用户名: 密码: 验证码:
壳聚糖、壳聚糖/氧化石墨有序多孔材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业生产的发展,产生了大量的重金属离子以及染料废水。相应的,各种废水处理技术也应运而生。这其中,吸附分离技术有了很大的发展,展现出广阔的应用前景。因此,开发一种高效、廉价、无毒害的吸附材料,使它具有高比表面积、高吸附性能来应用于废水处理的是可行的。
     壳聚糖由于其本身的特性,如具有絮凝作用,分子中含有大量的氨基、羟基具有很强的与金属离子的络合作用以及原料本身的来源丰富,天然无污染等,是一种理想的吸附材料。本文采用定向冷冻干燥法,制备壳聚糖多孔材料。采用IR、SEM等对多孔材料进行结构和形貌分析,同时通过加入造孔剂乙酸乙酯来增加多孔材料的孔隙率,最大限度的增加材料的比表面积,提高吸附效率。为提高壳聚糖多孔材料在水溶液中的力学性能,在壳聚糖中加入氧化石墨,研究了加入不同量的氧化石墨对壳聚糖多孔材料的影响,分析了这种复合材料相对于单纯壳聚糖支架材料的优越性。同时,在室温下,研究了壳聚糖有序多孔材料及其有序复合多孔材料对金属离子Cu(Ⅱ)和染料二甲酚橙(XO)的吸附性能,并重点研究了壳聚糖有序多孔材料的用量、溶液的pH值、吸附时间、壳聚糖的交联度二甲酚橙吸附率和吸附量的影响。
     实验结果表明:加入乙酸乙酯造孔剂后制备的多孔材料孔隙率明显增加,氧化石墨的加入明显增强了多孔材料在水中的力学性能。壳聚糖有序多孔材料对二甲酚橙和Cu(Ⅱ)都具有良好的吸附性能。其中,温度、pH值是影响对二甲酚橙吸附的主要因素。整体而言,与壳聚糖多孔材料相比,CS/GO复合多孔材料具有较高的稳固性,在水溶液中能够保持原来的形状,有一定的韧性,使用寿命会较长。
Recently, large amount of heavy metal ions and organics was produced following with the development of the industrial production. Correspondingly, many kinds of wastewater treatment technology emerge. Among them, the adsorption separation technology gets a great development and displays a wide application prospect. So, developing an adsorption material with high efficiency, cheap and nontoxic for wastewater treatment is feasible.
     Chitosan displays many special properties. For example, it has lots of amino and hydroxyl on the chitosan molecule which can complex with the metal ions or be used for flocculation. The chitosan is a abundant natural resource, and approved to be an ideal adsorption material. In this article, we use the unidirectional freeze-drying method to prepare the chitosan porous material, and then analysis the structure and the morphology of the chitosan porous materials by the method of IR and SEM. In order to increase the porosity and the specific surface area of the chitosan porous material, ethyl acetate is added to the chitosan solution before it is frozen. While, for strengthening the mechanical property of the porous material, the graphite oxide is added to the chitosan solution before it is frozen. Meanwhile, the absorbing ability of the porous materials for the metallic ions (Cu2+) and dye (XO) was investigated and some factors such as amount, pH, time, amount of crosslingking agent et al for absorbing ability were confirmed.
     The results appeared that the porosity of the porous material increases after ethyl acetate was added, and the GO can strength the mechanical property of the porous material in wet state. The chitosan porous material has a good absorption to the XO and Cu2+. The temperature and the pH are the main factors for controlling the adsorption ability of the chitosan to XO and Cu2+. Since the CS/GO composite is stable and can keep the initial form, it will be a potential absorbing material in waste water treatment.
引文
[1]李家珍,染料、染色工业废水处理,北京,化学工业出版社,1997,74
    [2]张林生,蒋岚岚,肖璐宁,活性炭纤维处理染料废水脱色性能的研究,东南大学学报,2001,31(l):100~102
    [3]陈中颖,余刚,蒋展鹏,活性炭纤维对染料的吸附性能研究,环境污染与防治,2001,23(4):151~152
    [4]蒋兰宏,马子川,董丽丽,新生MnO2对直接染料废水的脱色作用,城市环境与城市生态,2002,15(2):10~13
    [5]嵇雅颖,乌锡康,多菌灵生产废水中污染成分的分析研究,上海环境科学, 1990,19(8):8~11
    [6]高宝玉,岳钦文,岳钦艳,化学氧化法和化学混凝法用于染料废水的脱色研究,环境科学, 1999,12(l):5~9
    [7]高华星,陆兴章,赵德仁,阳离于高分子絮凝剂用于印刷油墨废水处理,环境污染与防治, 1995, 17(3):9~12
    [8]庄源益,戴树桂,宋文华,新型絮凝剂凝集水中染料的研究,城市环境与城市生态, 1997,10(2):1~3
    [9]孙平,陈景文,全燮,部分水溶性偶氮染料的光催化降解研究,环境化学, 1999,18(3):254~257
    [10]王相承,龚小平,活性染料K-2BP在环境水体中的光解效应,环境污染与防治, 1999,21(5):12~14
    [11]尹晓红,张敏莉,张艳芳,二氧化钛悬浆体系光催化降解4BS染料的研究,工业水处理,2000,20(10):15~17
    [12]杨水,凌艳,光催化法处理活性绿染料废水,湖北化工,1997,(l):53~55
    [13]阎怀国,张俊贞,赵惠敏,活性碳纤维的应用,城市环境与城市生态,1998,11(3):5~7
    [14]杨贯羽,李宏魁,李延虎,天然沸石对甲基橙的吸附研究,河南科学,2006,24(3):350~352
    [15]高湘,张涛,陈平,有机蛭石处理染料废水研究,论文集粹,2007, 23(96) 48~49
    [16]裘祖楠,陈明礼,同步吸附─混凝─氧化法处理染色废水,环境工程,1994,12(5):5~7
    [17]谈辉明,杨启文,重金属废水处理技术现状与展望,环境科学与技术,1997,1:35~36
    [18]李定龙,江晟,重金属废水处理的方案比较研究,工业安全与环保,2005,12:18~19
    [19]马士军,微生物絮凝剂的开发及应用,工业处理,1997,12(1):7~10
    [20]王璞,闵小波,柴立元等,含镉废水处理现状及其生物处理技术的进展,工业安全与环保,2006,32:14~17
    [21] Drake L. R., Lin S., Rayson G.. D., Adsorption of fluoride onto mixed rare earth oxides, Environmental Science & Technololy, 1996, 30: 110~111
    [22] Lin S., Rayson G. D., Removal of malathion and butachlor from aqueous solution by clays and organoclays, Science Technoloy, 1998, 32: 1486~1490
    [23]尹平河,赵玲,海藻生物吸附废水中铅、铜和镉的研究,海洋环境科学,2000,19:11~15
    [24]黄宁,苏雪霞,史康玲等,水溶性聚合物驱油剂国内研究近况,精细石油化工,2001,9:53~55
    [25]黄文强,吸附分离材料,北京:化学工业出版社,2005:1
    [26]汤惠工,杨旭清译,有机合成中聚合物载体化反应,北京:化学工业出版社,1988,12:425~427
    [27]杨柳青,温鹏宇,吉向飞等,沸石分子筛材料在医药领域中的应用,化工新型材料,2004,32:39~42
    [28]李治玖,齐兆生,刘玉法等,DNA免疫吸附剂血液灌流治疗系统性红斑狼疮临床应用研究,中国生物医学学报,2002,21:422~425
    [29]姜忠义,吴洪,分子印迹技术,北京:化学工业出版社,2002,1~4
    [30]徐如人,庞文琴,于吉红等编著,分子筛与多孔材料化学,北京:科学出版社,2004
    [31] Shikinami Y., Okuno M., Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide(PLLA), Part II: Practical propoties of miniscrews and miniplates, Biomaterials, 200l, 22, 3179~3211
    [32] Victor J. C., Ma P. X., Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores, Biomaterials, 2004, 25, 2065~2073
    [33] Yun H. L., Jong H. L., et al, Electrospun dualporosity structure and biodegradation morphology of montmorilonite reinforced PLLA nanocomposite scafolds, Biomaterials, 2005, 26, 3165~3172
    [34] Lee S. B., Kim Y. H., Chong M. S., et al, Preparation and characteristics of hybrid scaffolds composed ofβ-chitin and collagen, Biomaterials, 2004, 25, 2309~2317
    [35] Sylvain Deville, Eduardo Saiz, Antoni P. Tomsia, Ice-templated porous alumina structures, Acta Materialia, 2007, 55, 1965~1974
    [36] Sylvain Deville, Eduardo Saiz, Ravi K. Nalla, et al, Freezing as a path to build complex composites, Science, 2006, 311, 515~518
    [37] Zhang Haifei, Edgar David, Murray Patricia, et al, Synthesis of porous microparticles with aligned porosity, Adv Funct .Mater., 2008, 18, 1~7
    [38] María C. Gutie′rrez, Matías Jobbágy, María L. Ferrer, et al, Enzymatic synthesis of amorphous calcium phosphate-chitosan nanocomposites and their processing into hierarchical structures, Chem. Mater., 2008, 20, 11~13
    [39] María C. Gutiérrez, Zaira Y. García-Carvajal, Matías Jobbágy, et al, Poly(vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release, Adv Funct. Mater., 2007, 17, 3505~3513
    [40] Mar?′a C. Gutie′rrez, Zaira Y. Garc?′a-Carvajal, Mat?′as Jobba′gy, et al, Hydrogel scaffolds with immobilized bacteria for 3D cultures, Chem. Mater., 2007, 19, 1968~1973
    [41] Zhang H., Cooper A. I., Aligned porous structures by directional freezing, Adv. Mater., 2007, 19, 1529~1533
    [42] Ferrer M. L., Esquembre R., Ortega I., et al, Freezing of binary colloidal systems for the formation of hierarchy assemblies, Chem. Mater., 2006, 18, 554~559
    [43] Yang Fei, Qu Xue, Cui Wenjin, et al, Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds, Biomaterials, 2006, 27, 4923~4933
    [44] Gutiérrez M. C., Jobbágy M., Rapún N., et al, A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials, Adv. Mater., 2006, 18, 1137~1140
    [45] Shula Stokolsa, Mark H. Tuszynskib, The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury, Biomaterials, 2004, 25, 5839~5846
    [46] Zhang H., Long J., Cooper A. I., Aligned porous materials by directional freezing of solutions in liquid CO2, J Am. Chem. Soc., 2005, 127, 13482~13483
    [47] Zhang H., Hussain I., Brust M., et al, Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles, Nat. Mater., 2005, 4, 787~793
    [48] Heike Schoof, Jo¨rn Apel, Ingo Heschel, et al, Control of pore structure and size in freeze-dried collagen sponges, J Biomed Mater Res, part B, 2001, 58, 352~357
    [49] Ander Abarrategia, Mar?a C. Gutierrez, Carolina Moreno-Vicente, et al, Multiwall carbon nanotube scaffolds for tissue engineering purposes, Biomaterials, 2008, 29, 94~102
    [50] Byung-Ho Yoon, Won-Young Choi, Hyoun-Ee Kim, et al, Aligned porousalumina ceramics with high compressive strengths for bone tissue engineering, Scripta Materialia, 2008, 58, 537~540
    [51] Deville Sylvain, Saiz Eduardo, Antoni P Tomsia, Ice-templated porous alumina structures, Acta Materialia, 2007, 55, 1965~1974
    [52] Deville S., Saiz E., Tomsia A. P., Freeze casting of hydroxyapatite scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 5480~5489
    [53] Hirotomo Nishihara, Shin R. Mukai, Daisuke Yamashita, et al, Ordered macroporous silica by ice templating, Chem. Mater., 2005, 17, 683~689
    [54] Mukai S. R., Nishihara H., Tamon H., Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals, Chem. Commun., 2004, 874~875
    [55] Shin R. Mukai, Hirotomo Nishihara, Seiji Shichi, et al, Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying, Chem. Mater., 2004, 16, 4987~4991
    [56] María C. Gutiérrez, María L. Ferrer, and Francisco del Monte, Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly, Chem. Mater., 2008, 20, 634~648
    [57] Shunji Yunoki, Toshiyuki Ikoma, Akio Tsuchiya, et al., Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite, J Biomed. Mater. Res., Part B, 2007, 80B, 166~173
    [58] Yunoki S., Ikoma T., Monkawa A.., et al., Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth, Materials Letters, 2006, 60, 999~1002
    [59] Yoshimoto H., Shin Y. M., Terai H., et al, A biodegradable nanofiber scaffold by electrospinning and its potential for tissue engineering, Biomaterials, 2003, 24(12), 2077~2082
    [60] Rorrer G. L., Way J. D., Chitosan beads to remove heavy metal from waste water, Jounral of Applied Ploymer Sicence, 2002, 5: 2170~2l78
    [61] Findon A., Mckay G., Transport studies for the sorption of copper ions by chitosan, Journal of Environment Science and Health, 1993, 28: 173~185
    [62] Trimukhe K. D., Varma A. J.,Complexation of heavy metals by crosslinked chitin and its deacetylated derivatives, Carbohydrate Polymers. 2008, 71: 66~73
    [63]彭长宏,汪玉庭,程格等,接枝羧基壳聚糖的合成及其对重金属离子的吸附性能,环境科学,1998,19:29~33
    [64] Duma P. K., Dutta J., Tripathi V. S., Journal of Scientific&Industrial Research, 2004, 63: 20~31
    [65] Wang X., Chung Y. S., Min B. G., Preparation and properties of chitosan/ poly(vinyl alcohol) blend foams for copper adsorption, polymer International, 2006,55: 1230~1235
    [66] Ishii H., Minegishi M., Lavitpichayawong B., Synthesisof chitosan-amino acid conjugates and their use in heavy metal uptake, International Journal of Biology Macromo1, 1995, 17: 21~23
    [67] Pan Y. X., Yu Z. Z., Ou Y. C., et al, Preparation and properties of nylon6/graphite nanocomposite, Acta Polymerica Sinica., 2001, 31: 42~47
    [68]韩志东,王建祺,氧化石墨的制备及其有机化处理,无机化学学报, 2003,19:459~461
    [69] Matsuo Y., Niwa T., Sugie Y., Preparation and characterization of cationic surfactant-intercalated graphite oxide, Carbon, 1999, 37: 897~901
    [70] He H. Y., Klinowski J., Forster M., et al, A new structural model for graphite Oxide, Chemical Physics Letters, 1998, 287: 53~66
    [71]杨建国,牛文新,李建设,等.聚苯乙烯/氧化石墨纳米复合材料的制备与性能[J],高分子材料科学与工程,2005,21(5):55-58
    [72]陈翔峰,陈国华,吴大军等,聚合物/石墨纳米复合材料研究进展[J].高分子通报,2004,(4):39-47
    [73]傅玲,邹艳红,刘洪波等,氧化石墨及其聚合物纳米复合材料的研究现状,炭素技术,2005,24:21~26
    [74] Liu P., Gong K., Xiao P., et al, Preparation and characterization of poly(vinylacetate)-intercalated graphite oxide nanocomposite, Journal of Materials Chemistry, 2000, 10: 933~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700