙恢鸿,农秀美,黄福新等.广西普通野生稻抗白叶枯病研究.野生稻资源研究论文选编.北京:中国科学技术出版杜. 1991.
    [42]谭光轩,等.野生稻亲缘关系研究进展.大自然探索, 1999, 18(1): 75~80.
    [43]王振山,朱立煌,刘志勇,等.野生稻天然群体限制性酶切片段长度多态性(RELP)研究.农业生物技术学报, 1996, 4(2):111-117.
    [44]王倩,王斌. DNA分子标记在果树遗传学上的应用.遗传, 2000, 22(5), 339-344.
    [45]王金发,李一琨,何海琼等.水稻重复序列RRD-3在转基因植物中的启动子功能.植物学报, 2000, 42(10): 1057-1061.
    [46]王薇.中国近缘野生大麦ITS序列分析与二级结构比较.武汉大学硕士论文, 2006, 6: 7-15.
    [47]吴强,廖兰杰,杨代常等.野生稻基因组随机扩增多态性DNA(RAPD)分析.热带亚热带植物学报, 1998, 6(3): 260-266.
    [48]谢建坤,孔样礼,包劲松.水稻野生种质优异基因分子标记定位和利用的研究进展,遗传, 2004, 26(1): 115-121.
    [49]辛业芸.分子标记技术在植物学研究中的应用.湖南农业科学, 2002(4): 9-12.
    [50]颜辉煌,熊振民,闵绍楷等.紧穗野生稻的褐飞虱抗性导入栽培稻的研究.遗传学报, 1997, 24(5): 424-431.
    [51]颜辉煌,程祝宽,刘国庆等.栽培稻——药用野生稻杂种F1及回交后代的基因组原位杂交鉴定.遗传学报, 1999, 26(2): 157-162.
    [52]余艳,陈海山,葛学军.简单重复序列区间(ISSR)引物反应条件优化与筛选.热带亚热带植物学报, 2003, 11(1):15-19.
    [53]赵淑清,武维华. DNA分子标记和基因定位.生物技术通报, 2000(6): 1-4.
    [54]张寿洲,卢宝荣,洪德元.原位杂交在稻属研究中的应用.植物分类学报, 1998, 36(1): 87-96.
    [55]钟代彬,罗利军,应存山.野生稻有利基因转移研究进展,中国水稻科学, 2000, 14: 103-106.
    [56]钟代彬,罗利军,应存山.野生稻在栽培稻育种中的应用,种子. 1995, (1): 25-29.
    [57] Aggarwal R K, Brar D S, Khush G S. Two new genomes in the Oryza complex identified on the basic of molecular divergence analysis using total genomic DNA hybridization. Mol Gen Genet, 1997, 254: 1-12.
    [58] Aggarwal R K, Brar D S, Nandi S et a1. Phylogenetic relationships aming Oryza species uevealed by AFLP warkers[J], Theor Appl Genet, l999, 98: l320~1328.
    [59] Amante A D. Sheath blihgt (ShB) resistance in wild rices. Intl Rice Res Nesvsl. 1990, (15):5.
    [60] Anamthawat-Jónsson K, Schwarzacher T, Leitch A R, et al. Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet, 1990, 79: 721-728.
    [61] Bennetzen J L, Jianxin M A, Devos K M. Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 2005, 95(1): 127-132.
    [62] Chang T T. Conservation of rice genetic resources:luxury or necessity? Science, 1984, 224: 251-256.
    [63] Chaowen She, Yunchun Song. The Distribution of Repetitive DNAs Along Chromosomes in Plants Revealed by Self-genomic in situ Hybridization . Journal of Genetics and Genomics 2007, 34(5): 437-448.
    [64] Chen M S, Presting G, Barbazuk W B, et al. An integrated physical and genetic map of the rice genome. Plant cell, 2002, 14: 537-545.
    [65] Cheng Z K, Yan H H, Yu H X, et al. Development and Applications of a Complete Set of Rice Telotrisomics. Genetics, 2001b, 157:161-168.
    [66] Cheng C H, Chung M C, Liu S M, et al. A fine physical map of the rice chromosome 5. Mol Genet Genet, 2005, 274(4): 337-45.
    [67] Chevalier A. Nouvelle contributiona1 etude system antique des Oryza. Rev. Bot Appl Agr Trop, 1932, 2: 1014~1032.
    [68] Choi H K, Mun J H, Kim D J, et al. Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA, 2004, 101(43): 15289-15294.
    [69] Devos K M. and Gale M D. Comparative genetics in the grasses. Plant Mol Biol, 1997, 35: 3-15.
    [70] Dou Q W, Chen P D, Xie J F. Cytological and molecular identification of alien chromatin in giant spike wheat germplasm. Acta Bot Sin, 2003, 45: 1109-1115.
    [71] Eugene M McCarthy, Jingdong Liu, Gao Lizhi, John F McDonald. Long terminalrepeat retrotransposons of O. sativa. Genome Biology, 2002, 3(10): 0053. 1-0053. 11.
    [72] Feng Q, Zhang Y, Hao P, Wang S, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420:316-320.
    [73] Feuillet C, Keller B. High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA, 1999, 96, 8265-8270.
    [74] Flavell R B, Bennett M D, Smith J B, et al. Genome size and proportion of repeated sequence DNA in plant. Biochem Genet, 1974, 12(4): 257-269.
    [75] Flavell R B. Repetitive DNA and chromosome evolution in plants. Philis. Trans. R. Soc. Lond. B, 1986, 312: 227-242
    [76] Fransz F F, Alonso-Blanco C, Liharska T B, et al. High-resoluiton physical mapping in Arabidopsis thaliana and tomato by fluoerscence in situ hybridization to extended DNA fibers. The plant Journal, 1996, 9(3): 421-430.
    [77] Fukui K, Ohmido N, Khush G S. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet, 1994, 87: 893-899.
    [78] Fukui K, Shishido R, Kinoshita T. Identification of the rice D-genome chromosomes by genomic in situ hybridization. Theor Appl Genet, 1997, 95: 1239-1245.
    [79] Fukui K, Nakayama S, Ohmido N, et al. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes. Theor Appl Genet, 1998, 96: 325-330.
    [80] Galasso I, Schmidt T, Pignone D, et al. The molecular cytogenetics of Vigna unguiculata (L) Walp: the physical organization and characterization of 18s-58s-25s rRNA genes, 5s rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet, 1995, 91:928-935.
    [81] Galasso I, Blanco A, Katsiotis A, et al. Genomic organization andphylogenetic relationships in the genus Dasypyrum analysed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma, 1997, 106: 53-61.
    [82] Gale M D, Devos K M. Plant comparative genetics after 10 years. Science, 1998, 282: 656-659.
    [83] Gaut B S, Le Thierry d’Ennequin M, Peek A S. et al. Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA, 2000, 7: 7008~7017.
    [84] Gall J G and Pardue M L. Formation and detection of RNA-DNA hybrid molecular in cytological preparation. Proc Natl Acad Sci USA 1969,63:378-383
    [85] Ge S, Sang T, Lu B R, et al. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA, 1999, 96: 14400-14405.
    [86] Ge S, Sang T, Lu BR, Hong DY. Rapid and reliable identification of rice genomes by RFLP analysis of PCR-amplified Adh genes. Genome, 2001, 44:1136-1142.
    [87] Gong Y P, Borromeo T, Lu B R. A biosystematic study of the Oryza meyeriana complex (Poaceae). Plant Syst Evol, 2000, 224: 139-151.
    [88] Gustafson J P, DilléJ E. Chromosomal location of Oryza sativa recombination linkage groups. Proc. Natl. Acad. Sci. USA, 1992, 89: 8646-8650.
    [89] Hall A E, Keith K C, Hall S E, et al. The rapidly evolving field of plant centromeres. Curr Opin Plant Biol, 2004, 7: 108-114.
    [90] Hanson R E, Zwick M S, Choi S, et al. Fluoerscent in situ hybridization of a baterial artificial chormosome. Genome, 1995, 38: 646-651.
    [91] Hans de Jong J, Fransz P, Zabel P. High resolution FISH in plants -techniques and applications. Trends Plant Sci, 1999, 4: 258-263.
    [92] Han B, Xue Y. Genome-wide intraspecific DNA-sequence variations in rice. Current Opinion in Plant Biology, 2003, (6):134-138.
    [93] Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494.
    [94] Huang H, Kochert G. Comparative RFLP mapping of an allotetraploid wild rice species (Oryza latifolia) and cultivated rice (O. sativa). Plant Mol Biol, 1994, 25: 633-639.
    [95] Jena K K, Khush G S. Monosomic alien addition lines of rice: production, morphology, cytology, and breeding behavior. Genome, 1989, 32:449-455.
    [96] Jena K K, Khush G S. Introgression of genes from Oryza officinalis Wall ex Watt to culitivated rice, O. sativa L. Theor Appl Genet, 1990, 80: 737-745.
    [97] Jena K K, khush G S, Kocherl G. RFLP analysis of rice (Oryza Sativa L.) introgression lines. Theor Appl Genet. 1992, 84: 608-616.
    [98] Jena K K, khush G S, Kocherl G. Comparative RFLP mapping of a wild rice, Oryza officinalis, and cultivated rice, O. sativa. Genome, 1994, 37: 382-389.
    [99] Jiang J, Gill B S. Nonisotopic in situ hybridization and plant genome maping: the first 10 years. Genome, 1994a, 37: 717-72.
    [100] Jiang J M, Gill B S, Wang G L, et al. Metaphase and interphase fluorescence in situ hybridization mapping the rice genome with baterial artificial chromosomes. Proc Natl Acad Sci USA 1995, 92: 4487-4491.
    [101] Jiang J M, Masuda S H, Dong F G, et al. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA, 1996, 93: 14210-14213.
    [102] Jiang J, Birchler J B, Parrott W A, et al. A molecular view of plant centromeres. Trends Plant Sci, 2003, 8: 570-575.
    [103] Jin W W, Lamb J C, Vega J M, et al. Molecular and functional dissection of the maize B chromosome centromere. Plant Cell, 2005, 17: 1412-1423.
    [104] Kallioniemi A. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 1992, 258: 818-821.
    [105] Kao F I, Cheng Y Y, Chow T Y, et al. An integrated map of Oryza sativa L. chromosome 5. Theor Appl Genet, 2006, 112: 891-902.
    [106] Khush G S. Oirgin, dispersal, cultivation and vairation of rice[J]. Plant Mol Biol, 1997, 35(1): 25-34.
    [107] Kobayashi N, Ikeda R, Vaughan DA et a1. Resistance to turgro in some wild relatives of rice. Intl Rice Rse. Nesvs1. 1991, 16(4):13-17.
    [108] Ku H M, Vision T, Liu J P, et al. Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA, 2000, 97(11): 9121-9126.
    [109] Langer-Safer P R, Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chormosomes. Proc Natl Acad Sci USA, 1982, 79: 4381-4388.
    [110] Lapitan NLV. Organization and evolution of higher plant nuclear genomes. Genome, 1992, 35: 171-181.
    [111] Lawrence J B, Singer R H, McNell J A. Interphase and metaphase resolution of different distances within the human dystrophin gene. Science, 1990, 249: 928-932.
    [112] Le H T, Amxsrtong K C, Miki B. Detection of ryeDNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep, 1989, 7: 150-158.
    [113] Leitch A R, Mosgoller W, Schwarzacher T, et al. Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci, 1990, 95: 335-341.
    [114] Leitch A R, Schwarzacher T, Mosg?ller W, et al. Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma, 1991, 101: 206-213.
    [115] Li C B, Zhang D M, Ge S, et al. Identification of genomic constitution of threetetraploid Otyza species through two-porbe genomic in situ hybridization. Inter Rice Res Notes 2000, 25(2): 19-2.
    [116] Li C B, Zhang D M, Ge S, et al. Identification of genome constitution of Oryza malampuzhaensis, O. minuta, and O. punctataby multicolor genomic in situ hybridization. Theor Appl Genet, 2001a, 103: 204-211.
    [117] Li C B, Zhang D M, Ge S, et al. Differentiation and inter-genomic relationships among C, E and D genomes in the Oryza officinalis complex (Poaceae) as revealed by multicolor genomic in situ hybridization. Theor Appl Genet, 2001b, 103: 197-203.
    [118] Lichter P, Tang CJC, et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science, 1990, 247: 64-69.
    [119] Lizhi Gao, Eugene M McCarthy, Eric W Ganko, John F McDonald. Evolutionary history of O. sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. BMC Genomics, 2004, 5: 18.
    [120] Lu B R, Naredo M E B, Juliano A B et a1. Preliminary studies on taxonomy and biosystematics of the AA genome Oryza species (Poaceae). In: Jacobs S W L, Eeverett J eds. Grasses: systematics and Evolution, 2000, 51-58.
    [121] M Iwamoto, H Nagashima, T Nagamine, H Higo and K Higo. p-SINE-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species. Theoretical and Applied Genetics. 1999, 98(6-7): 853-861.
    [122] Mac Gregor H C, Chromosome research- look forward to 2001. Chromosome, 1993,Resl: 5-7.
    [123] Manoir S. Detection of complete and partial:chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet, 1995, 90:590-610.
    [124] Matyasek R, Gazdova B, Fajkus J, et al. NTRS, a new family of highly repetitive DNAs specific for the T1 chromosome of tobacco. Chromosoma, 1997, 106: 369-379.
    [125] Mc Couch S R, Tanskley S D. The world rice economy: challenges ahead. In Rice biotechnology: biotechnology in agriculture series, No.6. Edited by Khush G S and Toenniessen G H, Commonwealth Agricultural Bureaux International Press, Wallingford, U.K. 1991.
    [126] Mc Couch, S. R. et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257-279.
    [127] Meinkoth J, Wahl G. Hybridization of nucleic acids immobilized on solid support. Ann. Biochem. 1993, 138: 267-284.
    [128] Michele Morgante. Plant genome organisation and diversity: the year of the junk. Current Opinion in Biotechnology. 2006, 17: 168-173.
    [129] Mishima M, Ohmido N, Fukui K. Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma, 2002, 110: 550-558.
    [130] Morishima H. Wild plants and domestication. In Biology of rice. Edited by S.T Tsumoda and N Takahashi. 1984
    [131] Moore G, Ferguson D C, Hoenig M. Molecular analysis of small grain cereal genome: current status and prospects. Bio Technology, 1993, 11: 584-589.
    [132] Moore G, Devos K M, Wang Z, Gale M D. Cereal genome evolution.Grasses, line up and from a circle. Curr Biol, 1995, 5: 737-739.
    [133] Mukai Y, Gill B S. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 1991, 34: 448-452.
    [134] Mukai Y, FriebeB, Hatchett J H, Yamamoto M, Gill B S. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to hessian fly. Chromosoma, 1993, 102: 88-95.
    [135] Multani D S, Jena K K, Brar D S et a1. Development of monosomic alien addition lines and introgression of genes from Oryza australiensis domin to cultivated riec O. sativa. Theor Appl Genet, 1994(88):102-109.
    [136] Nagamura Y, Tanaka T, Takiguchi T, et al. Hybridization of rice DNA markers to other plant genomes. Rice Genome, 1995, 4(2): 5-7.
    [137] Nagaki K, et al. Sequencing of a rice centromere uncovers active genes. Nature Genet, 2004, 36, 138-145.
    [138] Ning SB, Jin WW, Wang L, et al. Comparative genomic research between maize and rice using genomic in situ hybridization. Chin Sci Bull, 2001, 46: 656-658.
    [139] Ohmido N, Fukui K. Visual veriifcation of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Molecular Biology, 1997, 35: 963-968.
    [140] Ohmido N, Kijima K, Akiyama Y, et al. Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet, 2000, 263: 388-394.
    [141] Parra I, Windle B. High resolution visual mapping of srtetched DNA by fluorescence hybridization. Nature Genetics, 1993, 5: 17-21.
    [142] Paterson A H, Bowers J E, Peterson D G, Estill J C, Chapman B A. Structure andevolution of cereal genomes. Curr Opin Genet. 2003, 13: 644-650.
    [143] Peng Y, Hartemink A J. Theoretical and practical advances in genome halving. Bioinformatics, 2005, 21(7): 869-879.
    [144] Pinkel D, Straume, Gray J W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridizadon. Proc Natl Acad Sci USA, 1986, 83: 2934-2938.
    [145] Qin R, Wei W H, Jin W W, et al. Physical location of rice Gm-6, Pi-5(t) genes in O. officinallis with BAC- FISH. Chinese Sci Bull, 2001, 46(8): 2427-2430.
    [146] Qin R, Wei W H, Ning S B, et al. The physical location of rice Gm-2 and Gm-6 in O. officinallis with BAC-FISH based on comparative RFLP map of wild rice, O. officinalis and cultivated rice. Agri Sci China, 2002a, 1(1): 1-4.
    [147] Qrgaard M, Heslop-Harrison J S. Investigaiton of genome relationships between Leymus, Psathyrostachys and Hordeum inferred by genomic DNA:DNA in situ hybridization. Ann Bot, 1994, 73: 195-203.
    [148] Quiroz H C. Plant genomics: an overview. Biol Res, 2002, 35: 385-399。
    [149] Rayburn A L and Gill B S. Use of biotin-labeled porbes to map specific DNA sequences on wheat chormosomes. Hered, 1985, 76: 78-81.
    [150] Ren F, Lu B R, Li S, Huang J, Zhu Y. A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theor. Appl. Genet, 2003, 108, 113–120.
    [151] Sakurako Uozu1, Hiroshi Ikehashi, Nobuko Ohmido1 ,Kiichi Fukui. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Molecular Biology, 1997, 35: 791-799.
    [152] Sampath S, The genus Oryza: its taxonomy and species interrelationships. Oryza, 1962, 1: 1-29.
    [153] Sanchez-Moran E. Simultaneous identification of A, B, D and R genomes by genomic in situ hybridization in wheat-rye derivatives. Heredity, 1999, 83:249-252.
    [154] Sasaki T, Burr B. International Rice Genome Sequencing Project: The effort to completely sequence therice genome. Curr Opin Plant Biol, 2000, 3: 138-141.
    [155] Schmidt R. Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol, 2002, 48: 21-37.
    [156] Schwarzacher T. DNA, chromosomes, and in situ hybridiaztion. Genome, 2003, 46: 953-962.
    [157] Sharma S D, Shastry S V S, Evolution in genus Oryza Advancing Frontiers inCytogenetics. Proc. National Seminar, 1972. New Delhi; Hindustan Pub. Corp. 1972, 5-20.
    [158] Shishido R, Apisitwanich S, Ohmido N, et al. Detection of specific chromosome reduction in rice somatic hybrids with the A, B, and C genomes by multi-color genomic in situ hybridization. Theor Appl Genet, 1998, 97: 1013-1018.
    [159] Shishido R, Sano Y, Fukui K. Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet, 2000, 263: 586-591.
    [160] Shizuya H, brieen B, Kim U J. Clonging and stable main-tenance of 300 kilobase-paie fragments of human DNA in Escherichia coli using an F-facto-based vector. Proc Natl Acad Sci USA, 1992, 89: 8794-8797.
    [161] Singh K, Multani D S, Khush G S. Secondary trisomics and telotrisomics of rice: origin, characterization, and use in determining the orientation of chromosome map. Genetics, 1996, 143: 517-529.
    [162] Song Y C, Gustafson J P. The physical location of fourteen RFLP markers in rice (Oryza sativa). Theor Appl Genet, 1995, 90: 113-119.
    [163] Stieh L A, Dalmaeio R D, Romero G O. Crossibility ofwild Oryza species and their poten tialuse for improvement of cultivaled rice. RGN. 1989(6): 58-60.
    [164] Tan G X, Jin H J, Li G, et al. Production and characterization of a complete set of individual chromosome additions from Oryza officinalis to Oryza sativa using RFLP and GISH analyses. Theor Appl Genet, 2005, DOI 10.1007/s00122 -005- 0090-4.
    [165] Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 227(22): 1063-1066.
    [166] Tateoka T. Taxonomic studies of Oryza,Ⅲ. Key to the species and their enumeration. Bot Mag, 1963, 76: 165-173.
    [167] The Rice Chromosome 10 Sequencing Consortium. In depth view of structure, activity, and evolution of rice chromosome 10. Science, 2003, 300: 1566-1569.
    [168] Ugarkovic D, Plohl M. Variation in satellite DNA porifles-causes and effects. EMBO J 2002, 21: 5955-5959.
    [169] Umehara Y A, Inagaki H, Tanoue Y. Construction and characterization of a rice YAC library for physical mapping. Mol Breeding, 1995, 1: 79-89.
    [170] Uozu S, Ikehashi H, Ohmido N, et al. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol, 1997, 35: 791-799.
    [171] Vaughan D A. The genus Oryza L. Current status of taxonomy. IRRI Res PaperSeries, 1989, 138: 1-21.
    [172] Vaughan D A. The wild relatives of rice. IRRI, Los Ba?os, Philippines, 1994, 3-4.
    [173] Wang Z X, Kurata N, Saji S, et al. A chromosome 5-specific repetitive DNA sequence in rice (Oryza sativa L.). Theor Appl Genet, 1995, 90: 907-913.
    [174] Wang Z G, An T G, Li J M, et al. Fluorescent in situ hybridization analysis of rye chromatin in the background of“Xiaoyan No.6”. Acta Bot Sin, 2004, 46: 436-442.
    [175] Wijibrand J, Zabel P,Koornneef M. Restirction fragment lenth polymorphism analysis of somatic hybirds between Lycopersicon escwlentam and irradiated Lycopersicon peruviamum evidence for limitde donor genome elimination and extensive chromosome rearrangement. Mol Genel Genet, 1990, 222:270-277.
    [176] Wu J, Yamagata H, Hayashi-Tsugane M, et al. Composition and structure of the centromeric region of rice chromosome 8. Plant Cell, 2004, 16, 967-976.
    [177] Xiao J H, Grandillo S, Ahn S N, et al. Genes from wild rice improve yield. Nature, 1996, 384: 223-224.
    [178] Xiao J H. Identification of heterosis–enhancing alleles from a rice wild relative, Oryza rufipogon. Plnat and Animal Genome V Abstracts, 1997:147.
    [179] Yan H M, Song Y C, Li L J, et al. Physical location of rice Pi-5(t), Glh and RTSV genes by FISH of BAC clones. Wuhan Univ J Nation Sci, 1998, 3(2): 226-230.
    [180] Yan H M, Qin R, Jin W W, et al. Comparative physical mapping of Bph3 with BAC-FISH in Oryza officinalis and O. sativa. Acta Botanica Sinica 2002a, 44(5): 583-587.
    [181] Yang Z Q, Shikanai T, Yamada Y. Asymmetric hybridization between cytoplasmic male-sterile (CMS) and fertile rice (Oryza sativa L. ) portolasts. Theor Appl Genet, 1988, 76: 801-8008.
    [182] Yin P, Hartemink A J. Theoretical and practical advances in genome halving. Bioinformatics, 2005, 21(7): 869-879.
    [183] Yogee swaran K, Frary A, York T L, et al. Comparative genome analyses of Arabidopsis spp.: Inferring chromosomal rearrangement events in the evolutionary history of A.thaliana. Genome Research, 2005, 15: 505-515.
    [184] Zhang Y, Huang Y C, Zhang L, et al. Structural features of the rice chromosome 4 centromere. Nucleic Acids Res. 2004, 32, 2023-2030.
    [185] Zhong X B, Jong Jhe, Zabel P, Perparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluoerscence in situ hybridization (FISH). Chormosome Res 1996, 4: 24-28.
    [186] Zwick M S, Hanson R E, Mcknight T D, et al. A rapid procedure for the isolation of Cot-1DNA from plants. Genome, 1997, (40): 138-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700