用户名: 密码: 验证码:
二级串联生物造粒流化床对污染物的去除特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了考察延长水力停留时间对改善生物造粒流化床对污染物去除效果的影响,利用两套完全一样的生物造粒流化床装置进行了二级串联生物造粒流化床的工艺试验,运行过程中两套装置可以单独运行也可以串联运行。采用西安市北石桥污水处理厂氧化沟末端的活性污泥接种生物造粒流化床,运行稳定后,每隔12h进行串联顺序交替来进行二级串联实验,定期检测水质指标,生物培养情况和颗粒的物理特征。研究得出以下结论:
     (1)两柱中的颗粒污泥均能保持108个/g数量级的生物量,且在作为二级柱运行的过程中,流化床仍能保持良好的颗粒污泥形态。
     (2)两级串联的流化床中,COD的去除和DO的消耗具有延续性,且COD的去除符合相近的一级反应规律。
     (3)通过交换两柱的串联顺序,流化床中的颗粒经历了成长-破碎-成长的过程,虽然流化床作为二级柱运行会导致污泥颗粒粒径的减小,但改为一级柱运行后,污泥颗粒可逐渐成长并最终恢复到原来的水平,流化床内污泥颗粒的变化呈明显的周期性。
     (4)生物造粒流化床中的颗粒污泥具有良好的动态稳定性,采用二级串联的方法延长流化床的水利停留时间有望作为提高生物造粒流化床污水处理功效的方法。
     (5)采用二级串联工艺后,流化床的水力停留时间变长,有效污泥处理高度加倍,污染物在流化床中的去除效果得到强化,对于有机污染物的去除,一级柱降解了46.4%,二级柱能在一级柱的基础上再去除27.9%。对氨氮的去除而言一级柱的去除率为28.7%,二级柱能在一级柱的基础上提高12.1%的去除率,磷的除去主是化学沉淀作用。
     混凝造粒过程让污染物由液相到固相的转移得以实现,初期形成的颗粒污泥则能为微生物的附着和繁殖提供大量的固体表面,从微生物生长的角度而言,后期的流化床操作已类似于预加载体的生物流化床装置。为保障流化床进水溶解氧水平,在流化床进水前设置的曝气装置,相当于传统污水处理工艺中的延时曝气单元,颗粒吸附的有机物主要由曝气装置中的生化作用来去除。从污染物去除的角度而言,污染物的去除可能既包括混凝本身的作用(可凝聚污染物的直接转移),也可能包括物理吸附、生物吸附、以及生物降解的作用。
In order to understand the removal of organic matter in the fluidized pellet bed (FPB) bioreactor by extending hydraulic retention time (HRT), Two identical devices were investigated by laboratory experiment using two sets of FPB columns under parallel and series operation modes. a 2-stage serial FPB bioreactor was used for laboratory experiment. Under a condition of changing the sequence of the two reactor columns every 12 hours, Using activated-sludge at the end of oxidation ditch of Xi'an Beishiqiao sewage treatment plant to inoculation our biological fluidized pellet bed, the water quality, biological culture conditions and physical characteristics of particles were regularly tested.The research shows that:
     (1) A biomass concentration of 108ind./g could be maintained and the sludge particles could keep good granular shape in both columns.
     (2) The removal of COD and consumption of DO showed a continuity in the two columns. The first order kinetic relationship could be found for COD in both columns with quite similar kinetic coefficients.
     (3) By the exchange of the two columns in series order, fluidized bed particles experienced growth-broken-growth process. When it changed to the secondary column, it would underwent the decrease of sludge particle size. But the sludge particles could gradually grow and eventually return to the original level when it became to the first grade. Granular sludge in the fluidized pellet bed showed obvious periodicity.
     (4) The results indicated that the granular sludge in the FPB had very good dynamic stability, and the 2-stage serial FPB operation could provide an effective way to extend HRT and to improve the efficiency of pollutant removal.
     (5) The using of 2-stage serial FPB bioreactor, the hydraulic detention time was extended, doubling the effective height of sludge treatment, pollutant removal in a fluidized bed in effect could be strengthened. For the removal of organic pollutants, the first grade column could be 46.4%, and the secondary column based on the further could degradate 27.9%. Removal of ammonia nitrogen in the first grade column was 28.7%, and the secondary column based on the further could degradate 12.1%. Phosphorus removal was mainly by chemical precipitation.
     Contaminants from liquid to solid could be achieved by coagulation granulation process, the initial formation of granular sludge microorganisms were able to provide substantial adhesion and propagation of solid surface. From the perspective of microbial growth, fluidized pellet bed operation was similar to the pre-biological fluidized bed unit plus carrier later. In order to satisfy the condition of dissolved oxygen in FPB, there was an aeration device before water pumped to the fluidized pellet bed, equivalent to traditional wastewater treatment process in extended aeration units, the organic particles mainly removed by the biochemical role of aeration device. The removal of pollutants might include coagulation itself (the direct transfering of contaminants which can be condensed) and as well as physical absorption, bio-absorption, and biodegradation.
引文
[1]刘欣铠.国内外城市污水处理现状及展望[J].防灾博览.2005,25(5):25-27
    [2]李喜梅.关于城市污水处理方法的探讨[J].杭州师范学院学报.2005,01:70-72
    [3]王凯军.可持续发展的新型高效城市污水处理技术探讨[J].给水排水.2005,31(2):32-35
    [4]赵耘挚,刘振鸿.SBR工艺脱氮除磷研究进展[J].中国给水排水.2003,19(3):33-36
    [5]朱智飞,郑敏,熊绪杰.我国城市污水的处理现状和研究进展[J].化工环保.2009,33(4):75-77
    [6]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报.2009,29(3):449-473
    [7]向敏,杨冠.厌氧颗粒污泥技术[J].SCIENCE&TECHNOLOGY INFORMATION.2009,5:432-433
    [8]Grotenhuis JPC, Smit M. Bacteriological composition and structure of granular sludge adapted toditterent substates[J]. Appl Environ Microb,1991,57 (7):1942-1953.
    [9]G. Y. Yue & H.T.JOO. Characterisation of the Granulation Process During UASB Start-up[J]. Wat.Res,1997,31(7):1573-1580.
    [10]方骁,蒋柱武,张亚雷.厌氧颗粒污泥性质与颗粒化研究新进展[J].江苏环境科技.2005,18(4):44-46
    [11]Zeng A. P., DeckwerW. D. Bioreaction techniques under microaerobic conditions: From molecular level to pilot p lant reactors[J]. Chemical Engineering Science, 1996,51(10):2305-2314
    [12]易诚,湛含辉,程胜高.好氧颗粒污泥颗粒化研究进展及发展趋势[J].环境科学导刊.2007,26(5):1-6
    [13]Tay JH, L iu QS, L iu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J].App IMicrobiolBiotechnol,2001,57:227-233.
    [14]Gurdon J B. Bourillot P Y. Morphogen gradient inter pretation[J]. Nature,2001, 413:797-803.
    [15]秦华明,尹华.好氧颗粒污泥形成的微生物学机理分析[J].工业用水与废水,
    2007,38(1):14-16.
    [16]MISHIMA K,NA KAMURA M. Self2immobilization of aerobic activated sludge-a pilot study of t he aerobic upflow sludge blanket process in municipal sewage t reatment [J]. Water Sci.Technol.1991,23:981-990
    [17]SHIN H S,L IM K H, PARK H S. Effect for shear2st ress on granulation in oxygen aerobic upflow sludge bed reactor [J].Water Science and Technology, 1992,26(3/4):601-605.
    [18]PENG D. Aerobic granular sludge —a case report [J]. Wat. Res.,1999,33 (3):890-893.
    [19]BEUN J J. Aerobic granulation in a sequencing batch reactor[J]. Water Research,1999,33 (10):2283-2290
    [20]TA YJ H,LIU Q S,LIU Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor [J] Journal of Applied Microbiology, 2001,91:168-175.
    [21]LIU Yu,YANG Shufang,XU Hui,et al. Biosorption kinetics of cadmium(Ⅱ) on aerobic granular sludge[J]. Process Biochemistry,2003,38:997-1001.
    [22]YANG S F, TA Y J H,LIU Y. Inhibition of free ammonia to the formation of aerobic granules [J]. Biochemical Engineering Journal,2004,17 (1):41-48
    [23]QIN L, TA YJ H,LIU Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactor [J]. Process Biochemistry,2004,39 (5):579-584
    [24]FANG W, YANG F L, ZHANG X W. et al. Effect s of cycletime on properties of aerobic granules in sequencing batch airlif t reactors [J]. World Journal of Microbiology and Biotechnology,2005,21:1379-1384.
    [25]LIU Y Q, TA YJ H,BENJAMIN Y P. Characteristics of aerobic granular sludge in a sequencing batch reactor wit h variable aeration [J]. Environmental Biotechnology,2006,71:761-766.
    [26]竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学,1999,3(2):38-40.
    [27]杨麒,李小明,曾光明,等.好氧颗粒污泥实现同步硝化反硝化[J].城市环境与城市生态,2003,16(1):40-42.
    [28]王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥的形成机理[J].中国给水排水,2004(3):8-11.
    [29]蓝慧霞,陈中豪,陈元彩,等.微好氧条件下好氧颗粒污泥的培养[J].华南理工大学学报,2005,33(7):37-41
    [30]王琳,孙磊,林跃梅.好氧颗粒污泥系统快速启动试验研究[J].中国海洋大学学报,2006,36(2):299-302.
    [31]吕娟,陈银广,顾国维.好氧颗粒污泥在生物强化除磷中的应用[J].环境科学与技术,2006,29(7):106-107.
    [32]朱灵峰,何卫卫,张杰.好氧颗粒污泥的研究现状及应用前景[J].环境污染与防治,2008,30(5):78-82
    [33]Hawkes F. R., Donnelly T. and Anderson G K. Comparative performance of anaerobic digesters operating on ice-cream wastewater[J]. Water Research,1995, 29(2):525-533.
    [34]Yan Y. G. and Tay J. H. Characterisation of the granulation process during UASB start-up[J]. Water Research,1997,31(7):1573-1580.
    [35]Beun J. J., Hendriks A., van Loosdrecht M. C. M. et al. Aerobic granulation in a sequencing batch reactor[J]. Water Research,1999,33(10):2283-2290.
    [36]Wang Q., Du G. and Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force[J]. Process Biochemistry,2004,39:557-563.
    [37]Tay J.H., Pan S., He Y.X. and Tay S.T.L. Effect of organic loading rate on aerobic granulation. II:Characteristics of aerobic granules[J]. Journal of Environmental Engineering-ASCE,2004,130 (10):1102-1109.
    [38]Yu H. Q., Tay J. H. and Fang H. H. P. The roles of calcium in sludge granulation during UASB reactor start-up[J]. Water Research,2001,35(4):1052-1060.
    [39]Imai T., Ukita M., Liu J. et al. Advanced start up of UASB reactors by adding of water absorbing polymer[J]. Water Science and Technology,1997,36(6-7): 399-406.
    [40]El-Mamouni R., Leduc R. and Guiot S. R. Influence of synthetic and natural polymers on the anaerobic granulation process[J]. Water Science and Technology, 1998,38(8-9):341-347.
    [41]管慧玲,李小明,曾光明等.厌氧污泥颗粒化技术的研究进展[J].中国沼
    气,2006,24(1):6-8
    [42]Yu H Q, et al. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactor by aluminum chloride [J]. Chemosphere,2001,44:31-36.
    [43]Show K Y, et al. Accelerated start2up and granulation in upflow anaerobic sludge blanket reactors [J]. Wat Res,2004,38:2293-2304.
    [44]Vold M J. Computer simulation of floc formation in a colloidal suspension[J]. Jour Colloid Inter Sci,1963,18:684 -695
    [45]Sutherland D N. Letter to the editors[J]. Jour Colloid Inter Sci,1966,22:300-302
    [46]Tambo N,Watanabe Y. Physical aspect of flocculation process Ⅰ. The floc density function and aluminum floc [J]. Water Research,1979,13:409 -419
    [47]Yusa M, Igarashi C. Compaction of flocculated material[J]. Water Research, 1984,18:811-816
    [48]Wang X C,Tambo N. Kinetic study of fluidized pellet bed processes. Ⅰ. Characteristics of particle motions[J]. Jour Water SRT-Aqua,1993,42 (3):146-154
    [49]袁宏林,王芳,王晓昌等.物化/生化集成的生物造粒流化床污水处理技术[J].中国给水排水.2008,24(12):61-63
    [50]李侃,王晓昌,王振等.造粒流化床颗粒污泥对溶解性有机物的吸附机理研究[J].环境工程学报.2009,3(11):42-46
    [51]丹保宪仁,王晓昌.结团凝聚工艺的研究(一)[J].西安冶金建筑学院学报,1986,47:1-19
    [52]于泮池,王晓昌.结团凝聚工艺的研究(二)-结团絮凝体形成过程的动力分析[J].西安建筑科技大学学报.1987,2(1):217-219
    [53]韩云,王志盈,王晓昌等.城市污水回用于工业生产过程中的除盐与除硬度问题的研究[J].给水排水.2006,29(10):55-57.
    [54]王晓昌.自我造粒型流化床中颗粒流态的试验测定[J].西安建筑科技大学学报.1999,31(2):115-118
    [55]李志华,王振,王晓昌等.造粒流化床对不同形态污染物的强化去除[J].中国给水排水.2009,25(5):29-32
    [56]Hameed B. H., EI2KhaiaryM. I. Batch removal of malachite green from aqueous
    solutions by adsorp tion on oil palm trunk fibre:Equilibrium isotherms and kinetics studuies[J]. Journal of Hazardous Materials,2008,154 (1-3):237-244
    [57]Wang X C, Yuan H L,L iu Y J, et al. Fluidized2pellet2bed bioreactor:a p romising technology for onsite wastewater treatment and reuse-Part 1. Characteristics of treatment [A]. Wastewater Reclamation & Reuse for Sustainability, IWA Specialty Conference [C]. Jeju Korea:IWA,2005
    [58]Wang X.C., Jin P. K., Yuan H. L. et al. Pilot study of a fluidized-pellet-bed technique for simultaneous soild/liquid separation and sludge thickening in a sewage treatment plant[J]. Water Science and Technology,2004,49(10):81-88.
    [59]袁宏林,刘永军,王晓昌等.生物造粒流化床污水处理反应器的微生物多样性[J].生态学杂志.2007,26(8):1199-1203
    [60]刘永军,袁宏林,王晓昌等.生物造粒流化床污水处理反应器中微生物的分布特征[J].生态科学.2007,26(1):75-78
    [61]袁宏林,王欢,王晓昌等.生物造粒流化床处理城市污水实验研究[J].西安建筑科技大学学报.2009,41(2):241-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700