用户名: 密码: 验证码:
Zn-Co-Si三元体系相关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌及锌基合金主要用于热浸镀锌。每年超过50%的锌用于热浸镀锌。而在现代钢铁工业中,Si常作为钢铁冶炼过程中的脱氧剂和钢铁中的强化元素而被加入到钢铁中,因此钢中不可避免会残留一些Si。而当Si的含量达到一定的值时就会出现镀层过厚、灰暗且粘附性差,导致镀层质量下降,即出现圣德林效应或硅反应性。在锌浴中加入一些合金元素可以改变镀层组织及性能。常加的合金元素有Al、Bi、Ni、Mg、Ti、Sn。研究发现Co的加入也可以起到抑制硅反应性的作用,改善镀层表面质量、提高镀层耐蚀性。为充分理解Co的作用机理及优化含Co镀锌合金,本工作通过实验测定了Zn-Co-Si三元体系450℃和600℃等温截面,并利用CALPHAD方法计算了Zn-Co-Si三元体系的相关系。
     本工作利用金相显微镜、扫描电子显微镜与能谱仪(SEM-EDS)及X射线衍射仪(XRD)等方法测定了Zn-Co-Si三元系450℃和600℃等温截面。实验结果表明,Zn-Co-Si三元系450℃等温截面包含有七个三相区:L-Zn + CoSi_2 + (Si), L-Zn + CoSi_2 + CoSi, L-Zn +γ_2 + CoSi,γ_2 +γ_1 + CoSi,γ_1 +γ+ CoSi,γ+ CoSi + Co_2Si,β_1 +γ+ Co_2Si; CoSi相能与除β_1外的所有Co-Zn二元体系中的化合物共存;Zn在Co-Si合金中CoSi_2、CoSi、Co_2Si中的溶解度较高。
     Zn-Co-Si三元系600℃等温截面中γ_2相消失,因此只包含有六个三相区:L-Zn + CoSi_2 + (Si), L-Zn + CoSi_2 + CoSi, L-Zn +γ_2 + CoSi,γ_1 +γ+ CoSi,γ+ CoSi + Co_2Si,β_1 +γ+ Co_2Si。
     结合本工作的实验结果,系统地收集、整理相关二元体系的数据,利用CALPHAD技术对Zn-Co-Si三元体系进行了外推计算。计算的723K等温截面与实验结果比较可以看到,在723K等温截面上出现了三相区(hcp-Co+γ+Co_2Si),这与实验不相符。873K等温截面的富钴角与实验相吻合,形成了(hcp-Co+β_1+Co_2Si)的三相区。分析原因可能是在Co-Si二元系中的hcp-Co太稳定,导致包共析反应Co_2Si+β_1→hcp-Co+γ在805K发生反应。通过实验可以看到此包共析反应应该在723K以下发生,因此对hcp-Co的评估优化工作还需进一步的工作。
Zinc and zinc-based alloys are mainly used in hot-dipping galvanizing. More than half of zinc is used for this purpose. As a de-oxidant agent or strengthen element, alloying element Si is introduced into steels. Therefore, some Si will inevitably be residual in steels. And when the content of Si reaches to a certain value, dark and poor adhesion of coating appearance will reduce the quality of the steel which was called the Sandlin effect or Si reactivity. The alloying elements added in the zinc bath play a key role in changing the structure and properties of coating. Generally, alloys elements such as Al, Bi, Ni, Mg, Ti, Sn are added in zinc bath. Researchers found that element Co added in the zinc bath can also partially inhibit the Si-reactivity, improve the quality and the corrosion resistance of the coatings. In order to study the reaction mechanism of Co and optimize the zinc alloy of Co, the 450℃and 600℃isothermal sections of the Zn-Co-Si system were determined using equilibrated alloys, and the thermodynamic calculation of Zn-Co-Si system was conducted by CALPHAD technique.
     The 450℃and 600℃isothermal sections of the Zn-Co-Si system was experimentally determined in this work using optical microscopy, scanning electronic microscopy coupled with energy dispersive X-ray spectroscopy(SEM-EDS) and X-ray diffractometry(XRD). Experimental results show that the 450℃isothermal section of the Zn-Co-Si system consists of seven ternary phse regions: L (Zn) + CoSi_2 + (Si), L (Zn) + CoSi_2 + CoSi, L (Zn) +γ_2 + CoSi,γ_2 +γ_1 + CoSi,γ_1 +γ+ CoSi,γ+ CoSi + Co_2Si andβ_1 +γ+ Co_2Si.The CoSi phase can coexist with all compounds in Zn-Co binary system exceptβ_1 phase. The solubility of Zn in the Co-Si alloy phases such as CoSi_2、CoSi、Co_2Si is high.
     Theγ_2 phase disappears in the 600℃isothermal section of the Zn-Co-Si system, thus it just consists of six ternary phse regions: L (Zn) + CoSi_2 + (Si), L (Zn) + CoSi_2 + CoSi, L (Zn) +γ_2 + CoSi,γ_1 +γ+ CoSi,γ+ CoSi + Co_2Si andβ_1 +γ+ Co_2Si.
     Based on the experimental results of this work and related data of binary system, the Zn-Co-Si ternary system was extrapolated by CALPHAD technique. Compared with the experiment, the three-phase region (hcp-Co+γ+Co_2Si) appeared in the calculated 723K isothermal section, which is inconsistent with the experiment. The 873K isothermal section calculated was agree well with experimental data of cobalt-rich corner, at which is a (hcp-Co+β_1+Co_2Si) three-phase region. The reason for accurate reaction temperature is that the hcp-Co phase of the Co-Si binary system is so stable that result the peritectoid-eutectoid reaction Co_2Si+β_1→hcp-Co+γoccurred at 805K. Based on the experiment, peritectoid-eutectoid reaction should occur below 723K, therefore, the assessment of hcp-Co optimization needs more works.
引文
[1]卢锦堂,许乔瑜,孔纲.热浸镀技术与应用[M].北京:机械工业出版社, 2006.
    [2] A.R. Marder. The metallurgy of zinc-coated steel[J]. Progress In Materials Science, 2000, 45 (3): 191-271.
    [3]车淳山,卢锦堂,陈锦虹,许乔瑜,孔纲.热镀锌中圣德林效应微观机理的解释模型[J].材料保护, 2004, 37 (008): 26-28.
    [4] Y. Liu, F. Yin, H. Tu, Z. Li, J. Wang, X. Su. The 450°C Isothermal Section of the Zn-Bi-Ni System[J]. Journal of Phase Equilibria and Diffusion, 2008, 29 (6): 493-499.
    [5] Z. Li, X. Su, Y. He. 450℃isothermal section of the Zn-Fe-Bi ternary phase diagram[J]. Journal Of Alloys And Compounds, 2008, 462 (1-2): 320-327.
    [6] X. Tang, F. Yin, X. Wang, J. Wang, X. Su, N. Tang. The 450°C Isothermal Section of the Zn-Fe-Ti System[J]. Journal of Phase Equilibria and Diffusion, 2007, 28 (4): 355-361.
    [7] A.J.V. Vaamonde, J.J.D.D. Gonzalez. Sandelin effect and continuously cast steels[J]. Int. J. Mater. Prod. Techn., 1991, 6: 175-216.
    [8]李发国,尹付成,苏旭平,李智.钴对含硅钢镀锌层的组织和生长动力学的影响[J].中国有色金属学报, 2010, 20 86-91.
    [9] X. Su, N.-Y. Tang, J.M. Toguri. Thermodynamic evaluation of the Fe-Zn system[J]. Journal Of Alloys And Compounds, 2001, 325 (1-2): 129-136.
    [10] Bastin G F, Van Loo F J J, R.G. D. On The Delta-Phase in the Fe-Zn System[J]. Z Metallkde, 1977, 68 (10): 359-361.
    [11] R. Sandelin. Galvanizing characteristics of different types of steel[J]. Wire and Wire Products, 1941, 16 28-35.
    [12] H. Guttman, P. Niessen. Reactivity of Silicon Steels in Hot-Dip Galvanizing[J]. Can. Metall. Q, 1972, 11 (4): 609-615.
    [13] J. Foct, P. Perrot, G. Reumont. Interpretation of the role of silicon on the galvanizing reaction based on kinetics, morphology and thermodynamics[J]. Scripta Metallurgica et Materialia(USA), 1993, 28 (10): 1195-1200.
    [14] L. Devillers, H. Guttman, P. Niessen. The Mechanism of Excessive Coating Growth on Silicon Steels in Hot Dip Galvanizing[C]//Galvanizing of Silicon Containing Steels. ILZRO Publication,1975: 48-63.
    [15] L. Habraken. Contribution to a scientific explanation of the metallurgical phenomena occurring in the iron-zinc reaction[C]// Proc 12th Inter Galva Conf. 1979: 121-123.
    [16] M. Kozdras, P. Niessen. Silicon-induced destabilization of galvanized coatings in the sandelin peak region[J]. Metallography, 1989, 22 (3): 253-267.
    [17] Y. Lepretre, J. Mataigne. A new interpretation of the Sandelin effect[J]. Zinc-Based Steel Coating Systems: Production and Performance, 1998, 303-312.
    [18] G. Reumont, P. Perrot, J. Foct. Thermodynamic study of the galvanizing process in a Zn–0.1% Ni bath[J]. Journal Of Materials Science, 1998, 33 (19): 4759-4768.
    [19] O. Uwakweh, A. Jordan. Application of metastable transformation of mechanically alloyed Fe-Zn-Si in equilibrium phase studies[J]. Journal Of Phase Equilibria, 1997, 18 (5): 448-457.
    [20] X. Su, N. Tang, J. Toguri. 450 C isothermal section of the Fe-Zn-Si ternary phase diagram[J].Canadian Metallurgical Quarterly, 2001, 40 (3): 377-384.
    [21]苏旭平,李智,尹付成,贺跃辉,潘世文.热浸镀中硅反应性研究[J].金属学报, 2008, 44 (006): 718-722.
    [22] P. Vaillant, J. Petitet. Interactions under hydrostatic pressure of a mild steel with liquid aluminium alloys[J]. Journal Of Materials Science, 1995, 30 (18): 4659-4668.
    [23] T. Kato, K. Nunome, K. Kaneko, H. Saka. Formation of the [zeta] phase at an interface between an Fe substrate and a molten 0.2 mass% Al-Zn during galvannealing[J]. Acta Materialia, 2000, 48 (9): 2257-2262.
    [24] Y. Adachi, M. Arai. "Transformation of Fe-Al Phase to Fe-Zn Phase on Pure Iron During Galvanizing“[J]. Materials Science and Engineering A 1998, 254: 305-310.
    [25] M. Nakayama. Effects of alloying conditions and phase structure on alloying behavior and formability of galvannealed steel sheet[C]//1992: 1665-1668.
    [26] N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, G. Stergioudis. The combined effect of nickel and bismuth on the structure of hot-dip zinc coatings[J]. Materials Letters, 2007, 61 (10): 2007-2010.
    [27] S. Chang, J. Shin. The effect of antimony additions on hot dip galvanized coatings[J]. Corrosion Science, 1994, 36 (8): 1425-1436.
    [28] N. Katiforis, G. Papadimitriou. Influence of copper, cadmium and tin additions in the galvanizing bath on the structure, thickness and cracking behaviour of the galvanized coatings[J]. Surface and Coatings Technology, 1996, 78 (1-3): 185-195.
    [29]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社, 1998: 474-475.
    [30]郝士明.材料热力学[M].北京:化学工业出版社, 2003.
    [31] B. Sundman, B. Jansson, J. Andersson. The Thermo-Calc databank system* 1[J]. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry 1985, 9 (2): 153-190.
    [32] S. Chen, S. Daniel, F. Zhang, Y. Chang, X. Yan, F. Xie, R. Schmid-Fetzer, W. Oates. The PANDAT software package and its applications[J]. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry 2002, 26 (2): 175-188.
    [33] W. Thompson, G. Eriksson, C. Bale, A. Pelton. Applications of F*A*C*T in high temperature materials chemistry. Electrochemical Society[J]. Inc (USA), 1997, 16
    [34] H. Lukas, J. Weiss, E. Henig. Straegies for the calculation of phase diagrams[J]. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry 1982, 6 (3): 229-251.
    [35] M.J. George Penev Vassilev Thermodynamic Optimization of the Co-Zn System[J]. Phase Equilibria and Diffusion, 2004, 25: 259-268.
    [36] K. Ishida, T. Nishizawa, M. Schlesinger. The Co-Si (cobalt-silicon) system[J]. Journal Of Phase Equilibria, 1991, 12 (5): 578-586.
    [37] S. Choi. Thermodynamic Analysis of the Co--Si System[J]. Calphad(UK), 1992, 16 (2): 151-159.
    [38] L. Zhang, Y. Du, H. Xu, Z. Pan. Experimental investigation and thermodynamic description of the Co–Si system[J]. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry 2006, 30 (4): 470-481.
    [39] N. Parravano, V. Caglioti. On the Structure of the Cobalt-Zinc Gamma-Phase[J]. Mat. Nat., 1932, (3): 1-21.
    [40] J. Schramm. X-Ray Investigation of Phase and Phase Limits of the Zinc Alloy Systems With Iron, Coblt and Nickel[J]. Z. Metallkde, 1938, 30: 327-334.
    [41] K.H.J. Buschow, P.G.V. Engen, R. Jongebreur. Magneto-Optical Properties of MetallicFerromagnetic Materials[J]. Magnetism Magn. Mater., 1983, 38: 1-22.
    [42] W. Ekman. X-ray Studies of the Cobalt-Zinc Gamma-Phase[J]. Z. Physikal. Chem., 1931, (B12): 57-78.
    [43] E.W. F. Lihl. Phase Boundaries in the System Co-Zn[J]. Z. Metallkde, 1955, (46): 579-581.
    [44] Y.A. Ryabikin, V.D. Melikhov, O.V. Zashkvara. Paramagnetic Resonance Studies of the Co-Zn Gamma-Brass Structure[J]. The Physics of Metals and Metallography, 1996, 81 (3): 255-262.
    [45] F.Gotzl, F.Halla, J.Schramm.δ1 andζPhases in the Systems Fe-Zn and Co-Zn[J]. Z. Metallkde, 1941, 33: 375.
    [46] P. Brown. The Structure of theζ-phase in Transition Metal-Zinc Alloy Systems[J]. Acta Crystallogr., 1962, 15: 608-612.
    [47] Powder Diffraction File, International Centre for Diffraction Data, References Pennsylvania, 1993.
    [48]王岩,徐娟,陈琳,曹晓明,马瑞娜. Co基沉没辊轴套材料的性能研究[J].热加工工艺, 2008, 37 (006): 5-7.
    [49] K. Zhang, L. Battiston. Friction and wear characterization of some cobalt-and iron-based superalloys in zinc alloy baths[J]. Wear, 2002, 252 (3-4): 332-344.
    [50] X. Su, F. Yin, Z. Li, N.-Y. Tang, M. Zhao. Thermodynamic calculation of the Fe-Zn-Si system[J]. Journal Of Alloys And Compounds, 2005, 396 (1-2): 156-163.
    [51] N.-Y. Tang, X. Su, X. Yu. The Zn-rich corner of the Zn-Fe-Co systen at 450℃[J]. Z. Metallkde, 2003, 94 (2): 116-121.
    [52] F. Teng, Y. Wang, X. Jiang. XRD Structure Analysis and Characterization of Materials Properties[M]. Beijing: Science Press 1997: 1.
    [53] P. Perrot, J. Dauphin. Calculation of the Fe-Zn-Si phase diagram between 773 and 1173 K[J]. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry 1988, 12 (1): 33-40.
    [54] O. Redlich, A. Kister. Thermodynamics of nonelectrolytic solutions. Algebraic representation of thermodynamic properties and the classification of solutions[J]. Ind. Eng. Chem, 1948, 40 345–348.
    [55] T. Chart. Thermodynamic Data for Transition Metal–Silicon Systems[J]. High Temperatures-high Pressures, 1973, 5: 241–252.
    [56] L. Kaufman. Coupled phase diagrams and thermochemical data for transition metal binary systems-VI[J]. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry 1979, 3 (1): 45-76.
    [57] M. Hansen, K. Anderko. Constitution of binary alloys[M]. McGraw-Hill New York, 1958.
    [58] R.Schmid-Fetzer. HTTP://WWW.IMET.TU-CLAUSTHAL.DE.
    [59] S. Chen, S. Daniel, F. Zhang, Y. Chang, W. Oates, R. Schmid-Fetzer. PanEngine 1.0-phase equilibrium calculation engine for multicomponent systems[J]. Madison, Wisconsin, Computherm LLC, 2000.
    [60] T. Massalski. Binary Phase Diagram (CD-ROM)[J]. ASM International, 1996.
    [61] G. Vassiley, M. Jiang. Thermodynamic optimization of the Co-Zn system[J]. Journal of Phase Equilibria and Diffusion, 2004, 25 (3): 259-268.
    [62] M.H.G. Jacobs, P.J. Spencer. A critical thermodynamic evaluation of the systems Si-Zn and Al-Si-Zn[J]. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry 1996, 20 (3): 307-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700