用户名: 密码: 验证码:
华北石质山区栓皮栎、杜仲径向和轴向液流分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北石质山区是华北平原的重要生态屏障,一直是退耕还林等林业生态工程建设的重点区域。栓皮栎(Quercus variabilis)和杜仲(Eucommia ulmoides)是华北石质山区典型人工林的代表树种,本文研究了该两种树种液流的径向和轴向分布特征,旨在为精确测算树干液流提供理论依据。主要结论如下:
     1、栓皮栎径向液流沿边材从外到内呈现“低-高-低”的分布特点,Fd_30(径向30mm处液流密度)明显高于Fd_50(径向50mm处液流密度)和Fd_10(径向10mm处液流密度)。三个深度液流密度与径向液流密度平均值均具有较大差异,无论以Fd_10、Fd_30和Fd_50中的任何一个值代替整个边材面积上的液流密度均值进行蒸腾量计算,都可能导致最后的蒸腾测量结果产生很大的误差。在整个生长季,栓皮栎径向不同深度液流密度均与空气温度和太阳辐射保持显著正相关,与空气相对湿度保持显著负相关。风速对Fd_10影响显著,对深层Fd_30、Fd_50影响较小。整个生长季三个深度液流密度与降水相关性均不显著,但与土壤20cm深处水分含量呈显著正相关。在连续干旱,土壤水分胁迫条件下,栓皮栎径向三个深度液流密度的关系为Fd_30>Fd_10>Fd_50;土壤水分非胁迫条件下,关系为Fd_30>Fd_50>Fd_10。
     栓皮栎液流密度在轴向东南西北四个方向上变化趋势基本一致。四个方向上液流密度相关性显著,其相关系数均在0.90以上,液流密度大小关系表现为N     2、杜仲径向液流差异明显。Fd_30显著高于Fd_10。若以Fd_10、Fd_30中的任何一个值作为整个边材面积上的液流密度均值进行整株蒸腾量计算,都会导致最后的结果产生很大的误差。杜仲径向液流密度Fd_10、Fd_30在整个生长季均与太阳辐射、气温、相对湿度、风速具有显著相关性,与降水相关性不显著,但是与土壤水分含量具有极显著的相关性。杜仲径向液流密度在典型天气条件下,表现为Fd_30>Fd_10的趋势。
     杜仲液流密度在轴向四个方向上变化趋势基本一致。四个方向上液流密度相关性显著,其相关系数在0.90以上,四个方向上液流密度大小表现为WThe lithoid hilly area of North-China is an important ecological barrier in North China Plain, and the key areas of the forest ecological programme such as returning farmland to forest. Quercus variabilis and Eucommia ulmoides are the typical plantation in the lithoid hilly areas of North-China. The spatial variation characteristics of sap flow of the two species were analysed, including the sap flow radial distribution and the sap flow in different directions. The results are:
     1、Radial sap flow of Quercus variabilis showed the trend of "low-high-low" in the whole growing season. The value of Fd_30 was higher than Fd_50 and Fd_10.Throughout the whole growing season, Fd_10, Fd_10 and Fd_50 were different from the average sap flow through the sapwood. If any one of the values of Fd_10, Fd_30 and Fd_50 was selected as the average sap flow through the sapwood, the final sap flow outcome will lead to large errors. Throughout the whole growing season, Quercus variabilis radial sap flow at different depths maintain a significant positive correlation with air temperature and solar radiation, and a significant negative correlation with air relative humidity. Wind speed significantly affected Fd_10, but affected Fd 30 and Fd_50 smaller. The radial sap flow had not significant correlation with precipitation but showed significant positive correlation with 20cm deep soil moisture content throughout the whole growing season.The relationship is Fd_30>Fd_10>Fd_50 in the successive droughts and soil moisture stress conditions, and the relationship is Fd_30>Fd_50>Fd_10 in non-stress conditions.
     The sap flows in four azimuths had the similar trend. Moreover. The sap flow showed a significant correlation in four directions, and the correlation coefficient is higher than 0.90, moreover, the relationship of sap flow in four directions was N     2、Radial sap flow of Eucommia ulmoides changed Significant in the growing season, and Fd 30 was higher than Fd_10 significant. If any one of the values of Fd_10 and Fd 30 was selected as the average sap flow through the sapwood, the final sap flow outcome will lead to large errors.The radial sap flow of Fd_10 and Fd_30 all had the significant correlation with solar radiation, air temperature, relative humidity and wind speed throughout the whole growing season. It had not significant correlation with precipitation, but had significant correlation with soil moisture content. The radial sap flow of Eucommia ulmoides showed Fd_30>Fd_10 in the typical whether condition.
     The sap flows in the four azimuths had the similar trend. The sap flow showed a significant correlation in four directions, and the correlation coefficient is higher than 0.90. The sap flow in four directions showed W
引文
1. 曹文强.山西太岳山主要树种树干液流研究.北京林业大学硕士论文,2003,12(3):1-14
    2. 曹文强,韩海荣,马钦彦等.山西太岳山辽东栎夏季树干液流密度研究.林业科学,2004,40(2):174~177
    3. 陈发祖.蒸发测定方法.地理研究,1988,7(3):78~88
    4. 段华平,谢小立,王凯荣.红壤坡地茶园蒸腾及其影响因子研究.农村生态环境,2002,18(2):19~23
    5. 高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究.西北植物学报,2001,2 1(4):644~649
    6. 郭继勋,肖洪兴,李建东.羊草蒸腾作用的研究.农业与技术,1994,3(2):1-4
    7. 黄家泽.介绍一种水力式称重蒸渗仪.水文,1994,1(12):44~47
    8. 巨关升,刘奉觉,郑世锴.选择树木蒸腾耗水测定方法的研究.林业科技通讯,1998,10(1):12~14
    9. 柯晓新,杨兴国,张旭东.农田蒸散测算的微气象学方法.干旱地区农业研究,1995,13(1):31~40
    10.李银芳,杨戈.箭秆杨和梭梭柴水量平衡的研究.干旱区研究,1995,12(1):32~36
    11.李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报,1998,20(1):1-6
    12.李海涛,陈灵芝.用于测定树干木质部蒸腾液流的热脉冲技术研究概况.植物学通报,1997,14(4):24~29
    13.刘奉觉,郑世锴,巨关升等.用热脉冲速度记录仪测定树干液流.植物生理学通讯,1993,29(2):110~115
    14.刘晶淼,周秀骥,余锦华等.非均匀地表条件下区域蒸发散通量计算方法的研究.应用气象学报,2002,1 3(3):288~298
    15.刘奉觉,郑世锴,巨关升等.树木蒸腾耗水测算技术的比较研究.林业科学,1997,33(2):117~126
    16.刘昌民.土壤-植物-大气系统水分运行规律的初步研究.北京:气象出版社,1997:12~18
    17.陆时万.植物学(上册).北京:高等教育出版社,1982:134-143
    18.鲁小珍.马尾松、栓皮栎生长盛期树干液流的研究.安徽农业大学学报,2001,28(4):401~404
    19.陆光明,孟平,马秀玲等.林-果-农复合系统中植物蒸腾及系统蒸散的研究.中国农业大学学报,1996,1(5):103~109
    20.卢振民.作物需水量的概念与计算方法.北京:气象出版社,1989:335-343
    21.罗中岭.热量法茎流测定技术的发展及应用.中国农业气象,1997,18(3):52~57
    22.马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转化.北京林业大学学报,2001,23(4):1-5
    23.马达,李吉跃,聂立水等.不同坡向对栓皮栎耗水规律的影响.河北林果研究,2005,20(4):323~327
    24.马长明,管伟,叶兵.利用热扩散式边材液流探针(TDP)对山杨树干液流的研究.河北农业大学学报,2005,28(1):39~43
    25.马履一,王华田.油松边材液流时空变化及其影响因子研究.北京林业大学学报,2002,24(3):23~27
    26.马履一,王华田.北京地区几个造林树种耗水性比较研究.北京林业大学学报,2003,25(2):1-7
    27.马玲,赵平,饶兴权.马占相思树干液流特征及其与环境因子的关系.生态学报,2005,25(9):2145~2151
    28.孟平,张劲松,王鹤松.苹果树蒸腾规律及其与冠层微气象要素的关系.生态学报,2005,25(5):1075~1081
    29.聂立水,李吉跃.应用TDP技术研究油松树干液流流速.北京林业大学学报,2004,26(6):49~56
    30.聂立水,李吉跃,翟洪波.油松栓皮栎树干液流速率比较.生态学报,2005,25(8):1934~1940
    31.孙强,张建丰,张维娜等.秤重式高精度土壤蒸渗仪的计算机监测与控制.土壤侵蚀与水土保持学报,1999,5(5):80~84
    32.申卫军,彭少麟.热脉冲(Heat Pause)法原理及其应用.资源生态环境网络研究动态,2000,11(2):22~27
    33.孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究.生态学报,2002,22(9):1387~1391
    34.孙慧珍,周晓峰,康绍忠.叶斑病对白桦树干液流的影响.西北植物学报,2004,24(5):837~842
    35.孙鹏森,马履一,王小平等.油松树干液流的时空变异性研究.北京林业大学学报,2000,22(5):1-6
    36.王得祥,康博文,姜海龙等.陕北黄土丘陵区主要成林树种耗水量研究.西北林学院学报,2004,19(3):1-3
    37.王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究.林业科学,2002,38(5):31~37
    38.王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究.植物生态学报,2002,26(6):661-667
    39.王华田,邢黎峰,马履一.栓皮栎水源林林木耗水尺度扩展方法研究.林业科学,2004,40(6):170~175
    40.王华田,马履一,徐军亮.油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的 影响.植物生态学报,2004,28(5):637~643
    41.王鹤松,孟平,张劲松等.华北石质山区山茱萸人工林蒸腾特征及水分供求关系.林业科学,2007,43(10):14~18
    42.王鹤松.华北石质山区典型人工林土壤呼吸特征的研究.北京:中国林业科学研究院硕士论文,2003:24~36
    43.王安志等.森林蒸散测算方法研究进展与展望.应用生态学报,2001,12(6):933~937
    44.魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评.北京林业大学学报,1999,21(3):85~91
    45.吴丽萍,王学东,尉全恩等.樟子松树干液流的时空变异性研究.水土保持研究,2003,1(4):66~68
    46.吴永波,薛建辉.岷江流域冷杉树干液流的动态变化规律.南京林业大学学报,2005,29(6):61~64
    47.吴擎龙.田间腾发条件下水热运移数值模拟.北京:清华大学博士论文,1993:17~39
    48.肖以华,陈步峰,陈嘉杰等.马占相思树干液流的研究.林业科学研究,2005,18(3):331~335
    49.闫文德,田大伦,项文化.樟树林冠层生态因子及其对蒸腾速率的影响.林业科学,2004,40(2):170~173
    50.谢贤群.麦田蒸腾需水量的计算模式.地理学报,1997,52(6):529~535
    51.虞沐奎,姜志林,鲁小珍.火炬松树干液流的研究.南京林业大学学报,2003,27(3):7-10
    52.翟洪波,李吉跃,聂立水.油松栓皮栎混交林林地蒸散和水量平衡研究.北京林业大学学报,2004,26(2):48~51
    53.赵平等.Granier树干液流测定系统在马占相思的水分利用研究中的应用.热带亚热带植物学报,2005,13(6):457~468
    54.赵英,张斌,赵华春等.农林复合系统中南酸枣蒸腾特征及影响因子.应用生态学报,2005,16(11):2035~2040
    55.赵明,郭志中,李爱德等.渗漏型蒸渗仪对梭梭和柠条蒸腾蒸发的研究.西北植物学报,1997,17(3):305~314
    56.张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述.世界林业研究,2001,14(2):23~28
    57.张劲松,孟平,王鹤松等.华北石质山区苹果树蒸腾规律及水分供求关系.辽宁工程技术大学学报,2007,26(5):783~786
    58.张劲松.农林复合系统水分生态特征试验与模拟.北京:中国农业大学出版社,2004:15~34
    59.张小由,康尔泗,张智慧等.黑河下游天然胡杨树干液流特征的试验研究.冰川冻土,2005,27(5):742~746
    60.张金池,黄夏银,鲁小珍.徐淮平原农田防护林带杨树树干液流研究.中国水土保持科学,2004,2(4):21~25
    61.左大康.我国农田蒸发测定方法和蒸发规律研究的近期进展.北京:气象出版社,1991:1-14
    62. Arnell NW. Climate Change and Global Water Resources. Global Environmental Change-Human and Policy Dimensions,9, Supplement S,1999,12(3):S31-S49
    63. Bovard B.D., Curtis P.S., Vogel C.S., et al. Environmental controls on sap flow in a northern hard wood forest. Tree Physiology,2005,25(3):31~38
    64. Clearwater M.J, et al. Potential errors in measurement of non-uniform sap flow using heat dissipation probes. Tree Physiology,1999,19(5):681~687
    65. Cohen Y, Fuchs M, Green GC. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ.,1981.4(1):391~397
    66. Delzon S, Sartore M., et al. Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology,2004,24(7):1285~1293
    67. Dixon RK, Meldahl RS, Ruark GA & Warren WC Process Modeling of Forest Growth Responses to Environmental Stress. Timber Press, Portland, OR. Source:Baldocchi & Harley,1995, 15(3):22~34
    68. Do F., Rocheteau A. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes.1. Field observations and possible remedies. Tree Physiology, 2002,22(4):649~654
    69. Do F., Rocheteau A. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes.2. Advantages and calibration of a non-continuous heating system. Tree Physiology,2002,2(4):649~654
    70. Fischer G.D., Kolb E., Thomas. Changes in whole-tree water relations during ontogeny of Pinus flexilis and Pinus ponderosa in a high-elevation meadow. Tree Physiology,2002,22(5):675~685
    71. Fritschen LJ, Cox L, Kinerson R. A 28-meter Douglas-fir in a weighing lysimeter. For. Sci.,1973, 19(8):256~261
    72. Granier A. Evaluation of transpiration in a Douglas fir stands by means of sap flow measurements. Tree Physiology,1987,3(2):309~320
    73. Granier A, loustau D. Measuring and modeling the transpiration of a maritime pine canopy from sap-flow data. Agric. For. Meteorol,1994,71(3):61~81
    74. Granier A, Biron P, Breda N, et al. Transpiration of trees and forest stands:short and long term monitoring using sap flow methods. Global Change Boil,1996,2(1):265~274
    75. Granier A., Huc R., Barigah S.T. Transpiration of natural rain forest and its dependence on climate factors. Agricultural and Forest Meteorology,1996,78(2):19~29
    76. Granier A, Biron P, KEstner B, et al. Comparisons of xylem sap flow and water vapor flux at the stand level and derivation of canopy conductance for Scots pine. Theory. Appl. Climatol,1996, 53(3):115~122
    77. Granier A, Biron P & Lemoine D Water Balance, Transpiration and Canopy Conductance in Two Beech Stands. Agricultural and Forest Meteorology,2000,10(8):291~308
    78. Granier A, Loustau D & Breda N A Generic Model of Forest Canopy Conductance Dependent on Climate, Soil Water Availability and Leaf Area Index. Annals of Forest Science,2000b, (57): 755~765
    79. Greenwood EAN, Beresford JD. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique I. Comparative transpiration from juvenile eucalyptus above saling groundwater seeps. J. Hydrol,1979,42(3):369-382
    80. Grier CC, Running SW.1977. Leaf area of mature confirous forests:relation to site water balance. Ecology,1977,58(5):893~899
    81. James SA, Clearwater MJ, Meinzer FC, et al. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology,2002,22(3):277~283
    82. KEstner B, Granier A, Cermak J. Sap flow measurements in forest stands:methods and uncertainties. Ann. For. Sci.,1998,55(1):13~27
    83. Lambs L., Muller E. Sap flow and water transfer in the Garonne River riparian woodland, France: first results on poplar and willow. Annales des Sciences Forestieres,2002,59(4):301-315
    84. Lankreijer HJM. The Water Balance of Forests under Elevated Atmospheric CO2. PhD thesis, State University of Groningen,1998(5):137~138
    85. Lu Ping,.et al. Spatial Variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology,2000,20(1):683~692
    86. Lu P., Urban L., Zhao P. Granier's Thermal Dissipation Probe (TDP) Method for Measuring Sap Flow in Trees:Theory and Practice. Acta Botanica Sinica,2004,46(6):631-646
    87. McMurtrie RE & Wang YP Mathematical Models of the Photosynthetic Response of Tree Stands to Rising CO2 Concentrations and Temperature. Plant, Cell and Environment,1993(16):1~13
    88. Meiresonne L., Nadezhdin N., Cermak J., et al. Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium). Agricultural and Forest Meteorology,1999, 96(2):165~179
    89. Nadezhdina, et al. Radial patterns of sap flow in woody stems of dominant and under story species: scaling errors associated with positioning of sensors. Tree Physiology,2002,22(3):907-918
    90. Ogink-Hendriks MJ. Modeling Surface Conductance and Transpiration of an Oak Forest in the Netherlands. Agricultural and Forest Meteorology,1995, (74):99~118
    91. Pataki D.E., Oren R., Phillips N. Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area. Journal of Experimental Botany,1998,49(322):871~878
    92. Phillips N., Oren R., Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse-and ring-porous tree species. Plant, Cell and Environment,1996,19(3):983~990
    93. Schulze ED, Robichaux RH, Grace JR, et al. Plant water balance. Biol. Sci.,1987,37(1):30~37
    94. Stannard D I. A theoretically based determination of Bowen ratio fetche requirements. Boundary-layer Meteorology,1997,83(3):375-406
    95. Tanaka T, Uchida E, Yokota T. Comparison between water absorption rate and sap-flow rate measured using the improved stem heat-balance method. J. Jpn. For. Soc,1994,76(6):500~505
    96. Vertessy RA, Hatton J, Reece P, et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiology,1997,17(2):747~756
    97. Wullschleger S, Meinzer FC, Vertessy RA. A review of whole-plant water use studies in trees. Tree Physiology,1998,18(1):499~512
    98. Wullschleger S.D, King A. W, Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiology,2000,20(3):511~518
    99. Zang,D.,C.L.Beadle and D.A.White. Variation of sapflow velocity in Eucalyptus globulus with position in sapflow and use of a correction coefficient. Tree Physiology,1996,16(6):697~703
    100. Zhang H, Simmonds L P, Morison J IL, et al. Estimation of transpiration by single trees: comparison of sap flow measurements with a combination equation. Agric. For. Meteorol,1997, 87(3):155~169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700