用户名: 密码: 验证码:
高铁酸钾的电解合成及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铁酸盐(Fe(Ⅵ))具有较高的氧化还原电位、较大的电化学理论容量、原料来源丰富,本身及放电产物对环境无污染,不仅可用作废水和生活用水中的处理剂及有机合成反应中的氧化剂,还可以用作超级铁电池中的正极材料。为了有效地利用有限的自然资源和保护自然环境,实现可持续发展,高铁酸盐(Fe(Ⅵ))的制备及应用引起了研究工作者的兴趣。在高铁酸盐的三种主要制备方法中,电化学方法以其对环境无污染和制备过程较简单易行等优点受到了关注。但在电化学制备过程中,在长时间和大电流电解的情况下,高铁酸盐生成的电流效率不是很高,进一步提高电化学合成高铁酸盐的电流效率是科学工作者们正在研究的热点。
     本论文概述了高铁酸盐的制备方法、纯度分析方法、物理化学性质、碱性溶液中铁电极的电化学行为,研究了添加剂的种类、添加剂的浓度、配比等因素对电化学制备高铁酸钾的电流效率、浓度的影响。结果发现,添加剂可以显著的提高电化学制备高铁酸钾的电流效率和高铁酸钾的浓度,KIO3和Na2SiO3作添加剂时,当添加的量为2mL即浓度为5.0mM时,高铁酸钾电解合成的电流效率最大,分别达到61.52%和56.65%。KI作添加剂时,当添加的量为1mL即浓度为2.5mM时,高铁酸钾电解合成的电流效率最大,达到59.34%。当三种助剂混合比1:1:1(KIO3:KI:Na2SiO3/mol),电解液中添加剂的浓度是2.17mM时对高铁酸钾合成最有利,可使电流效率升到82.5%。
     还研究了不同Na+/(Na++K+)([OH-]=16M)比例对直接电化学制备固体高铁酸钾的影响。结果发现在较低的温度下( 60℃),电解30min后,在10mol/LNaOH+6mol/LKOH溶液中生成高铁酸钾的电流效率可达45%;另外研究了超声波对电解合成高铁酸盐的影响,研究表明,超声波能显著提高电解合成高铁酸钠的电流效率,当添加剂为(KIO3: KI: Na2SiO3/mol)1:1:1,电解液中添加剂的浓度是2.17mM时,在反应时间30min时电流效率可达到74.3%,6h后高铁酸钠的浓度达到55.21g/L。但是超声波对于电解合成高铁酸钾效果不明显。采用了计时电位法(CP)铁电极的电解过程的电压随时间的变化。实验结果表明,电解前的铁电极表面状态比较均匀,电解1h后电极的表面变得凹凸不平,并影响到电极电位和电流效率。
     采用了循环伏安法(CV)在相对HgO/Hg电极[-1.4V~0.7V]扫描范围内,系统地研究了铁电极在碱液中的电化学行为,以及温度、电解液组成及添加剂等对电化学性质的影响。结果表明:此铁电极的循环伏安曲线与文献显著不同,在曲线中扫描出了Fe(III)向Fe(VI)转化的中间产物Fe(V)的氧化峰,有可能是FeO43-(Fe(V)离子的存在形式)。并测试了铁电极在不种条件下碱液中的电化学行为。同时采用X—射线衍射(XRD)和红外吸收光谱(IR)技术对K2FeO4样品的结构进行了表征。
The preparation and application of ferrate(Ⅵ) compounds, which could be used as strong oxidants in water treatment and organic synthesis, and cathodic materials in“super-iron”batteries, have got much attention in the world,due to their high redox potentials,large theoretic capacity, abundance of raw materials in nature and non-toxicity to the environment.In the main three preparation methods of ferrate(Ⅵ), the electrochemical preparation is widely investigated recently, due to its simple processe and non-pollution. However , the problem is that current efficiency of ferrate(Ⅵ) electrosynthesis is not very high.
     In this dissertation, the preparation and the purity analysis , the physicochemical properties of ferrate(Ⅵ),and the electrochemical behavior of iron electrode in alkaline solutions, In this dissertation, the influences of different additives, additive concentration and additive mixed proportion. showed the optimum concentration of Na2SiO3/KIO3 was 5mM,and the optimum concentration of KI was 2.5mM . The optimum mixed proportion was 1:1:1 the maximum current efficiency , obtained after 0.5h of electrolysis, was a value of 82.5%.
     As well as ,the influences of different radio of Na+/(Na++K+)([OH-]=16M) on the direct electrosynthesis solid K2FeO4 were also investigated. The results showed that, at lower temperatures(60℃), the apparent curruent efficiency of electrosynthesis solid potassium ferrate(Ⅵ) could reach 45%. The effects of ultrasound on the direct electrosynthesis of solid K2FeO4 and the anodic behaviora of pure iron were investigated, The experimental results showed that the existence of ultrasound could decrease the formation potential of ferrate(Ⅵ).when the optimum mixed proportion was 1:1:1 the maximum current efficiency , obtained after 0.5h of electrolysis, was a value of 74.3%. after 6h of electrolysis, the concentration of Na2FeO4 is 55.21g/L. but, ultrasound is no process on KOH.
     The electrode potential effect on electrolysis time was studied by electrochemical chronopotentionmetry (CP) methods. The surface of iron anode was smooth before electrolysis, as can be seen from scanning tunneling microscopy(STM). It became rough after 1h electrolysis, which exerted influences on electrode potential and current efficiency.
     In this paper the cyclic voltammograms (CVs) of iron electrode revealed a broad anodic wave between-1.40 and 0.70V versus HgO/Hg corresponding to iron dissolution and passivation of the electrode. The CV is strikingly different in that anodic wave with previous papers, where was emerging the peak which was related to the inter-mediator of electro-oxidation of Fe(III) species in concentration basic aqueous solution. It should be FeO43-(Fe(V) species). The anodic behaviour of an iron electrode in different experimental conditions was studied in this paper. The crystalline structure of the samples particles are investigated by X-ray diffraction (XRD) and Infrared absorption spectroscopy (IR).
引文
[1] Thompson. G. W, Ockerman. L.T. Preparation and Purification of Potassium Ferrate[J]. J.Am.Chem. Soc.1951, 73:1379~1381.
    [2] Virender. K, Sharma, Wayne R. Joshietal. Ferrate (Ⅵ) oxidation of thiourea [J]. Environ. Sci. Technnol, 1999,33(15):2645~2650.
    [3]樊杰.高铁酸盐处理湖泊水库水的研究进展[J].工业安全与环保,2005,31(10):25~27.
    [4] Licht. S, Wang. B, Ghosh. S. Energetic Iron(Ⅵ) Chemistry[J]. The Super-Iron Battery.Science, 1999,285 (13):1039.
    [5] Waite TD, Gray K A. Oxidation and coagulation of waste water effluent utilizing ferrate(Ⅵ) ion[J]. Stud. Environ.Sci.1984, 23:407~420.
    [6] Murmann R K, Robinson P R. Experiments utilizing FeO42- for purifying water[J]. Water Res. 1974, 8(8): 543~547.
    [7]张雪盈,杨长春,高杰.高铁酸钾晶体结构的研究[J].合成化学, 2005,13(4): 391~393.
    [8]冯长春,周志浩,蒋凤生.高铁酸钾的结构[J].化学世界,1991,(3),102~106.
    [9] Bouzek. K, Martin. J, Anthony A Wragg. Schmidt Influence of anode material composition on the stability of electrochemically-prepared ferrate(VI) solutions[J]. Chem Technol Biotechnol 1999,74:1188~1194.
    [10]贾汉东,马宁,孙红宾. FeO42-离子在水溶液中稳定性的研究[J].郑州大学学报.1999, 31(1):26~28.
    [11] Graham Li. A study of the preparation and reactivity of potassium ferrate [J]. Chemosphere 2005, 61:537~543.
    [12]夏水,武彩霞,阮庆征.新型正极材料K2FeO4的溶解度及稳定性[J].电源技术. 2004, 28(2):22~25.
    [13]贾汉东,鲍改玲,孙红宾,李国亭.次氯酸根对高铁酸盐溶液的稳定作用[J].无机盐工业. 2002,34(5):21~25.
    [14]高玉梅,贾汉东,鲍改玲,于伟伟,黄宇.粘土对高铁酸盐溶液的稳定作用研究[J].化学研究与应用, 2004, 16 (6): 865~869.
    [15]刘伟,肖树宏,梁赓.高铁酸钾及其复合药剂的多功能净水效能研究动态[J] .中国给水排水,1998,14(6):31~32.
    [16] Jezowska.T. B, Wronska M. Decomposition of potassium ferrate(VI) in concentrated KOH solutions[J]. Bull Acad Polon Sci, Classe III 1957,5:659~662.
    [17] Jezowska.T. B, Wronska. M. Mechanism and kinetics of ferrate(VI) reduction[J]. CongrIntern Chem Pure et Appl.1958,16:827~835.
    [18] Wronska. M. Studies on the kinetics of decomposition of aqueous solutions of ferrate(VI) ions[J]. Bull Acad Polon Sci, Se?rie Sci Chim, Ge?ol et Geograph 1959,7:137~142.
    [19]李国亭,贾汉东,高玉梅. Fe(Ⅵ)化合物的定性鉴定及稳定性分析[J].郑州大学学报.2003, 35 (2):121~124.
    [20] Audette. R.J,Cesium J.W.Ferrate(Ⅵ)preparation , Infared spectra and magnetic susceptibilities[J]. Inorg.Chem,11(8), 1972,0904~0908.
    [21] Scholder V R,Kindervater F. Zur Kenntnis der Ferrate(Ⅵ)[J].Z.Anorg.Allg.Chem, 1955,282:268~272.
    [22]蒋凤生,冯长春,周志浩,张毓昌.高铁酸钾热分解的研究[J].无机化学学报. 1990,6(2);136~140.
    [23] Tspin A I, Goldfeld M G, Mcdonald G D, Nealson K H, Moskovitz B,Solheid P, Kemner K M, Kelly S D,Orlandini K A. Iron(Ⅵ):Hypothetical Candidate for the Martian Oxidant[J]. Icarus.2000, 147:68~78.
    [24]贾汉东,杨新玲等.高铁酸盐的直接分光光度法测定[J],分析化学. 1999,27(5):617.
    [25] Screyer. M, Tompaon.G.W, Ockerman. T. Oxidation of chromium with potassium ferrate (Ⅵ) [J].Anal.Chem. 1950.22(11):1426~1427.
    [26]刘永春,胡弘鲲,骆明霞,谢家理.分光光度法测定高铁酸钠的浓度[J].化学研究与应用,2002,14(3):111~114.
    [27] Venkatadri.A.S, Wagner.W.F, Bauer.H.H. Ferrate anasis by cyclic voltammetry [J]. Anal. Chem.. 1971,43(8),1115~1119.
    [28]冀亚飞,丁毅,张雁秋.高铁酸钾的制备及其在水处理中的应用[J].现代化工.1998,(3):17~19.
    [29] Virender.Ferrate (Ⅵ) oxidationof aqueous cyanide[J]. Environ. Sci. & Technol. 1998, 32(17):2608~2613.
    [30]张军,时清量,杨国明.高铁酸钾的合成及其应用研究[J].无机盐工业.1999,31(6):26~28.
    [31]雷钢铁,苏光耀,李朝晖.高铁酸钾的合成及性能研究[J].精细化工中间体.2002,32(3):29~33.
    [32]曾雷,段旭光,高铁酸盐在有机氧化合成上的应用[J].江西化工.2001,(4) :55~58.
    [33]杨长春,石秋芝,侯宏英.碱性高铁电池的初步研究[J].电源技术.2002,26(4):293~297.
    [34]贾红光.超铁电池的研究及其展望[J].化学研究与应用.2002,14(3):250~254.
    [35] Licht.S,Wang.B,Ghosh.S.Insoluble Fe(Ⅵ)Compounds: Effects on the Super-iron Battery[J]. Electrochemistry Communications. 1999, 1:522~526.
    [36] Licht.S, Wang.B,Xu.G.Solid Phase Modifiers Of the Fe(Ⅵ)Cathode: Effects on the Super-iron Battery[J]. Electrochemistry Communications. 1999,1:527~531.
    [37] Licht S,Wang B,Ghosh S. EnhancedFe(Ⅵ) On the Super iron Battery[J]. Electrochemistry Communications.2000,2 (7):535~540.
    [38] Lin D F,Ye S H,Song D Y. Preparation and Electrochemical Properties of Li-doped BaFeO4 as Electrode Material for Lithium-ion Batteries[J].Electrochemistry Communications.2001,2 (6):531~534.
    [39] Thompsom. J. A. Process for producing alkali metal ferrates[J]. US 4385045.1983/1981.
    [40] Thompsom. J. A. Process for producing alkali metal ferrates utilizing hematite and magnetite[J]. US 4545974.1985/1984.
    [41] Wronska. M, Studies on the kinetics of decomposition of aqueous solutions of ferrate (VI) ions [J]. Bull Acad Polon Sci, Se-rie Sci Chim, Ge-ol et Geograph 1959,7:137~142.
    [42]李志远,赵建国,韦丽红.过氧化钠法高铁酸盐转化的实验研究[J].无机盐工业,1995,5:10~12.
    [43] Hrostowski. H. J, Scott. A B.The Magnetic Susceptibility of Potassium[J].Chem. Phys.1950, 18:105~1071.
    [44]王善杨,吴黎平.新型高效水处理剂——高铁酸钾[J].河南化工.1994 (2):22~23.
    [45] Lionel D, pierrel. A Novel Oxidizing Reagent Basedon Potassium Ferrate(Ⅵ) [J].Org.Chem. 1996,61:6360~6370.
    [46]张军,时清量,杨国明.高铁酸钾的合成及其应用研究[J].无机盐工业. 1999, 31 (6):26~28.
    [47] Cici M, Cuci Y . Production of Some Coagulant Materials from Galvanizing Workshop Waste [J].Waste Management. 1997,17 (7) 407~410.
    [48] Johnson, Michael D. Method for synthesizing ferrate and ferrate produced thereby [J]. US 5746994, 1998/1996.
    [49] Evrard.O.J. Alkali or alkaline earth metal ferrates, their preparation and their industrial applications [J]. US 5284642.1994/1992.
    [50] Bouzek. K, Rousar. I. Influence of anode material on current yields during ferrate(VI) production by anodic iron dissolution. Part III: Current efficiency during anodic dissolution of pure iron to ferrate(VI) in concentrated alkali hydroxide solutions[J]. Appl Electrochem.1997, 27:679~684.
    [51] Koninck. M, Belanger. D. The electrochemical generation of ferrate at pressed iron powder electrode: comparison with a foil electrode[J]. Electrochimica Acta. 2003,48:1435~1442.
    [52] Denvir. A, Pletcher. D. Electrochemical generation of ferrate Part I: dissolution of an iron wool bed anode [J]. Appl Electrochem. 1996,26:815~822.
    [53] Scryer. J.M, Tompson G.W.Oxidation of chromium with potassium ferrate (Ⅵ) [J]. Anal.chem.1950,22(11):1426~1427.
    [54] Koninck. M, Brousse. T, Belanger. D. The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters [J]. Electrochimica Acta.2003,48:1425~1433.
    [55] Jia-Qian Jiang, Barry Lloyd. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment [J]. Water Research. 2002, 36: 1397~1408.
    [56] Bouzek.K, Rousar.I. Current efficiency during anodic dissolution of iron to ferrate(Ⅵ) in concentrated alkali hydroxide solution[J].Appl.Electrochem.1993,23:1317~1322.
    [57] Bouzek.K, Rousar.I.Influence of anode material on current yields during ferrate(VI) production by anodic iron dissolution. Part I: Current efficiency during anodic dissolution of grey cast iron to ferrate(VI) in concentrated alkali hydroxide solutions[J]. Appl Electrochem. 1996, 26:919~924.
    [58] Bouzek. K, Rousar. I, Taylor.M.A. Influence of anode material on current yields during ferrate(VI) production by anodic iron dissolution. Part II: Current efficiency during anodic dissolution of white cast iron to ferrate(VI) in concentrated alkali hydroxide solutions[J].Appl Electrochem .1996,26 :925-932.
    [59] Zhe Ding, changchun Yang, Qiang wu.The electrochemical generation of ferrate at porous magnetite electrode [J]. Electrochimica Acta.2004,49:3155~3159.
    [60] Francois.L, Gerard V. Direct electrochemical preparation of solid potassium ferrate[J]. Electrochem Comm.2002, 4:764~766.
    [61] Francois.L.Electrochemical ferrate generation for waste water treatment using cast irons with high silicon contents[J].Appl Electrochem. 2002,1:57~63.
    [62] Licht.S,Halperin.L.Toward Efficient Electrochemical Synthesis of Fe(Ⅵ) Ferrate and Super-Iron Battery Compounds[J]. Electrochem. Sci. 2004,151: A31~A39.
    [63] Licht.S, Naschitz.V, Bing Liu. Chemical synthesis of battery grade super-iron barium and potassium Fe(Ⅵ) ferrate compounds[J]. Journal of power Source. 2001,99:7~14.
    [64]何伟春,左宏森,杨长春.高铁酸钾之电解法制备及性质表征[J].河南教育学院学报.2003,12(2):23~26.
    [65]郑州大学,杨长春,高杰.固体高铁酸钾制备方法[P].中国专利.CN1488782A. 2004.4.14.
    [66] Minevski.Z, Maxey.J, Nelson.C.Electrochemical method for producing ferrate(Ⅵ) compounds[J]. US 2003.0159942A1.
    [67] Licht.S, Tel-Vered.R, Halperin.L. Direct electrochemical preparation of solid Fe(Ⅵ) ferrate, and super-iron battery compounds[J]. Electrochem Commun. 2002,4:933~937.
    [68] Weichun. H, Jian ming. W, Haibo. S. Novel KOH electrolyte for one-step electrochemicalsynthsis of high purity solid K2FeO4: Comparison with NaOH. Electrochem Commu 2005 ,7: 607~611.
    [69] Jiu-Hui. Q,Peng-Ju. L,Hui-Juan.L.Double catholyte electrochemical approach for preparing ferrate-aluminum: A compound oxidant-coagulant for water purification[J]. Environ. Sci, 2002,14:49~53.
    [70] Deininger.J, Dotson. P, Ronald. L. Process for preparing alkali metal ferrates[J]. United States Patent. 4451338. May 29,1984:429/221.
    [71]曲久辉,雷鹏举.多功能高铁絮凝剂电化学合成的机理和条件[J].环境化学. 1997, 16(6): 528~533.
    [72]雷鹏举,曲久辉,王佳音.多功能复合高铁水处理剂的电解制备研究[J].环境科学学报,1998,18(4): 380~384.
    [73] Beck.F, Kaus.R, Oberst.M. Transpassive dissolution of iron to ferrte(Ⅵ) in concentrated alkali hydroxide solution[J].Electrochimica Acta.1985,30(2):173~183.
    [74] Bouzek.K, Rousar.I. The study of electrochemical preparation of ferrate(Ⅵ) using alternating current superimposed on the direct current Frequency dependence of current yields[J]. Electrochimica Acta. 1993,38(13):1717~1720.
    [75] Bouzek.K,Lipovsk.M. Electrochemical production of ferrate(VI) using sinusoidal alternating current superimposed on direct current: grey and white cast iron electrode[J]. Electrochimica Acta.1998, 44:547~557.
    [76] Bouzek.K, Flower.L, Rousar.I. Electrochemical production of ferrate(VI) using sinusoidal alternating current superimposed on direct current[J]. Appl Electrochem. 1999, 29:569~576.
    [77]姜洪泉,刘红.亚铬酸盐滴定法测定高铁酸钾[J].佳木斯大学学报. 2001, 19(1) : 106~108.
    [78]李勇.液相超声凝聚分离用于原油破乳脱水的研究[D].南京:南京工业大学,2002.
    [79]沈耀亚,赵德智,许凤军.功率超声在化工领域中的应用现状和发展趋势[J].现代化工.2000,20(10):14~18.
    [80]虞建业,颜大椿,乔文孝.乳化原油的超声波脱水研究[J].声学学报.1999,24(3):327~331.
    [81]孙宝江,颜大春,乔文孝.乳化原油的超声波脱水研究[J].声学学报.1999,24(3):327~331.
    [82] Scryer. J.M, Tompson G.W, Ockerman.T.Oxidation of chromium with potassium ferrate(Ⅵ) [J]. Anal.chem.1950,22(11):1426~1427.
    [83] Schreyer.J M, Oxkwerman L T.Stability of the ferrate(VI) ion in aqueous solution[J].Anal Chem .1951(23) :1312~1314.
    [84]王立立,曲久辉,王忠秋.高铁稳定性及其影响因素的研究[J].东北电力学院学报.1999,19 (1):629.
    [85]贾汉东,马宁,孙红宾.FeO42-离子在水溶液中稳定性的研究[J].郑州大学学报.1999(1):67~69.
    [86]张铁锴.水溶液中Fe (VI)化合物的稳定性研究[D].大庆:大庆石油大学,2005.
    [87]高玉梅,贾汉东.光照对高铁酸盐溶液稳定性的影响[J].应用化学.2004 ,21 (4) :425~427.
    [88] Stuart L,Gang Xu. Solid plase modifiers of the Fe (VI) cathode: effects on the surper2iron battery [J].Electro Chemistry Communications .1999,1(11):52~531.
    [89]朱启安,王树峰,黄伯清.提高高铁酸钾产率和稳定性的方法[J].精细化工.2006,23 (6):593~596.
    [90]贾汉东,鲍改玲,孙红宾.次氯酸根对高铁酸盐溶液的稳定作用[J].无机盐工业.2002,34 (5):425.
    [91] Bouzek.K, Rousar.I, Bergmann.H. The cyclic voltametric study of ferrate(Ⅵ) production [J]. Elctroanalytical chemistry.1997,425:125~137.
    [92] Cun-zhong Zhang,Zhen Liu,Feng Wu,Li-jun Lin,Fei Qi.Electrochemical generation of ferrate on SnO2–Sb2O3 Ti electrodes in strong concentration basic condition[J].Electrochem Comm.2004,6:1104~1109.
    [93] Zhang.H, Park.S.M.J. Electrochem Acta[M].23(1994)718.
    [94]黄宗卿.黄宗卿教授论文集[C].1999:50~73.
    [95]黄宗卿.黄宗卿教授论文集[C].1999: 149~151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700