用户名: 密码: 验证码:
仿生龙虾眼光学成像机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙虾眼掠入射聚焦系统是仿生龙虾眼睛的独特球形微通道结构,使得龙虾眼聚焦系统在高能射线领域能够获得前所未有的大视场与能量获取能力。目前对于龙虾眼结构的研究主要集中在×射线领域,但基于同样反射原理聚焦的光波段龙虾眼光学系统,对于解决光谱材料受限问题以及大视场高敏感性探测问题具有潜在广阔的应用前景。
     本论文的主要工作是将龙虾眼结构装置的应用范围拓展到光波段范围内,从光学聚焦成像的角度考察、分析了龙虾眼结构装置,重点研究了应用于光波段的龙虾眼光学系统的结构参数与聚焦性能之间的关系;提出了基于杂光抑制原则的单次反射壁厚公式,并讨论了在这个公式限制条件下龙虾眼透镜的各个关键设计参数,如锥顶角、中心张角等,对龙虾眼透镜聚焦性能的影响;并使用数学模型及光机建模软件进行了对比仿真建模分析。通过建模仿真分析,发现基于单次反射条件的光波段龙虾眼聚焦装置的集光效率不受锥顶角参数的影响,同时可以发现光波段龙虾眼光学系统的弥散斑图样对方向具有敏感性。
     由于基于单次反射原理的龙虾眼透镜存在大视场下微通道深度过低而不便制造的问题,本论文研究了龙虾眼透镜在小宽纵比结构下的多次反射聚焦机理。通过创造性地对龙虾眼透镜进行棱镜展开原理分析,得到了多次反射虽然会产生出射角度更为复杂的偶数次反射杂光,但奇数次反射光线的多次反射对球差具有补偿作用,能够得到更好的聚焦效果,并且这种补偿作用是随微通道单元的宽纵比的减小而增强的结论。
     对光波段龙虾眼透镜内存在偶数次杂光的抑制方法进行了研究,提出了末端涂层吸收和贯穿式涂层吸收的方法来抑制偶数次杂光,并取得得了明显的杂光抑制效果,使光波段龙虾眼透镜接近于实际应用的进程向前推进了一步。
     最后,现有加工工艺条件下,设计并制作龙虾眼透镜LP-65原理样机。该原理样机所得到的实验结果很好的印证了反射型重叠像眼的聚焦原理。同时由于LP-65原理样机的结构上的特性,实验过程中发现了双十字的聚焦现象,针对这一现象完成了软件的仿真对比分析,验证了实验的正确性。
Lobster eye grazing incidence focusing device simulate the unique structure of spherical microchannel, that makes the lobster eye focusing device can obtain unprecedented wide field and energy acquisition ability in High-energy radiation field.. At present, the research on the lobster eye structure focus on X-ray field, but the lobster eye optical system has potential broad prospects in solving the restricted spectrum materical problem and wide field high sensitivity detection problem in light wave band.
     The main work of this paper is expanding the application of lobster eye focusing device to light wave band, the lobster eye focusing device is investigated and analyzed in the aspects of optical imaging. This paper focuses on the relationship between the structure parameters of the lobster eye optical system and its focusing performance, and proposes the formula for wall thickness based on the principle of single reflection which follow the principles of stray light inhibition and discusses each critical design parameter under the restricted formula condition, such as the cone apex angle, central angle, and use the mathematical model and machine modeling software to make the comparison simulation and modeling analysis. Through this analysis of modelling and simulation, the light collective efficiency of the lobster eye focusing system which is based on single reflection in the light wave band will not be affected by the critical parameters. Meanwhile, the speckle of the lobster eye optical system has the sensitivity to direction.
     Because it is difficult to fabricate the lobster eye lens based on single reflection with low microchannel depth in large field of view, the multi reflective focusing principle of the lobster eye lens with small aspect ratio structure is also be discussed. By initiatively analyzing the prism tunel diagram principle of the lobster eye lens, it is found that multi reflecion may generate even reflection stray light with more complicated emergence angle, but multi reflection of the odd reflection light is able to compensate for the spherical abberation which would acquire a better focusing effect. The compensation effect would enhance with the decrease of the aspect ratio of the microchannel unit.
     On the basis of the previous study, the restriction method to the even light stray of the lobster eye in the light wave band has been discussed. Proposing the end coating absorption and through type absorption to inhibit even stray light and getting evident stray light inhibition effect carry the lobster eye lens in the long wave band a step forward to pratical application.
     Finally, under the condition of existing processing technology, the Lobster-eye lens experimental prototype LP-65have been made and the result of the experiment based on this device proved the focusing principle of reflective superposition eye well. Meanwhile, the double cross image was found in the experimentation, this phenomemon is produced by the structural features of the experimental prototype, the software simulated analysis was achieved to test the correctness of the experiment.
引文
[1]蔡梦颖.,“仿生复眼视觉系统标定和大视场图像拼接的技术研究”[D]南京航空大学,2007
    [2]陈明君,刘业胜,李子昂,褚鑫,“仿生光学复眼设计及其制造技术研究新进展”机械工程学报,第47卷第1期,2011.1
    [3]王国锋,“蝇视觉系统在红外成像制导中的应用研究”[D]西北工业大学,2003
    [4]李言俊,张科, 视觉仿生成像制导技术及应用[M]国防工业出版社,2006
    [5]Tomas A. Bell and Donald V. Lightner. A Handbook of Normal Penaeid Shrimp Histology. World Aquaculture Society,1988,26-31
    [6]D G Stavenga and R C Hardie, Optics and evolution of the compound eye. Facets of Vision ed (Berlin:Springer)pp 30-73.1989
    [7]Die Spiegeloptik des Flusskrebsauges, The optical system of the crayfish eye J. Comput. Physiol.1351-19
    [8]胡景杰、陈宽智,包振民,刘晓云,姜明,中国对虾复眼的研究Ⅱ.亚显微结构.海洋科学,1998年3期
    [9]Michael F Land, "Eyes with mirror optics" J.Opt. A:Pure Appl. Opt.2(2000) R44-r50.
    [10]Tomasz Jannson;Andrew Kostrzewski;Michael Gertsenshteyn; Victor Grubsky;PauI Shnitser;Ilya Agurok;Mark Bennahmias; Kang Lee; Gajendra Savant, Animal eye in Homeland Security systems. SPIE, Volume 6538, pp.65381R (2007)
    [11]Andrzej Bartnik, Henryk Fiedorowicz, Roman Jarocki, Jerzy Kostecki, Miroslaw Szczurek, Radka Havlikova, Ladislav Pina, Libor Sveda and Adolf Inneman, Response of inorganic materials to laser-plasma EUV radiation focused with a lobster eye collector, Proc. SPIE 6586,65860A (2007)
    [12]D. J. Rutherford, G. A. Horridge, The rhabdom of the lobster eye. Sci.1965 Jun;106(2):119-30.
    [13]J.R.P.Angel, Lobster eyes as X-ray Telescopes. THE ASTROPHYSICAL JOURNAL.233:364-373,1979 October 1
    [14]Philip E. Kaaret and Phillip Geissbuehler, Lobster-eye x-ray optics using microchannel plates, Proc. SPIE 1546,82 (1992)
    [15]Henry N. Chapman, A. Rode, Keith A. Nugent, and S. W. Wilkins,X-ray focusing using cylindrical-channel capillary arrays. Ⅰ.Ⅱ. Experiments. Applied Optics, Vol.32, Issue 31, pp.6316-6332 (1993)
    [16]H. N. Chapman, A. V. Rode, Geometric optics of arrays of reflective surfaces. Applied Optics, Vol.33, Issue 13, pp. 2419-2436 (1994)
    [17]Peele, Andrew G, Nugent, Keith A, X-ray focusing using lobster eye optics a comparison of theory with experiment. Proc. SPIE Vol.2515, p.14-21
    [18]Paul Gorenstein, Elizabeth Whitbeck, Gerald Austin, Almus Kenter, A Lobster Eye X-ray Telescopes Prototype. SPIE Vol.2805 P74-P80
    [19]A G Peele, K A Nugent, K Gabel, M C Richardson, R Strack, W Siegmund, X-ray focusing with lobster-eye optics a comparison of theory with experiment. Applied Optics (1996) Volume:35, Issue:22, Pages:4420-4425
    [20]William W. Zhang, Robert Petre, Yang Soong, and Nicholas E. White, A Practical Implementation of the Lobster Eye Optics. SPIE Vol.3444.0277-786X/98
    [21]A. G Peele and K. A. Nugent, Lobster-eye x-ray optics a rapid evaluation of the image distribution. Applied Optics, Vol.37, Issue 4, pp.632-642 (1998)
    [22]Andrew G Peele, George W. Fraser, Adam N. Brunton, Adrian P. Martin, Rob M. Rideout, Nicholas E. White, Robert Petre and W. Bruce Feller, Recent studies of lobster-eye optics. Proc. SPIE 3444,404 (1998);
    [23]William W. Zhang, Andrew G. Peele, Robert Petre, Yang Soong and Nicholas E. White, Practical implementation of lobster-eye optics. Proc. SPIE 3444,416 (1998);
    [24]Adolf V. Inneman, Rene Hudec, Ladislav Pina and Paul Gorenstein, Lobster eye x-ray optics. Proc. SPIE 3766,72 (1999);
    [25]Andrew G. Peele, Thomas H. K. Irving, Keith A. Nugent, LIGA for lobster:First observation of lobster-eye focusing from lithographically produced optics. Rev. Sci. Instrum.72,1843 (2001);
    [26]Andrew G. Peele, William W. Zhang and Robert Petre, Mini-Schmidt array for lobster-eye optics. Proc. SPIE 4012, 379 (2000);
    [27]Adolf V. Inneman, Ladislav Pina and Rene Hudec, Development of foil segments for large astronomical x-ray telescopes. Proc. SPIE 4496,
    [28]Thomas H. K. Irving, Andrew G. Peele, Keith A. Nugent and Steven P. Brumby, Faster, better, cheaper metrology of lobster-eye (square-pore) optics. Proc. SPIE 4145,209 (2001);
    [29]Andrew G. Peele, Thomas H. K. Irving, Keith A. Nugent, Derrick C. Mancini, Nicolai A. Moldovan and Todd R. Christenson, LIGA fabrication of high-aspect-ratio lobster-eye optics. Proc. SPIE 4592,406 (2001);
    [30]George W. Fraser, Adam N. Brunton, Nigel P. Bannister, James F. Pearson, Martin Ward, Tim J. Stevenson, D. J. Watson, Bob Warwick, S. Whitehead, and Paul O'Brian, LOBSTER-ISS:an imaging x-ray all-sky monitor for the International Space Station. Proc. SPIE 4497,115 (2002);
    [31]Rene Hudec, Adolf V. lnneman, Ladislav Pina, V. Hudcova, L. Sveda and Hana Ticha, Lobster-eye x-ray telescopes: recent progress. Proc. SPIE 4851,578 (2003);
    [32]Adolf V. Inneman, Ladislav Pina, Rene Hudec, Hana Ticha and Vlastimil Brozek, Innovative x-ray optics for astrophysics. Proc. SPIE 4783,156 (2002);
    [33]Ladislav Pina, Adolf V. Inneman, Rene Hudec, Hana Ticha, Ulrich W. Arndt, Neil Loxley, Graham Fraser, Mark Taylor and John Wall, Innovative x-ray optics for laboratory. Proc. SPIE 4781,119 (2002);
    [34]G.J. Price, A.N. Brunton, G.W. Fraser, X-ray focusing with Wolter microchannel plate optics. ScienceDirectNuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment Volume 490, Issues 1-2,1 September 2002, Pages 276-289
    [35]Rene Hudec, Adolf V. Inneman, Ladislav Pina, V. Hudcova, L. Sveda and Hana Ticha, Lobster-eye x-ray telescopes: recent progress. Proc. SPIE 4851,578 (2003);
    [36]Thomas H. K. Irving, Andrew G Peele, and Keith A. Nugent, Optical metrology for analysis of lobster-eye x-ray optics. Applied Optics, Vol.42, Issue 13, pp.2422-2430 (2003)
    [37]Rene Hudec, Libor Sveda, Adolf Inneman and Ladislav Pina, Astronomical lobster eye telescopes. Proc. SPIE 5488, 449 (2004); [38] Rene Hudec, Ladislav Pina, Adolf Inneman, Libor Sveda, Hana Ticha, V. Semencova and Vlastimil Brozek, Innovative technologies for future astronomical x-ray mirrors. Proc. SPIE 5488,875 (2004); [39] Sveda, Libor, Multifiol X-ray Optical Systems. Proceedings of the SPIE, Volume 5168, pp.393-401 (2004).
    [40]Libor Sveda, Veronika Semencova, Adolf Inneman, Ladislav Pina and Rene Hudec, "Hybrid lobster optic", Proc. SPIE 5918,591803(2005);
    [41]Jiri Kulda, Measurements of metric nonlinearities of MCP based Lobster-EyeX-ray Telescope optics by Moire interferometry. Physica B:Condensed MatterVolumes 385-386, Part 2,15 November 2006, Pages 1250-1252
    [42]Ren'e Hudec, Ladislav Pina, Veronika, Semencov'a, Adolf lnneman, Michaela·Skulinov'a, Martin Mika, Novel Optics for X-ray Telescopes.
    [43]Libor Sveda, Veronika Semencova, Adolf Inneman, Ladislav Pina and Rene Hudec, Hybrid lobster optic. Proc. SPIE 5918,591803(2005);
    [44]R. Hudec,V. Simonl, Astrophysics with LOBSTER. Chin. J. Astron. Astrophys. Vol.6 (2006), Suppl.1,383-387
    [45]Ren'e Hudec, Ladislav Pina ,Veronika,Semencov'a, Adolf Inneman, Michaela, Skulinov'a, Martin Mika, Novel Optics for X-ray Telescopes.
    [46]Andrzej Bartnik, Henryk Fiedorowicz, Roman Jarocki, Jerzy Kostecki, Miroslaw Szczurek, Radka Havlikova, Ladislav Pina, Libor Sveda and Adolf Inneman, Response of inorganic materials to laser-plasma EUV radiation focused with a lobster eye collector. Proc. SPIE 6586,65860A (2007);
    [47]Richard Willingale and Frank H. Spaan, The design, manufacture and predicted performance of Kirkpatrick-Baez Silicon stacks for the International X-ray Observatory or similar applications. Proc. SPIE 7437,74370B (2009);
    [48]Tichy Vladimir, Mgr, Small x ray telescope based on lobster eye x ray optics and pixel detector. Proceedings of the SPIE, Volume 7360 (2009)., pp.736011-736011-7 (2009).
    [49]Paul Gorenstein, Large-angle observatory with energy resolution for synoptic x-ray studies (LOBSTER-SXS). Proc. SPIE 8147,814710 (2011);
    [50]Vladimir Tichy, Marco Barbera, Alfonso Collura, Martin Hromcik, Rene Hudec, Adolf Inneman, Jiri Marsik, Veronika Marsikova, Ladislav Pina, Vojtech Simon and Salvatore Varisco, Lobster eye optics for nano-satellite x-ray monitor. Proc. SPIE 8076,80760C (2011);
    [51]Dr. Michael Gertsenshteyn, Lobster Eye X-Ray Imaging Underwater Scatterometer.
    [52]Michael Gertsenshteyn, Tomasz Jannson and Gajendra Savant, Staring/focusing lobster-eye hard x-ray imaging for non-astronomical objects. Proc. SPIE 5922,59220N (2005);
    [53]Michael Gertsenshteyn, Victor Grubsky and Tomasz Jannson, Hard X-ray devices for target detection at longer distances. Proc. SPIE 6319,63190F (2006);
    [54]Victor Grubsky, Michael Gertsenshteyn and Tomasz Jannson, Lobster-eye infrared focusing optics. Proc. SPIE 6295, 62950F (2006);
    [55]Victor Grubsky, M. Gertsenshteyn, T. Jannson, Nature-inspired optics enable omnidirectional and omnispectral imaging. SPIE Newsroom. DOI:10.1117/2.1200702.0691
    [56]Tomasz Jannson and Michael Gertsenshteyn, Hard x-ray focusing optics for concealed object detection. Proc. SPIE 6213,621302(2006);
    [57]Grubsky, V, Gertsenshteyn, M.Jannson, T. Savant, G, Non-scanning x-ray backscattering inspection systems based on x-ray focusing. Proceedings of the SPIE, Volume 6540, pp.65401N (2007).
    [58]Tomasz Jannson, Michael Gertsenshteyn, Victor Grubsky, Pauline Amouzou and Richard Koziol, Through-the-wall sensor systems based on hard x-ray imaging optics. Proc. SPIE 6538,65380A (2007);

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700