用户名: 密码: 验证码:
激光照射纳米流体形成散斑的特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米流体由于其优良的导热特性极有可能成为新一代传热工质,即使纳米流体中纳米粒子的体积百分比很小以至可以忽略不计,其导热系数也比基液提高很多。纳米粒子的运动是导致纳米流体导热系数显著提高的主要因素之一,但是目前尚无探测流体中动态纳米粒子的方法。本文从理论、数值模拟和实验三个方面研究了激光照射纳米流体形成散斑的机理及散斑的特性,并提出利用激光散斑测速法(Laser SpeckleVelocimetry,简写为LSV)测量定向纳米流体中纳米粒子的运动,进而构建实验装置进行了测量。
     在分析纳米粒子光学特性的基础上,提出利用激光散斑测速法测量纳米流体中纳米粒子的运动。针对纳米粒子的光学特性,对传统的LSV系统进行了改进,即改用平行面光源照射流场、高速CCD正对入射光方向记录散斑图像的方式,使之具备了测试纳米流体中纳米粒子运动的特性。
     为对改进后的测试方法进行论证,从实验和数值模拟两个方面证实了激光照射纳米流体确能形成散斑。其中通过静态实验确定激光照射含有合适体积百分比纳米粒子的纳米流体可以形成清晰的散斑图;基于光的波粒二象性,分别根据光的波动性和粒子性建立了“经典散射模型”和“光子——粒子随机碰撞模型”,基于这两个模型分别对激光照射纳米流体形成散斑的过程进行了数值模拟,并对散斑的形成机理进行了解释。
     根据实验装置建立了层流物理模型,基于散斑的统计特性,通过数学推导得到了结论:在菲涅尔衍射区域,纳米粒子的运动速度等于接收屏上散斑的运动速度。进而构建了定向纳米流体实验装置,获得了时间间隔很短的序列散斑图。
     对相邻两幅散斑图进行图象处理和信息提取,得到了纳米粒子运动矢量图。首先对图象进行同态滤波和二值化等图像处理;然后结合全局搜索算法和各种块匹配算法对两幅散斑图进行图象相关处理,得到了运动矢量图;进而引入了亚像素算法,利用曲面插值拟合,使散斑位置精度达到0.1个像素,得到了散斑运动矢量。
     本文研究结果可为进一步研究激光散斑法测量纳米流体中纳米粒子的运动,以及开发新的动态纳米粒子光测方法提供理论和实验依据。
Nanofluids or liquids with suspended nanoparticles are likely to be the future heat transfer media as their thermal conductivities are significantly higher than those of the parent liquids even if the nanoparticle concentrations are negligible. The movement of nanoparticles in fluids is one of the main factors that result in the remarkable thermal conductivity of nanofluids; however, there is no suitable method to detect the movements of nanoparticles in nanofluids till now. In this paper, the formation-mechanism and characteristics of the speckles, which are formed by illuminating nanofluids with laser beam, are investigated. Laser Speckle Velocimetry (LSV) is presented to measure the velocities of nanoparticles in nanofluids. Moreover, experiments are carried out measure the velocities of nanoparticles in directional nanofluids with LSV.
     According to the optical characteristics of nanoparticle, LSV is proposed to measure the velocities of nanoparticles in nanofluids, and traditional LSV system is modified in order to be competent for detecting the movements of nanoparticles. Light sheet is changed to plane light source, and CCD digital camera is placed perpendicular to the incident light.
     By the means of experiments and numerical simulations, it is verified that speckles can be formed when nanofluids are illuminated by laser beam. First, clear speckles are formed by illuminating static nanofluids containing proper volume fraction of nanoparticles. Then, classic-scattering-model and photon-nanoparticle-collision-model are respectively established based on the wave-particle duality of light. The formation of speckles with nanofluids is simulated respectively on these two models, and the formation mechanism of speckles is figured out.
     According to the experimental setup, a physical model is established. Based on statistical properties of speckles, the relationship between the movements of naoparticles and the movements of speckles on the screen is studied by formula deduction. A conclusion is drawn that the velocities of nanoparticles is identical to the velocities of speckles in Fresnel region. Thereafter, the experimental system is set up, and speckle patterns sequences are recorded with high speed CCD camera.
     Two consecutive speckle patterns are processed with computer programs to obtain the motion vector diagram of speckles, thereby the motion of nanoparticles. Speckle patterns are first preprocessed with homomorphic filter and image threshold. Then they are correlated with global searching algorithm and several block-matching algorithms (BMA) to obtain the motion vector diagram of speckles. Furthermore, sub-pixel algorithm is introduced and the resolution is improved to 0.1 pixel. Finally, the velocities of speckles are obtained, thereby the movements of nanoparticles.
     The research consequences may offer theoretical and experimental references to further study of the movement of nanoparticles in fluids with Laser Speckle Velocimetry or some new optical method.
引文
1.Binnig G,Rohrer H,Gerber CH,Weibel E.Surface studies by scanning tunneling microscopy.Phys.Rev.Lett.,1982,49(1):57-61.
    2.S.Alexander,L.Hellemans,et al.An atomic-resolution atomic-force microscope implemented using an optical lever.J.Appl.Phys.,1989,65(1):164-167.
    3.E.Teague.The National Institute of Standards and Technology molecular measuring machine project.J.Vac.Technol.1989,B7:1898-1902.
    4.S Yoshida et al.Approaches to nanometer technology-a review of the Yoshida Nano-Mechanism Project.Nanotechnology 1990,1:13-18.
    5.H.Kunzmanm.Nanometrology at PTB.Metrologia.,1992,28(6):443-454.
    6.A.Franks.Nanometric surface metrology at the national physical laboratory.Metrologia.,1992,28(6):471-482.
    7.D.G.Chetwynd,N.O.Krylova,S.T.Smith.Metrological x-ray interferometry in the micrometer region.Nanotechnology,1996,7(1):1-12.
    8.B.Y.Chen,X.H.Cheng,D.C.Li.Dual-wavelength interferometric technique with subnanometric resolution.Applied Optics,2002,41(28):5933-5937.
    9.张亦弈,贺节,商广义,姚骏恩.原子力显微镜.光学学报,1995,15(1):112-116.
    10.徐毅,叶孝佑,李成阳,许婕,高峰.测量微位移的法-珀干涉仪.计量学报,1993,14(2):95-98.
    11.王春和,叶声华.双法-珀光纤干涉仪及条纹定位法读数.仪器仪表学报,1994,15(1):18-21.
    12.CHOI U S.Enhancing thermal conductivity of fluids with nanoparticles.Developments and Applications of Non-Newtonian Flows,NewYork:ASME,1995:99-105.
    13.LEE S,CHOI U S,LI S,et al.Measuring thermal conductivity of fluids containing oxide nanoparticles.J.Heat Trans.,1999,121:280-289.
    14.XIE H Q,WANG J C,Xi T G,et al.Thermal conductivity enhancement of suspensions containing nanosized alumina particles.J.Appl.Phys.,2002,91:4586-4572.
    15.XlE H Q,WANG J C,XI T G,et al.Thermal conductivity of suspension containing nanosized SiC particles.Int.J.Thermophys.,2002,23:571-580.
    16. WANG B X, ZHOU L P, PENG X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass. Trans., 2003, 46: 2655-2662.
    17. EASTMAN J A, CHOI U S, LI S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett., 2001, 78: 718-720.
    18. CHOI U S, ZHANG Z G, YU W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett., 2001,79:2252-2254.
    19. XUAN Y, LI Q. Investigation on convective heat transfer and flow features of nanofluids. J. Heat Trans., 2003,125:151-155.
    20. YOU S M, KIM J H, KIM K H. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett., 2003, 83: 3374-3376.
    21. LEE S, CHOI U S. Application of metallic nanoparticle suspensions in advanced cooling systems. International Mechanical Engineering Congress and Exposition, USA, Atlanta, 1996: 227-234.
    22. KEBLINSKI P, PHILLPOT S R, CHOI U S, et al. Mechanism of heat flow in suspensions of nano-sized particles. Int. J. Heat Mass. Trans., 2002,45: 855-863.
    23. XUE Q Z. Model for effective thermal conductivity of nanofluids. Phys. Lett. A, 2003, 307: 313-317.
    24. PRASHER R. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett., 2005,94: 025901.
    25. VADASZ J J, GOVENDER S, VADAZ P. Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations. Int. J. Heat Mass. Trans., 2005, 48: 2673-2683.
    26. Richard Feynman. There's plenty of room at the bottom. Engineering and Science, February 1960
    27. 顾宁, 付德刚, 张海黔. 纳米技术与应用. 北京: 人民邮电出版社.,2002.
    28. N. Taniguchi, On the Basic Concept of 'Nano-Technology'. Proc. Int. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.
    29. Birringer, R, Gleiter, H, Klein, H-P, Marquardt, P. Nanocrystalline Materials—an Approach to a Novel Solid Structure With Gas-Like Disorder. Phys. Lett. A., 1984, 102A(8): 365-369.
    30. Rohifing E A, Cox D M, Kaldor A. Production and characterization of supersonic carbon cluster beams. J Chem Phys, 1984(81): 3322.
    31. Kroto H W, Heath J R, Obrien S C. C60: Buckminsterfullerene. Nature, 1985(318): 162.
    32. Averin D V, Likharev K K. Single electronics: a correlated transfer of single electrons and cooper pairs in systems of small tunnel junctions.Mesoscopic phenomena in solids,1991:173-271.
    33.K.Eric Drexler.Engines of Creation:The Coming Era of Nanotechnoiogy.Anchor Books,New York,1986
    34.Eigler D M,Schweizer E K.Positioning single atoms with a scanning tunneling microscope.Nature,1990,344:524-526.
    35.I.W.Lyo and Ph.Avouris.Science.1991,253:173.
    36.Iijima S.Nature,1991,354(6348):56-58.
    37.Iijima S,Ichihashi T.Nature,1993,363(6430):603-605.
    38.A.E.Berkowitz,J.R.Mitekell,M.J.Corey,A.P.Young,S.Zhang,F.E.Spada,F.T.Parker,A.Hutten,and G.Thamas.Phys.Rev.Left.,1992,68:3745.
    39.J.Q.Xiao,J.S.Jiang,C.L.Chien.Phys.Rev.Lett.,1992,68:3749.
    40.H.Uchida,D.H.Hunang,F.Grey and M.Aono.Phys.Rev.Lett.,1993,70:2040.
    41.M.F.Crommie,C.P.Lutz,and D.M.Eigler.Confinement of Electrons to Quantum Corrals on a Metal Surface.Science,1993,262(5131):218-220.
    42.Q.J.Gu,N.Liu,W.B.Zhao,Z.L.Ma,Z.Q.Xue and S.J.Pang.Appl.Phys.Lett.,1995,66(14):1747.
    43.R Freitas,Nanomedicine.Volume I:Basic Capabilities.Georgetown,TX:Landes Bioscience,1999
    44.Kim P,Lieber CM.Nanotube nanotweezers.Science,1999,286(5447):2148-2150.
    45.Zheng Wei Pan,Zu Rong Dai,Zhong Lin Wang.Nanobelts of Semiconducting Oxides.Science,2001,291(5510):1947-1949.
    46.胡松青,李琳,郭祀远,蔡妙颜.现代化工,2002,22(2):58.
    47.Adrian R J.Particle-Imaging Techniques for Experimental Fluid Mechanics.Annu.Rew.Fluid Mech.,1991,23:261-304.
    48.Kubo R.J.Phys.Soc.Jpn.,1996,21:1765.
    49.C B Murray,D J Norris,M G Bawendi.Synthesis and Characterization of Nearly Monodisperse CdE(E=S,Se,Te)Semiconductor Nanocrystallites.J.Am.Chem.Soc.,1993,1(15):8706.
    50.Waren CW Chan,ShuMing Nie.Luminescent Quantum Dots for Multiplexed Biological Dectiong and Imaging.Curent Opinion in Biotechnology,2002,1(3):40-46.
    51.Micic O I,Cheong H M,Fu H,Zunger A,Sprague J R,Mascarenhas A,Nozik AJ.Size-Dependent Spectroscopy of InP Quantum Dots.J Phys Chem B,1997,101:4904-4912.
    52.Han MY,Gao X,SU JZ,Nie SM.Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules.Nat Biotechnol,2001,19:631-635.
    53.谢华清,奚同庚.纳米流体导热系数研究.上海第二工业大学学报,2006,23(3):200-204.
    54.U.S.Choi,"Enhancing thermal conductivity of fluids with nanoparticles," ASME FED.,1995,231:99-103.
    55.张立德,牟季美.纳米材料学.辽宁:辽宁科学技术出版社,1994.
    56.HU Z S,DONG J X.Study on antiwear and reducing friction additive of nanometer titanium oxide.Wear,1998,216:92-96.
    57.李新芳,朱冬生.纳米流体传热性能研究进展与存在问题.化工进展.2006,25(8):875-879.
    58.Masuda,H.Ebata,A.,Teramae,K.,Hishinuma,N.,Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles(dispersion ofγ-Al_2O_3,SiO_2 and TiO_2ultra-fine particles).Netsu Bussei(Japan),1993,4:227-233.
    59.Eastman,J.A.,Choi,U.S.,Li,S.,Thompson,L.J.,Lee,S.Enhanced thermal conductivity through the development of nanofluids,in Nanophase and Nanocomposite Materials Ⅱ(ed.By Komameni,S.Parker,J.C.,Wollenberger,H.J.)MRS,Pittsburgh,3-11,1997.
    60.Lee S,Choi U S,Li S,Eastman J A.Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles.Journal of Heat Transfer,1999,121:280-289.
    61.Eastman J A,Choi U S,Li S.Development of Energy-efficient Nanofluids for Heat Transfer Applications.Report of Argonne National Laboratory.
    62.Eastman J A,Choi U S,Li S,et al.Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles.Appl.Phys.Lett.,2001,78:718-720.
    63.J.Hone,M.Whitney,and A.Zettl.Synth.Met.1999,103:2498.
    64.S.Berber,Y.K.Kwon,and D.Tomanek.Phys.Rev.Lett.,2000,84:4613.
    65.CHOI U S,ZHANG Z G,YU W,et al.Anomalous thermal conductivity enhancement in nanotube suspensions.Appl.Phys.Lett.,2001,79:2252-2254.
    66.Xie H Q et al.J.Chin.Ceram.Soc.,2001,29:361(in Chinese)[谢华清等2001硅酸盐学报29:361]
    67.Xie H,Wang J,Xi T et al.Thermal conductivity enhancement of suspensions containing nanosized alumina particles.J.Appl.Phys.,2002,91:4568.
    68.S.K.Das,N.Putra,P.Thiesen,and W.Roetzel.Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids.J.Heat Transfer,2003,125:567-574.
    69.D.H.Kumar,H.E.Patel,V.R.R.Kumar,T.Sundarajan,T.Pradeep,and S.K.Das.Model for heat conduction in nanofluids.Phys.Rev.Lett.,2004,93:144301.
    70.张巧慧,朱华.新型传热工质纳米流体的研究与应用.能源工程,2006,2:52-54.
    71.MAXWELL J C.A treatise on electricity and magnetism.2nd ed U K:Clarendon Press,1881.
    72.Hamilton R L and Crosser O K.I & EC Fundamentals,1962,1:187.
    73.Davis R H.Int.J.Thermophys.1986,7:609
    74.J.J.de Groot,J.Kestin,and H.Sookiazian.Physica(Amsterdam),1974,75:454.
    75.Y.Nagasaka and A.Nagashima.J.Phys.E,1981,14:1435.
    76.Xuan Y M,Li Q.Heat transfer enhancement of nanofluids.International Journal of Heat and Fluid Flow,2000,17:568-571.
    77.李强,宣益民.纳米流体强化导热系数机理初步分析.热能动力工程,2002,17:568-571.
    78.S.P.Jang and S.U.S.Choi.Role of Brownian motion in the enhanced thermal conductivity of nanofluids.Appl.Phys.Lett.,2004,84:4316-4318.
    79.J.Koo and C.Kleinstreuer.A new thermal conductivity model for nanofluids.J.Nanopart.Res.,2004,6:577.
    80.R.Prasher,P.Bhattacharya and P.E.Phelan.Thermal conductivity of nanoscale colloidal solutions(nanofluids).Phys.Rev.Lett.,2005,94:025901.
    81.R.Prasher,P.Bhattacharya and P.E.Phelan.Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids.J.Heat Transfer,2006,128:588-595.
    82.Y.Xuan and Q.Li.Stochastic thermal transport of nanoparticle suspensions.J.Appl.Phys.,2006,100:043507.
    83.C.H.Chon and K.D.Kihm.Empirical correlation finding the role of temperature and particle size for nanofluid(Al_2O_3)thermal conductivity enhancement.Appl.Phys.Lett.,2005,87:153107.
    84.C.H.Chon and K.D.Kihm.Thermal conductivity enhancement of nanofluids by Brownian motion.J.Heat Transfer,2005,127:810.
    85.J.C.Dainty.Laser speckle and related phenomena,Springer-Verlag,1975.
    86.I.Newton.Opticks(Reprinted by Dover Press,New York 1952)Book Ⅰ,Part Ⅰ.Prop.Ⅷ,Prob.Ⅱ.(1730).
    87.K.Erner.Sitzungsber.Kaiserl.Akad.Wiss.(Wien),1877,76:522.
    88.K.Erner.Wiedemanns.Ann.Physik,1880,9:239.
    89.M.von Laue.Sitzungsber Akad.Wiss.(Berlin),1914,44:1144.
    90.N.George,A.Jain.Opt.Commun.,1972,6:253.
    91.M.Elbaum,M.Greenbaum,M.King.Opt.Commun,1972,5:171.
    92.H.Golbach.Optik,1970,37:45.
    93.H.Arsenault,S.Lowenthal.Opt.Commun.,1970,1:451.
    94.S.Lowenthal,D.Joyeur,H.Areenault.Opt.Commun.,1970,2:184.
    95.J.H.Tiziani.Thesis,University of London 1967.
    96. E. Schroder. Opt. Commun., 1971,3:68.
    97. S. Lowenthal, D. Joyeux. J. Opt. Am., 1971,61: 847.
    98. H. Kiemle, U. Wolf. Opt. Commun., 1971, 3: 26.
    99. D. J. Cronin, A. E. Smith. Opt. Engng, 1973, 12: 50.
    100. R. F. van Lighten. Appl. Opt., 1973,12: 255.
    101. J. M. Burch and J. M. J. Torkarski. Production of multiple beam fringes from photographic scatterers. Opt. Acta, 1968,15: 101.
    102. J. A. Leedertz. Interferometric displacement measurement on scattering surface utilizing speckle effect. J.Phys.E, 1970,3:214.
    103. E. Archbold, J. M. Burch, A.E. Ennos. Recording of In-plane Surface Displacement by Double-exposure Speckle Photography. Journal of Modern Optics, 1970,17(12): 883-898.
    104. R Jones and J. A. Leendertz. Elastic constant and strain measurements using a three beam speckle pattern interferometer. J. Phys. E: Sci. Instrum., 1974, 7: 653-657.
    105. J. N. Butters and J. A. Leendertz. Opt. Laser Technol., 1971, 3: 26.
    106. J. N. Butters and J. A. Leendertz. Meas. Control, 1971, 4: 349.
    107. A Macovski, SD Ramsey, LF Schaefer. Time-lapse interferometry and contouring using television systems. Applied Optics, 1971, 10(12): 2722-2727.
    108.I Yamaguchi. Speckle Displacement and Decorrelation in the Diffraction and Image Fields for Small Object Deformation. Journal of Modern Optics, 1981,28(10): 1359-1376.
    109. WH Peters, WF Ranson. Digital Imaging Techniques in Experimental Stress Analysis. Optical Engineering, 1982,21(3): 427-431.
    110. W H PETERS, W F RANSON, M A SUTTON, T C CHU, J ANDERSON. Application of digital correlation methods to rigid body mechanics. Optical Engineering, 1983,22: 738-742.
    111.T C Chu, W F Ranson, M A Sutton. Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics, 1985, 25(3): 232-244.
    112. M A Sutton, W J Wolters, W H Peters, W F Ranson, and S R McNeill. Determination of displacements using and improved digital correlation method. Image Vision Comput., 1983, 1(3): 133-139.
    113. H A Bruck, S R McNeill, M A Sutton, W H Peters. Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, 1989, 29(3): 261-267.
    114. H Lu. Statistical analysis of the random error in measurements obtained using method of digital correlation of speckles. 1993 SEM Spring Conference on Experimental Mechanics; Dearborn, Michigan; USA: 930-937.
    115.Jeffrey D.Helm,Stephen R.McNeill,and Michael A.Sutton.Improved three-dimensional image correlation for surface displacement measurement.Optical Engineering,1996,35(7):1911-1920.
    116.H Lu,G Vendroux,WG Knauss.Surface deformation measurements of a cylindrical specimen by digital image correlation.Experimental Mechanics,1997,37(4):433-439.
    117.Y J Chao,P F Luo,J F Kalthoff.An experimental study of the deformation fields around a propagating crack tip.Experimental Mechanics,1995,38(2):79-85.
    118.J L Rand.Nonlinear behavior of linear low-density polyethylene.Polymer Engineering and Science(USA),1996,36(8):1058-1064.
    119.李喜德.数字散斑强度相关计量理论及应用.西安:西安交通大学,1992.
    120.刘宝琛,李勇.韧性金属裂纹尖端损伤区应变场测量——数字散斑相关法应用.实验力学,1993,8(1):11-17.
    121.黄嘉白,金观昌.一种新的数字散斑相关方法及其应用.力学学报,1994,26(5):599-607.
    122.高建新,周辛庚.数字散斑相关方法的原理与应用.力学学报,1995,27(6):724-731.
    123.姜锦虎.数字散斑图及相关测量系统抗噪声干扰能力的研究.现代力学测试技术.华南理工大学出版社,1998:294-297.
    124.王冬梅,秦玉文.数字图像相关测量的误差分析及其改进措施.实验力学,1998,13(3):416-422.
    125.王志,李鸿琦,杜庆华,邢冬梅,等.二维离散δ-平滑算法提高DSCM测试精度的研究力学与工程应用.北京:中国林业出版社,2002:55-58.
    126.邢冬梅,李鸿琦,等.梯度功能材料稳态温度场下的热应力分析.功能材料,2002,33(5):505-507.
    127.马世虎,刘美华,李鸿琦,李林安,佟景伟.聚羟基丁酸酯球晶的微观结构及其对力学性能的影响.材料科学与工程学报,2007,3.
    128.杨楠,佟景伟,舒庆琏,常江,E.V.Pizzinato.裂纹纹尖弹塑性应力应变场的实验研究和数值分析.实验力学,2003,18(3):338-342.
    129.L.E.DRAIN著,王仕康,沈熊,周作元译.激光多普勒技术,清华大学出版社,1985.
    130.F.杜斯特,A.梅林,J.H.怀特洛.激光多普勒测速技术的原理和实践,科学出版社,1992.
    131.沈熊编著.激光多普勒测速技术及应用,清华大学出版社,2004.
    132.范洁川等编著.近代流动显示技术,国防工业出版社,2002.
    133.崔尔杰,洪金森.流动显示技术及其在流体力学研究中的应用.空气动力学学报,1991,9(2).
    134.Adrian R J.Multi-point Optical Measurement of Simultaneous Vectors in Unsteady Flow-a Review.Int.J.Hear & Fluid Flow,1986,7:127-145.
    135.Adrain R J.Particle Imagine Techniques for Experimental Fluid Mechanics.Ann.Rev Fluid Mech,1991,23:261-304.
    136.Chen C-J,etc.Quantitative Flow Visualization of 3-D Flow.Flow visualization Ⅵ,1992,10:3-11.
    137.许宏庆,R.J.Adrian.粒子像测速技术(PIV)和激光散斑测速技术(LSV)的实验研究.气动实验与测量控制,1995,9(2):9-15.
    138.Adrian R J,Yao C S.Pulsed Laser Technique Application to Liquid and Gaseous Flows and the Scattering Power of Seed Materials.Appl.Opt.,1985,24:44-52.
    139.Ana Catarina eat.Synthetic Studies on Ⅱ,Ⅵ Semiconductor Quantum Dots.Curent Opinion in Solid State and Materials Science,2002,6:347-353.
    140.沈均涛,陈十一.球形粒子在流体中的跟随性.空气动力学学报,1989,7(1):50-58.
    141.由长福,祁海鹰,徐旭常.显微PIV系统与实现.流体力学实验与测量,2003,17(4):84-88.
    142.王昊利,王元.Micro-PIV技术——粒子图像测速技术的新进展.力学进展,2005,35(1):77-90.
    143.K.T.Wu,P.C.Kuo,Y.D.Yao,and E.H.Tsai.Magnetic and Optical Properties of Fe_3O_4Nanoparticle Ferrofluids Prepared by Coprecipitation Technique.IEEE TRANSACTIONS ON MAGNETICS,2001,37(4):2651-2653.
    144.Earl J.McCartey,OPTICS OF THE ATMOSPHERE-Scattering by Molecules and Particles (John Wiley & Sons,Inc.1976).
    145.潘笃武,贾玉润,陈善华编著.光学(下册),复旦大学出版社,1997.
    146.刘培森.散斑统计光学基础.科学出版社,1987.
    147.裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用.北京:科学出版社,1980。
    148.徐钟济.蒙特卡罗方法.上海:上海科学技术出版社,1985.
    149.裴鹿成.蒙特卡罗方法.中国大百科全书,数学卷,471,1988.
    150.裴鹿成等.计算机随机模拟.长沙:湖南科学技术出版社,1989.
    151.裴鹿成.蒙特卡罗方法发展的回顾与展望.蒙特卡罗方法及其应用(一).郑州:河南科学技术出版社,1993.
    152.K.Binder.Monte Carlo Methods in Statistical Physics Springer-Verlag Second Edition,1986.
    153.K.Binder.Application of the Monte Carlo Method in Statistical Physics Springer-Verlag,1984.
    154.Christian P.Robert and George Casella.Monte Carlo Statistical Methods Springer,2004.
    155.Stefano Gandolfi,Francesco Pederiva,Stefano Fantoni and Kevin E.Schmidt.Phys.Rev.Lett.,2007,98:102503.
    156.K.T.Lee.AIP Conf.Proc.,2007,884:231.
    157.G Borodkin,N Khrennikov,B B(o|¨)hmer,K Noack and J Konheiser.J.ASTM Int.2006,3:13460.
    158.Vijay Pandharipande.AIP Conf.Proc.,2003,690:261.
    159.Arun Yethiraj.J.Chem.Phys.,2006,125:204901.
    160.Piotr Romiszowski and Andrzej Sikorski.J.Chem.Phys.,2006,125:104901.
    161.Jutta Luettmer-Strathmann and Manjeera Mantina.J.Chem.Phys.,2006,124:174907.
    162.K.Avramova and A.Milchev.J.Chem.Phys.,2006,124:024909.
    163.InSeok Seo,Joon S.You,Carole K.Hayakawa and Vasan Venugopalan,J Biomed.Opt.,2007,12(1):014030.
    164.Michael F.G.Wood,Xinxin Guo and I.Alex Vitkin.J.Biomed.Opt.,2007:014029.
    165.Alwin Kienle and Raimund Hibst.Light Guiding in Biological Tissue due to Scattering.Phys.Rev.Lett.,2006,97:018104.
    166.Mikhail Yu.Kirillin,Alexander V.Priezzhev,Jukka Hast and Risto Myllyla.Proc.of SPIE,20045474.
    167.Fabrizio Martelli,Samuele Del Bianco and Giovanni Zaccanti.Phys.Rev.E,2004,70:011907.
    168.Jenni Heino,Simon Arddge,Jan Sikora and Erkki Somersalo.Phys.Rev.E,2003,68:031908.
    169.Heba Yuksel,Walid Atia and Christopher C.Davis.Proc.Of SPIE,2005,589109.
    170.Robert and K.Erf.Speckle Metrology.Academic Press,Inc.1978.
    171.刘培森著.散斑统计光学基础.第1版.北京:科学出版社,1987.
    172.陈文义,张伟.流体力学.天津大学出版社,2004,p89.
    173.Victor L.Streeter,E.Benjamin Wylie and Keith W.Bedford.Fluid Mechanics.Published by McGraw-Hill companies,Inc.1998.
    174.J.W.Goodman.Statistical Properties of Laser Speckle Pattern.in "laser speckle and Related Phenomena.J.C.Dianty,ed.,Springer-Verlag,Heidelberg,1975.
    175.Robert,K.Erf.Speckle Metrology.Academic Press,lnc,1978.
    176.N.Otsu.A Threshold Selection Method from Gray-Level Histograms.IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
    177.韩思奇,王蕾.图像分割的阈值法综述.系统工程与电子技术,2002,4(6):91-102.
    178.王祥科,郑志强.Otsu多闽值快速分割算法及其在彩色图像中的应用.计算机应用,2006,26(6):14-15.
    179.何斌等.Visual C++数字图象处理.人民邮电出版社,2001,4.
    180.刘翔.基于光流场算法的运动估计方法研究.信号与信息处理,2006,6(4):17-20.
    181.刘海华,雷奕,谢长生.基于块匹配的运动估计搜索算法研究与实现.计算机应用,2006,26(6):1354-1364.
    182.Po L M,Ma W C.A novel four-step search algorithm for fast block motion estimation.IEEE Trans Circuits Syst Video Technol,1996,6(1):313-317.
    183.Li R,Zeng B,Liou M L.A new three-step search algorithm for block motion estimation.IEEE Trans Circuits Syst Video Technol,1994,4(8):438-443.
    184.Tham J Y,Ranganath S,Ranganath M,et al.A novel unrestricted center-biased diamond search algorithm for block motion estimation.IEEE Trans Circuits Syst Video Technol,1998,8(4):369-377.
    185.胡喜华,刘卫忠,郑立新.运动估计块匹配算法的分析研究.数字电视与数字视频,2005,12.
    186.Aroh Barjatya,Student Member,IEEE.Block Matching Algorithms For Motion Estimation.DIP 6620 Spring 2004 Final Project Paper.
    187.郭海丰,杨将新.一种改进的运动估计快速搜索算法.通信电源技术,2005,22(2):45-47,57.
    188.刘锋,庄奕琪,代国定.一种计算复杂度可调整的块匹配运动估计算法.西安电子科技大学学报(自然科学版),2005,32(6):901-906.
    189.Kuglin C D,Hines D C.The phase correlation image alignment method.IEEE International Conference O13.Cybernetics and Society.New York.USA,1975:163-165.
    190.潘兵,续伯钦,陈丁,冯娟.数字图像相关中亚像素位移测量的曲面拟合法.计量学报,2005,26(2):128-134.
    191.于起峰.基于图像的精密测量与运动测量.北京:科学出版社,2002.
    192.李善祥,孙一翎等.数字散斑相关测量中亚像素位移搜索的曲面拟合研究.光子学报,1999,28(7):638-640.
    193.王琛影,何小元.相关识别中的曲面拟合法.实验力学,2000,15(9):281-285.
    194.侯成刚,赵明涛,屈梁生.基于二次曲面拟合的亚像素图像匹配算法.计量学报,1997,18(3):227-231.
    195.孟利波,马少鹏,金观昌.数字散斑相关测量中亚像素位移测量方法的比较.实验力学,2003,18(3):343-348.
    196.Bruek H A,MeNeill S R,Sutton M A.Digital image correlation using Newton-Raphson method of partial diferential correctioni.Experimental Mechanics,1989,29(3):261-267.
    197.郭荣鑫,杨邦成,蔡光程,李俊吕.亚像素位移插值计算方法的比较分析.昆明理工大学学报,2005,30(2):55-59.
    198.Okamoto,K.,Nishio,S.,Saga,T.and Kobayashi,T.,.Standard images for particle-image velocimetry.Meas.Sci.Technol.,2000,11:685-691.
    199.Westerweel J.Efficient detection of spurious vectors in particle image velocimetry data.Experiments in Fluids,1994,16:236-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700