用户名: 密码: 验证码:
钢筋混凝土梁斜截面受剪承载力计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用数理统计原理对国内外307根(其中国内152根,国外155根)集中荷载下的钢筋混凝土有腹筋梁的剪压破坏试验结果进行了统计分析,在回归分析的基础上提出了具有95%保证率的钢筋混凝土有腹筋梁斜截面受剪承载力计算方法,并将其与现行我国规范中的计算方法进行了比较。通过分析比较得出以下主要结论:
     1.根据307根(其中国内152根,国外155根)集中荷载下有腹筋剪压破坏梁的试验数据,通过回归分析建立的具有95%保证率的受剪承载力计算方法:
     在此方法的特点是不包括参数剪跨比,根据与试验结果的对比,试验值与计算值的比值其均值为1.491,均方差为0.432,变异系数为0.290。
     2.无腹筋梁受剪承载力可按下式计算
     根据收集到的231根(其中集中荷载199根,均布荷载32根)无腹筋钢筋混凝土梁试验数据,试验值与式(2)的比值其均值为2.244,均方差为1.31,变异系数为0.584。
     3.当考虑剪跨比时
     式中,λ=M/Vh0,且1≤λ≤3。当λ<1时,取λ=1,当λ>3时,取λ=3。
     根据收集到的199跟集中荷载下无腹筋钢筋混凝土梁的试验数据,试验值与式(3)的比值其均值为1.714,均方差为0.604,变异系数为0.352。
     4.考虑广义剪跨比的受剪承载力建议计算方法:
     式中,λ=M/Vh0,且1≤λ≤3。当λ<1时,取λ=1,当λ>3时,取λ=3。
     根据与试验数据的对比,试验值与式(4)的比值其均值为1.280,均方差为0.302变异系数为0.236。
According to the test data of 231 shear-compression failure reinforced concrete beams without web reinforcement test data(including 199 beams under concentrated loads and 32 beams under distributed loads) and 307 reinforced concrete beams with web reinforcement (including 152 domedtic and 155 overseas), using regression analysis method, the statistic calculating formula of shear capacity of shear failure beams with 95 percentage degree of confidence is proposed in this articles,then compared this calculation methods with existing stardand. Main conclusions of this paper are as follows:
     1. Based on the collected 307 (including 152 domedtic and 155 overseas) test data under concentrated load of reinforced concrete beams with web reinforcement and the regression analysis, a calculation method of shear capacity of reinforced concrete beams with web reinforcement with 95 percentage degree of confidence was proposed as follow:
     The influence of generalized of shear span ratio was not considered in this method. Comparing the ratio of the experimental values and the calculated values, the result isμ=1.491,σ=0.432,δ=0.290.
     2. The calculation method of shear capacity of reinforced concrete beams without web reinforcement is:
     Based on the collected 231 (including 199 beams under concentrated loads and 32 beams under distributed loads) test data of reinforced concrete beams without web reinforcement. Comparing the ratio of the experimental values and the calculated values, the result isμ=2.244,σ= 1.310,δ=0.584.
     3. When considering the shear span ratio:
     Whereλ=M/Vh0, and 1≤λ≤3. whenλ<1, takeλ=1, whenλ>3, takeλ=3.
     Based on the collected 199 beams under concentrated loads test data of reinforced concrete beams without web reinforcement. Comparing the ratio of the experimental values and the calculated values, the result isμ=1.714,σ=0.604,δ=0.352.
     4. Considering the shear span ratio, the calculation method of shear capacity of reinforced concrete beams with web reinforcement is:
     Where whenλ<1, takeλ=1, whenλ>3, takeλ=3.
     Comparing the ratio of the experimental values and the calculated values, the result isμ= 1.280,σ=0.302,δ=0.236.
引文
[1]梁兴文,王社良,李晓文等.混凝土结构设计原理[M].北京:科学出版社,2003,219-226
    [2]管品武,徐泽晶,王博.钢筋混凝土构件抗剪承载力分析方法比较[J].世界地震工程,2002,18(3):95-101
    [3]车惠民.部分预应力混凝土[M].重庆:西南交通大学出版社,1990,84-134
    [4]The joint ACI-ASCE committee 426 on shear and diagonal of the committee on masonry and concrete of the structural division the shear strength of reinforced concrete menbers[J]. Journal of the structural division proceeding.1973,1019-1187
    [5]Collins M. P. Towards a rational theory for RC members in shear [J]. ASCE Journal of the Structural Division,1978,104 (ST4):649-666
    [6]Collins M. P, Deins Mitchell. A rational approach of shear design-the 1984 Canadian code peovision[J]. ACI Journal,1986,925-933
    [7]徐增全.钢筋混凝土薄膜元理论[J].建筑结构学报,1995,16(5);10-19
    [8]Thomas T. C. Hsu. The reinforced concrete general method [M]. Beijing,1991
    [9]Thomas T. C. Hsu, LI-Xin zhang. Tension stiffen in reinforced concrete member elements [J]. ACI Structural Journal.1996,108-115
    [10]Thomas T. C. Hsu, Y. L. Mo. Softening of concrete in torsional menbers-design recommendiations [J].ACI Journal.1985,443-452
    [11]Julio A.Ramirez, John E.Breen. Evaluation of a modified truss-model approach for beams in shear [J]. ACI Structural Journal.1991,562-571
    [12]Khaled A,A1-Nabilwi, James K. Wight. Beam analysis using concrete tensile strength in truss models [J]. ACI Structrual Journal.1992,284-289
    [13]Xiao-Bo "David", Thomas T. C. Hsu. Behavior of reinforced concrete membrane elements in shear [J]. ACI Structural Journal.1995,665-679
    [14]Abdeldjelil Belarbi, Thomas T. C. Hsu. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete[J]. ACI Structural Journal.1994,405-474
    [15]刘昶宏.集中荷载作用下钢筋混凝土梁受剪承载力分析[D].西安:西安建筑科技大学,2008
    [16]Michael P. Collins, Denis Mitchell Perry Adebar and Frank I. Vecchio. A general shear design method, ACI Structural Journal.1996,36-45
    [17]Robert G Selby, Frank J. Vecchio, Michael P, Collins. Analysis of reinforced concrete members subject to shear and axial compression [J]. ACI Structural Journal.1996, 306-315
    [18]Vecchio F J, Collins M P. Analytical model for shear critical reinforced-concrete members [J]. Journal of structural engineer.1996,122,1123-1124
    [19]Xiao-Bo "David", Thomas T. C. Hsu. Fixed angie softened truss model for reinforced concrete[J]. ACI Structural Journal.1996,197-207
    [20]LI-Xin "Bob" Zhang, Thomas T. C. Hsu. Behavior and analysis of 100Mpa concrete membrance elements [J]. Journal of structural engineer.1998,124:24-34
    [21]Thomas T. C. Hsu. Toward a unified nomenclature for reinforced-concrete theory [J]. Jouranl of structural engineer.1998,124,275-283
    [22]Park R, Pauly T. Reinforced Concrete Structures[M].1975,174-195
    [23]Park R. Capacity design of ductile RC building structures for earthquake resistance [J]. The Structural Engineering.1992,70(16):279-289
    [24]Watson S, Zahn F A, Park R. Confined reinforcement for concrete columns [J]. Journal of Structural Engineering of ASCE.1994,120(6):1798-1824
    [25]Pauly T, Priestly M J N.钢筋混凝土和砌体结构的抗震设计[M].见:戴瑞同,陈世鸣,林宗凡等译.钢筋混凝土框架柱抗震性能的试验研究[M].北京:中国建筑工业出版社.1999.6,24-28,59-191
    [26]Priestley M J N, Park R. Strength and ductility of concrete columns under seismic loading[J]. Structural Journal of ACI.1987,84(1):61-76
    [27]#12等.
    [28]沈殷,李国平,陈艾荣.钢筋混凝土结构抗剪分析方法的发展[A]:上海市公路学会第六届年会学术论文集[C].2003,166-171
    [29]钱国梁,陈小妹,李大庆.受弯构件斜截面受剪承载力计算公式分析[J].武汉水利电力大学学报,1996,29(2),12-16.
    [30]李凤兰.集中荷载钢筋混凝土有腹筋梁的受剪承载力[J].华北水利水电学院学报,1997,18(2):33-35.
    [31]李凤兰.集中荷载钢筋混凝土无腹筋梁的受剪承载力[J].华北水利水电学院学报,1997,18(3):23-27.
    [32]赵顺波,李树瑶,高泉.均布荷载钢筋混凝土梁的受剪承载力[J].港口工程,1997,(1):36-38,50.
    [33]李广慧,陈捷,刘立新.无腹筋RC梁受剪承载力统一分析[J].郑州工业大学学报,1998,19(2),24-29.
    [34]赵广田.三角形荷载下钢筋混凝土无腹筋粱抗剪性能试验研究[J].武汉水利电力大学学报,1998,31(3),35-39.
    [35]金琰,吴艳秋,苏幼波,康谷贻.一种新的无腹筋梁受剪承载力计算方法[J].河北理工学院学报,2000,22(1):84-90.
    [36]陈萌,刘辉,刘立新,赵更奇.钢筋混凝土梁受剪承载力的统一计算方法[J].2000,21(2):54-57.
    [37]LI Ping-xian, HE Shi-ling,GUO Jin-jun, DING Zi-qiang. The Unif ied Calculation Method for Shear Capacity of Reinforced Concrete Flexural Members[J]. 郑州 大学学报(工学版),2002,23(1),21-23.
    [38]李平先,韩菊红,丁自强.水工钢筋混凝土受弯构件受剪承载力的计算[J].工业建筑,2003,33(9):69-71.
    [39]狄谨.无腹钢筋混凝土梁的抗剪承载力[J].长安大学学报,2004,24(5),43-47.
    [40]支运芳,蒋超,甘民,陈永庆.纵筋率对有腹筋约束梁受剪性能影响的研究[J].重庆建筑大学学报,2005,27(4):64-69.
    [41]赵展. 钢筋混凝土独立梁斜截面承载力计算改进[J].四川建筑,2007,27(2):182-183.
    [42]殷志文,曲延全.钢筋混凝土梁受剪承载力计算公式的比较[J].公路交通科技,2007,24(7):76-81.
    [43]刘昶宏,梁兴文.集中荷载作用下钢筋混凝土无腹筋梁的受剪承载力分析[J].工业建筑,2008,38(8),89-91.
    [44]叶列平,王宇航.中、美规范钢筋混凝土梁斜截面受剪承载力的计算对比[J].建筑科学与工程学报,2008,25(1):88-95.
    [45]胡波,李振斌.中英混凝土规范受剪承载力计算对比[J].山西建筑,2008,34(7),120-121.
    [46]TJ10-74钢筋混凝土结构设计规范[S].北京:中国建筑工业出版社,1974
    [47]GBJ10-89混凝土结构设计规范[S].北京:中国建筑工业出版社,1989
    [48]SDJ20-78水工钢筋混凝土结构设计规范[S].北京:水利电力出版社,1979
    [49]SL/T 191-96水工混凝土结构设计规范[S].北京:中国水利水电出版社,1997
    [50]SL191-2008水工混凝土结构设计规范[S].北京:中国水利水电出版社,2008
    [51]DL/T5057-2009水工混凝土结构设计规范[S].北京:中国电力出版社,2010
    [52]GB 50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002
    [53]JTJ 267-98港口工程混凝土结构设计规范[S].北京:人民交通出版社,1998
    [54]JTGD62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004
    [55]ACI 318-08 Building Code Requirements for Structural Concrete and Commentary[S]. 2008
    [56]NZS3101混凝土结构设计实用规范(新西兰标准)[S].1982
    [57]CEN Standard. Eurocode 2:Design of concrete structures-Part 1:General rules and rules for buildings [S].2004
    [58]TB 10002.3-2005、J462-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2007
    [59]AASHTO LRFD-2005 Bridge Design Specifcations (Third Edition) [S].2005
    [60]BS8100 British Standard 8100[S].1997
    [61]CSA A23.3-04 Design of concrete structures [S].2004
    [62]AS3600-2001 Concrete Structures [S].2001
    [63]C∏52-101-2003钢筋混凝土结构(俄罗斯标准)[S].中国建筑科学研究院,2006
    [64]沈蒲生,梁兴文.钢筋混凝土结构设计原理(第二版)[M].北京:高等教育出版社,2005,116-148
    [65]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985,180-205
    [66]徐有邻,周氐.混凝土结构设计规范理解与应用[M].北京:中国建筑工业出版社,2002,47-54
    [67]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1992
    [68]过镇海,石旭东.钢筋混凝土原理和分析[M].清华大学出版社,2003,272-282
    [69]河海大学,大连理工大学,西安理工大学,清华大学合编.水工钢筋混凝土结构学(第三版)[M].北京:中国水利水电出版社,1996,78-92
    [70]赵顺波,徐成祥,周新刚.混凝土结构设计原理[M].上海:同济大学出版社,2004,96-107
    [71]白生翔,黄成若.钢筋混凝土构件试验数据集.中国建筑科学研究院,1985:35-59
    [72]李平先,丁自强,赵广田.有腹筋钢筋混凝土短梁抗剪强度的试验研究[J].郑州工学院学报,1993,14(1):1-11
    [73]李平先,韩菊红,丁自强,宋新伟.三角形分布荷载下钢筋混凝土无腹筋梁受剪性能研究[J].四川建筑科学研究,2006,32(1):10-12
    [74]李平先,韩菊红,丁自强.水工钢筋混凝土受弯构件受剪承载力的计算[J]. 工业建筑,2003,33(9):69-71
    [75]张雷顺,张晓磊,闫国新.再生混凝土无腹筋梁斜截面受力性能试验研究[J].郑州大学学报(工学版),2006,27(2):18-23
    [76]甘民.高强混凝土简支梁抗剪强度的计算[J].四川建筑,1999,19(4):21-21
    [77]熊进刚,付国平.钢筋混凝土无腹筋短梁受剪承载力计算的软化桁架模型[J].南昌大学学报(工学版),2004,26(1):49-53
    [78]汪荣鑫.数理统计[M].西安:西安交通大学出版社,1986,90-92,174-180
    [79]刘立新,蔡耀东,陈萌.钢筋混凝土深梁,短梁和浅梁的受剪承载力分析及设计建议[J].郑州工业大学学报,1998,19(2):1-8.
    [80]梁兴文,李晓文.基于混凝土强度准则的梁斜截面受剪承载力分析[J].工业建筑,1996,26(3):8-11.
    [81]宋金峰,刘红岩.均布荷载作用下钢筋砼简支短梁斜截面受剪性能研究[J].山东建筑工程学院学报,1991,6(1):17-23.
    [82]王铁成,陈恒超,康谷贻.复杂载荷作用下钢筋混凝土梁受剪承载力计算公式的差异分析[J].工程力学,2003,(增刊),656-659.
    [83]王铁成,李艳艳,戎贤,徐有邻.集中荷载下高强箍筋混凝土梁的抗剪性能[J].自然灾害学报,2006,15(5):172-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700