用户名: 密码: 验证码:
质子交换膜燃料电池抗CO电催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PtRu/C催化剂是目前应用最广泛的质子交换膜燃料电池(PEMFCs)抗CO阳极电催化剂,但其性能仍不能满足PEMFCs商业化的要求。本论文从载体、活性组分和制备方法等三个方面对PEMFCs抗CO电催化剂进行了系统研究。
     首先,以多壁碳纳米管(MWCNTs)为载体制备了PtRu/MWCNTs催化剂,利用N2吸附、TEM、XRD、ICP、FTIR和TPD-MS等多种表征手段,深入研究了载体经不同浓度H_2O_2处理以及制备催化剂所用溶剂(乙二醇和水)对催化剂的担载量和粒子分散性以及电池抗CO性能的影响,首次提出了溶剂极性和碳纳米管表面化学相结合是最重要的影响因素,并通过直接测量载体在溶剂中的润湿热以及载体表面含氧官能团进行了验证。
     其次,开发了微波辅助乙二醇还原并热处理的方法制备了PtRuIr/C和PtRuNi/C催化剂。CO溶出伏安、单电池评价和阳极进出口气体气相色谱分析等测试表明,两者具有很高抗CO氢氧化活性。在与采用相同方法制备的PtRu/C催化剂对比的前提下,详细研究了加入Ir和Ni对催化剂粒子形貌、粒子大小和分布、组成均匀性以及体相结构等的影响,在此基础上结合XPS表征深入探讨了催化剂结构-性能的关系,并提出了催化剂性能增强的机理。
     此外,本论文还开发了简单、低成本且完全水相的真空浸渍法制备PtRu/C催化剂,考察并优化了制备过程中的若干因素,对该催化剂进行的CO溶出伏安、单电池评价以及阳极进出口气体气相色谱分析等测试表明,利用这个方法制备的PtRu/C催化剂具有高于商品PtRu/C催化剂的抗CO性能。
PtRu/C is now recognized as the most promising CO-tolerant anode electrocatalyst for proton exchange membrane fuel cells (PEMFCs). However, the modified performance by PtRu/C is still not good enough for the commercialization of PEMFCs, and more active CO-tolerant electrocatalysts are critically needed for the practical application of this technology. In this paper, intensive study, in which the support, the active components and the synthesis strategy were involved, were carried out.
     Firstly, A series of PtRu nanocomposites supported on H_2O_2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods—the HCHO method and the EG method. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated through N2 adsorption, TEM, ICP, FTIR, TPD-MS and the measurements of the wetting heats of the MWCNTs in the corresponding solvents. The characterizations suggested that combination of the surface chemistry of the MWCNTs with the polarity of the solvents was the most important factor. Evaluations of the catalysts at the anode of the single PEMFCs were conducted. Structure–performance relationship of the PtRu/MWCNTs catalysts were also studied.
     Secondly, the PtRuIr/C and PtRuNi/C catalysts were synthesized via a microwave-irradiated polyol plus annealing (MIPA) synthesis strategy. The catalysts were characterized by TEM, XRD, ICP, EDS, CO-stripping voltammetry, single cell
引文
[1] 衣宝廉. 燃料电池-原理·技术·应用. 北京: 化学工业出版社,2003.
    [2] 熊建民.博士论文:合成气制液体燃料F-T合成Co/AC催化剂的研究. 中国科学院大连化学物理研究所,2005.
    [3] James Larmine and Andrew Dicks. Fuel Cell Systems Explained. John Wiley & Sons. Ltd., 2000.
    [4] Fuel Cell Handbook. 5th Edition. EG & G Services Parsons, Inc.,2000.
    [5] 黄倬,屠海令,张冀强,詹锋. 质子交换膜燃料电池的研究与应用. 北京:冶金工业出版社,2000.
    [6] P. Costamagna, S. Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part I. Fundamental scientific aspects, J. Power Sources. 2001, 102(1–2): 242–252.
    [7] J.H. Wee, K.Y. Lee. Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells, J. Power Sources, 2005, In press.
    [8] J. J. Baschuk, X. Li. Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, 25 (8): 695–713.
    [9] 吴越. 催化化学(下). 北京: 科学出版社, 2000: 第八章.
    [1] J. J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, 25 (8): 695–713.
    [2] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I Fundamental scientific aspects J. Power Sources,2001, 102 (1–2): 242–252.
    [3] J. H. Wee, K.Y. Lee. J. Power Sources,2005, in press.
    [4] R. Ianniello, V.M. Schmidt. Electrochemica Acta 1994,39 (11–12): 1863–1869.
    [5] G. Hoogers, D. Thomposett, Catalysis in proton exchange membrane fuel cell technology, CATTECH 3 (1999) 106–123.
    [6] E. Antolini. Recent developments in proton exchange membrane fuel cell electrodes, J. Appl. Electrochem. 2004, 34 (54): 563–576.
    [7] E. Christoffersen, P. Liu, A. Ruban, H.L. Skriver, J.K. N?rskov, Anode materials for low-temperature fuel cells: a density functional theory study, J. Catal. 2001, 199 (1): 123–131.
    [8] C. Lu, R. I. Masel, The effect of Ruthenium on the binding of CO, H2 and H2O on Pt(110), J. Phys. Chem. B, 2001,105: 9793–9797.
    [9] V. M. Schmidt, R. Ianniello, H.F. Oetjen, H. Reger, U. Stimming, R. Trila, Oxidation of H2/CO in a Proton Exchange of Membrane Fuel Cell. In Proton Conducting Membrane Fuel Cells I, S. Gottesfeld, G.. Halpert, A. Landgrebe (Eds), Electrochemical Society Proceedings, Vol. 95–23. The Electrochemical Society Inc: Pennington, 1–11, 1995.
    [10] M Watanabe, S. Motoo. Electrocatalysis by ad-atoms Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms J. Electroanal. Chem., 1975,60 (3), 275–283.
    [11] J. B.Goodenough, R..Manoharan, A.K. Shukla, K.V. Ramesh. Intraalloy electron transfer and catalyst performance: a spectroscopic andelectrochemical study, Chem. Mater., 1989, 1 (4): 391–398.
    [12] J. McBreen, S. Mukerjee. In situ X-ray absorption studies of a Pt-Ru electrocatalyst,J. Electrochem. Soc.,1995, 142 (10): 3399–3404.
    [13] S. Mukerjee, S. J. Lee, E.A. Ticianelli, J. McBreen, B.N. Grgur, N.M. Markovic, P.N.Ross, J. R. Giallombardo, E. S. De Castro. Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst, Electrochem. Solid-State Letters.,1999, 2 (1): 12–15.
    [14] H. Igarashi, T. Fujino, Y. Zhu, H. Uchida, M. Watanabe. CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism, Phys. Chem. Chem. Phys, 2001, 3: 306–314.
    [15] D. C. Papageorgopoulos, M. Keijzer, F.A. de. Bruijn. The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3electrocatalysts in the quest for improved CO tolerance PEMFC anodes, Electrochim. Acta,2002, 48 (2):197–204.
    [16] G. Samjeské, H. Wang, T. L?ffler, H. Baltruschat. CO and methanol oxidation at Pt-electrodes modified by Mo, Electrochim. Acta, 2002, 47: 3681–3692.
    [17] E. I. Santiago, G..A. Camara, E.A. Ticianelli. CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method, Electrochemica Acta 2003, 48 (23):3527–3534.
    [18] M. G?tz, H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn, and Mo for PEMFCs operated on methanol or reformate gas, Electrochim. Acta, 1998, 43 (24): 3637–3644.
    [19] T. Ioroi, N.Fujiwara, Z. Siroma, K.Yasuda, Y. Miyazaki. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide, Electrochem. Commun. 2002, 4: 442–446.
    [20] A.Pozio, L.Giorgi, E.Antolini, E. Passalacqua. Electroxidation of H2 on Pt/C Pt-Ru/C and PtMo/C anodes for polymer electrolyte fuel cell, Electrochemica Acta 2000, 46: 555–561.
    [21] S. Ball, A. Hodgkinson, G. Hoogers, S. Maniguet, D. Thompsett, B. Wong. The Proton Exchange Membrane Fuel cell Performance of a carbon supported PtMo catalyst operating on Reformate, Electrochem. Solid-State Lett. 2002, 5 (2): A31–A34.
    [22] B. N. Grgur, G. Zhuang, N.M. Markovic, P.N.Ross. Electrooxidation of H2/CO Mixture on a Well-Characterized Pt75Mo25 Alloy Surface, J. Phys. Chem. B. 1997, 101: 3910–3913.
    [23] T. R. Ralph, M. P. ogarth. Catalysis for low temperature fuel cells Part II: the anode challenges, Platinum Metals Rev. 2002, 46 (3): 117–135.
    [24] H.A. Gasteiger, N.M. Markovic, P.N. Ross. Elecrooxidation of CO and H2/CO mixtures on a well characterized Pt3Sn electrode surface, J. Physc. Chem. 1995, 99 (22): 8945–8949.
    [25] J. K. Norskov, P. Liu. Anode Catalyst Materials for Use in Fuel Cells, US Patent 6663998 B2.
    [26] K. Wang, H.A. Gasteiger, N. M. Markovic, P. N. Ross, Jr. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus PtRu alloy surfaces, Electrochemica Acta 1996, 41(16): 2587–2593.
    [27] S. J. Lee, S. Mukerjee, E. A.Ticianelli, J. McBreen. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, Electrochemica Acta 1999, 44 (19): 3283–3293.
    [28] W. J. Zhou, Z. H. Zhou, S. Q. Song, W. Z. Li, G. Q. Sun, P. Tsiakaras, Q. Xin. Pt based anode catalysts for direct ethanol fuel cells, Appl. Catal. B: Environmental 2003, 46(2): 273-285.
    [29] C. He, H.R.Kunz, J.M. Fenton. Evaluation of Platinum-Based Catalysts for Methanol Electro-oxidation in Phosphoric Acid Electrolyte, J. Electrochem. Soc. 1997, 144 (3): 970–979.
    [30] K. Y. Chen, P. K.Shen, A. C. C. Tseung. Anodic Oxidation of Impure H2 on Teflon-Bonded Pt-Ru/WO3/C Electrodes, J. Electrochem. Soc. 1995, 142 (10): L185–L187.
    [31] A. C. C. Tseung, K. Y. Chen. Hydrogen spill-over effect on Pt/WO3 anode catalysts, Catal. Today 1997, 38 (4): 439–443.
    [32] A. C. C. Tseung, P. K. Shen, K. Y. Chen. Previus metal /hydrogen bronze anode catalysts for the oxidation of small organic molecules and impure hydrogen, J. Power Sources, 1996, 61 (1–2): 223–225.
    [33] B. N. Grgur, N. M. Markovic, P. N. Ross. Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys, Electrochemica Acta 1998, 43 (24):3631–3634.
    [34] M. Watanabe, H. Igarashi, T. Fujino. Design of CO tolerant anode catalysts for polymer electrolyte fuel cell, Electrochemistry. 1999, 67 (12): 1194–1196.
    [35] M. Iwase, S. Kawatsu. Optimized CO tolerant electrocatalysts for polymer electrolyte fuel cells. In Proton Conducting Membrane Fuel Cells I, S. Gottesfeld, G. Halpert, A. Landgrebe (Eds), Electrochemical Society Proceedings, Vol. 95-23. The Electrochemical Society Inc: Pennington, 12–23, 1995.
    [36] C. Xu, P. K. Shen, X. Ji, R. Zeng, Y. Liu. Enhanced activity for ethanol electrooxidation on Pt-Mg/C catalysts, Electrochem. Commun, 2005,7 (12): 1305–1308.
    [37] A. Chen, D. J. La Russa, B. Miller. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles, Langmuir, 2004, 20 (22): 9695–9702.
    [38] T. Ioroi, N. Fujiwara, Z. Siroma, K. Yaasuda, Y. Miyazaki. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide, Electrochem. Commun., 2002, 4(5): 442–446.
    [39] 杨辉, 刘长鹏,陆天虹,唐亚文.一类燃料电池阳极催化剂的制备方法.中国专利1123080.
    [40] J. Shim, C. R. Lee, H. K. Lee, J. S. Lee, E. J. Cairns. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell, J. Power Sources, 2001, 102 (1–2): 172–177.
    [41] K. Lasch, G. Hayn, L. Jorissen, J.Garche, O. Besenharedt. Mixed conducting catalyst support methanol fuel cell, J. Power Sources 2002, 105 (2): 305–310.
    [42] K. W. Park, J. H. Choi, B. K. Kwon, S. A .Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim. A. J. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and PtRuNi alloy nanoparticles in methanol electooxidation, J. Phys.Chem. B, 2002, 106 (8): 1869–1877.
    [43] K. W. Park, J. H. Choi, S. A. Lee, C.Pak, H. Chang, Y. E. Sung. PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell, J. Catal., 2004, 224 (2): 236–242.
    [44] D.D.Eley, P.B. Moore, The adsorption and reaction of CO and O2 on Pd-Au alloy wires, Surf. Sci. 1981, 111(2): 325–343.
    [45] T. J. Schmidt, Z. Jusys, H.A. gasteiger, R. J.Behm, U.Endruschat, H. Boennemann. On the CO tolerance of novel colloidal PdAu/carbon electrocatalysts, J. Electrocanal. Chem., 2001,501 (1–2): 132–140.
    [46] D.R. McIntyre, G.T.Burstein, A. Vossen. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide, J. Power Sources., 2002, 107 (1): 67–73.
    [47] H.A.Gasteiger, S. S. Kocha, B. Somapalli, F. T. Wagner. Activity benchmarks and requirements for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B, 2005, 56 (1): 9–35.
    [48] E. Antolini. Formation of carbon-supported PtM alloys for low temperaturefuel cells : a review, Mater, Chem. Phys., 2003, 78 (3): 563–573.
    [49] K. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, J. Mater. Chem., 2004, 14 (4): 505–516.
    [50] 黄成德,韩佐青,李晓婷, 陈延禧. 聚合物膜燃料电池用电催化剂研究 进展,化学通报,2000,12:1–5
    [51] 李旭光, 邢巍, 杨辉, 陆天虹. 活性炭载体对聚合物电解质膜燃料电池中炭载铂电催化剂性能的影响, 分析化学,2002, 30 (7): 788-791.
    [52] C. P. Burguete, A.L. Solano, F. R. Reinoso, C. S. Lecea. The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts, J Catal., 1989, 115 (1): 98–106.
    [53] A. E. Aksoylu, M. Madalena, A. Freitas, J. L. Figueiredo.Bimettalic Pt-Sn catalysts supported on activated carbon I.The effects of support modification and impregnation strategy, Appl. Catal. A: General., 2000, 192 (1): 29-42.
    [54] J. L. Figueiredo, M. F. R Pereira, M.M.A.Freitas, J.J.M Orfao. Modification of the surface chemistry of activated carbons, Carbon, 1999, 37 (9): 1379-1389.
    [55] R. Ryoo, S. H. Joo, S. Jun. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, J. Phys. Chem. B, 1999, 103 (37): 7743–7746.
    [56] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terassaki, R. Ryoo.Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles,Nature, 2001, 412 (6843):169–172.
    [57] J. Lee, S.Yoon, T. Hyeon, S..M.Oh, K.B.Kim. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commn., 1999 21: 2177–2178.
    [58] H. Darmstadt, C. Roy, S. Kaliaguine, T. Kim, R. Ryoo. Surface and Pore Structures of CMK-5 Ordered Mesoporous Carbons by Adsorption andSurface Spectroscopy, Chem. Mater., 2003, 15(17): 3300 – 3307.
    [59] Y. C. Liu, X. P. Qiu, Y. Q. Huang, W. T. Zhu. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts, Carbon 2002, 27 (13): 2375–2380.
    [60] Y. C. Liu, X. P. Qiu, Y. Q. Huang, W.T. Zhu. Mesocarbon microbeads supported Pt-Ru catalysts for electrochemical oxidation of methanol , J. Power Sources, 2002, 111 (1):160–164.
    [61] S. Ijima. Helical microtubules of graphitic carbon, Nature, 1991, 354 (6348): 56–58.
    [62] R. Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K. L. Tan, G.. Q. Xu, T. S. A. Hor. Platinum deposition on carobon nanotubes via chemical modification, Chem. Mater., 1998, 10 (3): 718–722.
    [63] E.S. Steigerwalt, G.A. Deluga, C.M.Lukehart. Pt-Ru/carbon fiber nanocomposites: synthesis ,characterization,performance as anode catalysts of direct methanol fuel cells: A search for exceptional performance, J. Phys. Chem. B, 2002, 106 (4): 760–766.
    [64] N. Rajalakshmi, H. Ryu, M.M. Shaijumon, S. Ramaprabhu. Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material, J. Power Sources, 2005, 140 (2): 250–257.
    [65] J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P.Bernier, P. M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc., 1994, 116 (17): 7935–7936.
    [66] M. H. Liu, Y. L.Yang, T. Zhu, Z. F. Liu. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid, Carbon 2005, 43 (7): 1470–1478.
    [67] M. Carmo, V. A. Paganin, J. M. Rosolen, E. R.Gonzalez. Alternative supports for the preparation of catalysts for low-temperature fuel cells; theuse of carbon nanotubes, J. Power Sources, 2005, 142 (1-2):169–176.
    [68] Z. L. Liu, X. H. Lin, J.Y. Lee, W. Zhang, M. Han, L. M. Gan. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir, 2002, 18 (10): 4054-4060.
    [69] X. Li, W. X. Chen, J. Zhao, W. Xing, Z. D. Xu, Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization, Carbon, 2005, 43 (10): 2168–2174.
    [70] T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes, Chem., Commun., 2004, 116 (7): 840–841
    [71] M. L. Anderson, R. M. Stroud, D. R. Rolison. Enhancing the Activity of Fuel-cell Reactions by Designing Three-dimensional Nanostructured Architectures: Catalyst-modified Carbon-Silica Composite Aerogels, Nano Letters., 2002, 2(3): 235–240..
    [72] J. H. Jiang, A. Kucernak. Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid, J. Electroanal. Chem. 2002, 520 (1–2): 64–70.
    [73] G.. Liu, H. M. Zhang, H. X. Zhong, J. W. Hu, D. Y. Xu, Z. G.. Shao. A novel sintering-resistant and corrosion resistant Pt4ZrO2 /C catalysts for high temperature PEM fuel cells, Electrochimica Acta, In press.
    [74] Z. Hou, B. Yi, H.Yu, Z. Lin, H. Zhang. CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method, J. Power Sources, 2003, 123 (2): 116–125.
    [75] D. L. Boxall, G. A. Deluga, E. A. Kenik, W.D. King, C. M. Lukehart. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: a DMFC anode catalyst of high relative performance, Chem. Mater., 2001, 13:891–900.
    [76] B. Yang, Q. Y. Lu, Y. Wang, L. Zhuang, J. T. Lu, P. F. Liu, J. B.Wang, R.H. Wang. Simple and low-cost preparation method for highly dispersed PtRuC catalysts, Chem. Mater., 2003, 15 (18): 3552–3557.
    [77] A. Hamnett, B. J. Kennedy. Bimetallic carbon supported anodes for the direct methanol-air fuel cell, Electrochimica Acta., 1988, 33 (11): 1613–1618.
    [78] H. Kim, J. N. Park, W. H. Lee. Preparation of platinum-based eletrode catalysts for low temperature fuel cell, Catal. Today, 2003, 87(1–4): 237–245.
    [79] M. Watanabe, M.Uchida, S. Motoo. J. Electroanal. Chem., 1987, 229 (1–2): 395–406.
    [80] L. S. Sarma, T.D.Lin, Y.W.Tsai, J. M. Chen, B.J.Hwang. Carbon-supported Pt-Ru catalysts prepared by the Nafion stabilized alchhol-reduction method for application in direct methanol fuel cells, J. Power Sources, 2005, 139 (1–2): 44-54..
    [81] T. Kawaguchi, W. Sugimoto, Y. Murakami, Y. Takasu. Temperature dependence of the oxidation of carbon monoxide on carbon supported Pt, Ru, and PtRu, Electrochem. Commun., 2004, 6 (5): 480–483.
    [82] T. Kawaguchi, W. Sugimoto, Y. Murakami, Y. Takasu. Particle growth behaviour of carbon-supported Pt,Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes, J. Catal., 2005, 229 (1): 176–184.
    [83] R. Richards, R. Hortel, H.Bonnemann. ‘Precursor’ concept for fuel cell catalysts, Fuel Cell Bulletin, 2001, 4 (37): 7–10.
    [84] Z. L. Liu, X. Y. Ling, J. Y. Lee, X. Su, L. M. Gan. Nanosized Pt and PtRu colloids as precursors for direct methanol fuel cell catalysts, J. Mater. Chem., 2003,13 (12): 3049–3052.
    [85] C. Bock, C .Paquet, M. Couillard, G. A. Botton, B. R. MacDougall.Sized-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism, J. Am. Chem. Soc., 2004, 126 (25): 8028–8037.
    [86] U.A. Paulus,U. Endruschat, G.J. Feldmeyer, T.J. Schmidt, H.Bonnemann, R.J. Behm. New PtRu alloy colloids as precursors for fuel cell catalysts, J. Catal., 2000, 195 (2): 383–393.
    [87] A. Curtis, D. Duff, P. Edwards, D. Jefferso, B. Johnson, A. Kirkland, A. Wallace. Preparation and structural characterization of an unprotected copper sol, J. Phys. Chem., 1988, 92(8): 2270–2275.
    [88] G. Cardenas-Trivino, K. Klabunde, D. E. Brock, Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media, Langmuir, 1987, 3 (6): 986–992.
    [89] R. Franke, J. Rothe, J. Pollmann, J. Hormes, H. Bonnemann, W. Brijoux, T. Hindernburg, A Study of the Electronic and Geometric Structure of Colloidal Ti0·0.5THF, J. Am. Chem. Soc., 1996, 118 (48): 12090–12097.
    [90] O. Vidoni, K. Philippot, C. Amiens, B. Chaudret, O. Balmes, J. O. Malm, J.O. Bovin, F. Senocq and M. J. Casanove, Novel Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents, Angew. Chem., Int. Ed., 1999, 38 (24): 3736–3738.
    [91] Y. Wang, J. Ren, K. Deng, L. Gui and Y. Tang. Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media, Chem. Mater., 2000, 12 (6): 1622–1627.
    [92] J. Solla-Gullón, F.J. Vidal-Iglesias, V. Montiel, A. Aldaz, Electrochemical characterization of platinum-ruthenium nanoparticles prepared by water-in-oil microemulsion, Electrochim. Acta, 2004, 49 (28): 5079–5088.
    [93] S. Eriksson, U. Nylen, S. Rojas, M. Boutonnet. Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis, Appl. Catal. A: General 2004, 265 (2): 207–219.
    [94] 李常艳,胡瑞生,白亚琴,沈岳年. 微乳技术在纳米催化剂制备中的应用,化学通报, 2004, 2:143–153.
    [95] X. Xue, T. Lu, C. Liu, W. Xu, Y. Su, Y. Lv, W. Xing. Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent, Electrochim. Acta, 2005, 50 (16–17): 3470–3478.
    [96] S. Komarneni, R. Pidugu, Q. H. Li, R. Roy. Microwave-hydrothermal processing of metal powders, J. Mater. Res., 1995, 10 (7): 1687–1692.
    [97] X. Liu, B. Tian, C. Yu, B. Tu, D. Zhao. Microwave-assisted solvothermal synthesis of radial ZnS nanoribbons, Chem. Lett., 2004, 33 (5): 522–523.
    [98] R. Harpeness, A. Gedanken. Microwave synthesis of cor-shell gold/palladium bimetallic nanoparticles, Langmuir, 2004, 20 (8): 3431–3434.
    [99] Z. L. Liu, J.Y. Lee, W. Chen, M.Han, L. M. Gan. Physical and electrochemical characterization of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles, Langmuir, 2004, 20 (1): 181–187.
    [100] Z. L. Liu, L. M. Gan. L. Hong, W. Chen, J.Y. Lee. Carbon supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells, J. Power Sources, 2005, 139 (1–2): 73–78.
    [101] Y. Letichevsky, L. Sominski, J. C. Moreno, A. Gedanken, The sonochemical and microwave-assisted synthesis of nanosized YAG particles, New J. Chem., 2005, 29: 1445–1449.
    [102] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell. The use of microwave ovens for rapid organic synthesis, Tetrahedron Letters, 1986, 27 (3): 279–282.
    [103] R. J.Giguere, T. L.Bray, S. M. Duncan, G. . Majetich. Application of commercial microwave ovens to organic synthesis , Tetrahedron Letters, 1986, 27 (41): 4945–4948.
    [104] 杨霞,王胜平,马新宾. 微波技术在催化剂制备中的应用,化学通报,2004, 9:641–647
    [105] G. Glaspell, L. Fuoco, M. S. El-Shall.Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation, J. Phys. Chem. B, 2005, 109 (37): 17350–17355.
    [106] Y. Wada, H. Kuramoto, T. Sakata, H. Mori, T. Sumida, T.Kitamura, S. Yanagida. Preparation of nano-sized nickel metal particles by microwave irradiation, Chem. Lett., 1999, 28 (7): 607–608.
    [107] V. Singh, V. Sapehiyia, G. L. Kad. Ultrasound and microwave activated preparation of ZrO2-pollared caly composite: catalytic activity for selective, solventless acylation of 1,n-diol, J. Mol. Catal. A., 2004, 210(1–2): 119–124.
    [108] B. L. Gratiet, H. Remita, G. Picq, M. O. Delcourt, CO-stabilized supported Pt catlalysts for fuel cells: radiolytic synthesis, J. Catal., 1996, 164 (1): 36–43.
    [109] P. Bindra, E. Yeager. Electrochem. Soc. Proc., 1981, 233: 81–86.
    [110] I. Lee, K. Y. Chen, D. L. Phillips. Growth of electrodeposited platinum nanocrystals studied by atomic force microscopy, Appl. Surf. Sci., 1998, 136(4): 321–330.
    [111] J. V. Zoval, J.Lee, S. Gorer, R. M. Penner. Electrochemical Preparation of Platinum Nanocrystallites with Size Selectivity on Basal Plane Oriented Graphite Surfaces, J. Phys. Chem. B. 1998, 102 (7): 1166 – 1175.
    [112] M. T. Reetz, W. Helbig. Size-Selective Synthesis of Nanostructured Transition Metal Clusters, J. Am. Chem. Soc. 1994, 116 (16):7401–7402.
    [1] E. Antolini. Formation of carbon-supported PtM alloys for low temperature fuel cells : a review, Mater, Chem. Phys., 2003, 78: 563-573.
    [2] J. J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, 25 (8): 695-713.
    [3] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I Fundamental scientific aspects J. Power Sources, 2001, 102: 242-252.
    [4] B.L.Yi, H.M. Yu, Z.J. Hou, Z.Y. Lin, J.X. Zhang, P.W. Min. Electrocatalysts for proton exchange membrane fuel cells in Dalian Institue of Chemical Physics, CAS – Study on the Pt/C electrocatalyst. Precious Metals (Chinese), 2002, 23 (3):1–6.
    [5] X. Xue, T. Lu, C. Liu, W. Xu, Y. Su, Y. Lv, W. Xing. Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent, Electrochim. Acta, 2005, 50, 3470-3478.
    [6] P.K. Shen, Z.Q. Tian. Performance of highly dispersed Pt/C catalysts for low temperature fuel cells, Electrochim Acta, 2004, 49(19):3107–3111.
    [7] M. G?tz, H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn, and Mo for PEMFCs operated on methanol or reformate gas, Electrochim. Acta, 1998, 43 (24): 3637-3644.
    [8] T. J. Schmidt, M. Noeske, H. A. Gasteiger, R.J. Behm, P. Britz, Bonnemann H. Elecrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements, Langmuir,1997, 13 (10): 2591–2595.
    [9] D. L. Boxall, G. A. Deluga, E. A. Kenik, W.D. King, C. M. Lukehart. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: a DMFC anode catalyst of high relative performance, Chem. Mater., 2001, 13: 891-900.
    [10] C. Bock, C .Paquet, M. Couillard, G. A. Botton, B. R. MacDougall. Sized-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism, J. Am. Chem. Soc., 2004, 126: 8028-8037.
    [11] B. Yang, Q. Y. Lu, Y. Wang, L. Zhuang, J. T. Lu, P. F. Liu, J. B.Wang, R.H. Wang. Simple and low-cost preparation method for highly dispersed PtRuC catalysts, Chem. Mater., 2003, 15 (18): 3552-3557.
    [12] E. Christoffersen, P. Liu, A. Ruban, H.L. Skriver, J.K. N?rskov, Anode materials for low-temperature fuel cells: a density functional theory study, J. Catal. 2001, 199 (1): 123-131.
    [13] M. Carmo, V. A. Paganin, J. M. Rosolen, E. R.Gonzalez. Alternative supports for the preparation of catalysts for low-temperature fuel cells; the use of carbon nanotubes, J. Power Sources, 2005, 142 (1-2):169-176..
    [14] P. Costamagana, S. Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects, J. Power Sources, 2001,102 (1): 242–52.
    [15] K. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, J. Mater. Chem., 2004, 14 (4): 505-516.
    [16] W.Z. Li, C.H. Liang, W.J. Zhou, J.S. Qiu, Z.H. Zhou, G..Q. Sun, Q. Xin. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, J Phys Chem B, 2003, 107 (26): 6292–9.
    [17] C. P. Burguete, A.L. Solano, F. R. Reinoso, C. S. Lecea. The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts, J Catal., 1989, 115(1): 98-106.
    [18] O.P. Mahajan, A. Youssef, P.L. Walker. Surface-treated activated carbon for removal of ammonia from water, Sep Sci Tech. 1978,13 (6): 487–499.
    [19] A. E. Aksoylu, M. Madalena, A. Freitas, J. L. Figueiredo.Bimettalic Pt-Sncatalysts supported on activated carbon I.The effects of support modification and impregnation strategy, Appl Catal A: General., 2000, 192: 29-42.
    [20] A.E. Aksoylu, M. Madlena, A. Freitas, M. Fernando, R. Pereira, J.L. Figueiredo. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts, Carbon, 2001, 39 (2):175–185.
    [21] L. X. Li, F. Li, C. Liu, H. M. Cheng. Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge, Carbon, 2005, 43 (3): 623–629.
    [22] S. Ijima. Helical microtubules of graphitic carbon, Nature, 1991, 354 (6348): 56-58.
    [23] J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P.Bernier, P. M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am, Chem. Soc., 1994, 116: 7935-7936.
    [24] T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes, Chem Commun 2004, 116 (7): 840.
    [25] V. Lordi, N. Yao, J. Wei. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst, Chem, Mater., 2001, 13 (3): 733–737.
    [26] R. Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K. L. Tan, G.. Q. Xu, T. S. A. Hor. Platinum deposition on carobon nanotubes via chemical modification, Chem. Mater 1998, 10: 718-722.
    [27] Z. L. Liu, X. H. Lin, J.Y. Lee, W. Zhang, M. Han, L. M. Gan. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir, 2002, 18: 4054-4060.
    [28] M. H. Liu, Y. L.Yang, T. Zhu, Z. F. Liu. Chemical modification ofsingle-walled carbon nanotubes with peroxytrifluoroacetic acid, Carbon 2005, 43:1470-1478.
    [29] Y. Q. Liu, L. Gao. A study of the electrical properties of carbon nanotube-NiFe2O4 composites: effect of the surface treatment of the carbon nanotubes, Carbon, 2005, 43 (1): 47–52.
    [30] V. Radmilovi?, H. A. Gasteiger, P. N. Ross Jr, C. S. Lecea. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J. Catal. 1995, 154 (1): 98–106.
    [31] E. I. Santiago, G.. A. Camara, E. A. Ticianelli. CO tolerance on PtMo/C electrocatalyst prepared by the formic acid method, Electrochim Acta, 2003, 48 (23): 3527–34.
    [32] D. R. Lide, editor-in-chief. Handbook of Chemistry and Physics, 80th ed. New York: CRC Press LLC.1999: Chapter 6,148–149.
    [33] V. Machek, J. Hanika, K. Sporka, V. R??i?ka, J. Kunz. Relation between the distribution of platinum, its dispersion, and activity of catalysts prepared by impregnation of activated carbon with chloroplatinic acid solutions. Collection Czechoslovak Chem. Commun., 1981, 46 (8): 3270–3277.
    [34] H. G. Yu, Y. Liu, Z. C. Tan, J. X. Dong, T. J. Zou, X. M. Huang. A solution?reaction isoperibol calorimeter and standard molar enthalpies of formation of Ln(hq)2Ac(Ln = La, Pr), Thermochim Acta, 2003, 401 (2): 17–224.
    [1] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I Fundamental scientific aspects J. Power Sources 2001, 102: 242-252.
    [2] G. Hoogers, D. Thomposett, Catalysis in proton exchange membrane fuel cell technology, CATTECH 3 (1999) 106-123.
    [3] E. Antolini. Formation of carbon-supported PtM alloys for low temperature fuel cells : a review, Mater, Chem. Phys. 2003, 78 (3): 563-573.
    [4] E. Antolini. Recent developments in proton exchange membrane fuel cell electrodes, J. Appl. Electrochem. 2004, 34 (54): 563-576.
    [5] P. K. Babu, H. S. Kim, E. Oldfield, A. Wieckowski. Electronic Alterations Caused by Ruthenium in Pt-Ru Alloy Nanoparticles as Revealed by Electrochemical NMR, J. Phys. Chem. B, 2003,107 (31): 7595.
    [6] E. Christoffersen, P. Liu, A. Ruban, H.L. Skriver, J.K. N?rskov, Anode materials for low-temperature fuel cells: a density functional theory study, J. Catal. 2001, 199 (1): 123-131.
    [7] J. J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, 25 (8): 695-713.
    [8] T. J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, H. B?nnemann. Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements, Langmuir, 1997,13 (10): 2591-2595.
    [9] Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimoto. Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol, J. Electrochem. Soc., 2000, 147 (12): 4421-4427.
    [10] D. L. Boxall, G. A. Deluga, E. A. Kenik, W.D. King, C. M. Lukehart. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: aDMFC anode catalyst of high relative performance, Chem. Mater. 2001, 13: 891-900.
    [11] Y. M. Liang, H.M. Zhang, B.L. Yi, Z.H. Zhang, Z.C. Tan, Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells, Carbon, 2005, 43 (15): 3144-3152.
    [12] C. Lu, R. I. Masel, The effect of Ruthenium on the binding of CO, H2 and H2O on Pt(110), J. Phys. Chem. B, 2001,105: 9793-9797.
    [13] V. Radmilovi?, H.A. Gasteiger, P.N. Ross, Jr. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation, J. Catal., 1995, 154 (1): 98-106.
    [14] C. Bock, C .Paquet, M. Couillard, G. A. Botton, B. R. MacDougall. Sized-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism, J. Am. Chem. Soc. 2004, 126: 8028-8037.
    [15] H.A. Gasteiger, N. Markovi?, P.N. Ross. Jr., E.J. Cairns. CO electrooxidation on well-characteried Pt-Ru alloys, J. Phys. Chem., 1994, 98 (2): 617-625.
    [16] B. Yang, Q. Y. Lu, Y. Wang, L. Zhuang, J. T. Lu, P. F. Liu, J. B.Wang, R.H. Wang. Simple and low-cost preparation method for highly dispersed PtRuC catalysts, Chem Mater., 2003, 15 (18): 3552-3557.
    [17] G.. A. Camara, M. J. Giz, V. A. Paganin, E. A. Ticianelli. Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells, J. Electroanal. Chem., 2002, 537 (1): 21-29.
    [18] T. J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, H. B?nnemann. Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements, Langmuir, 1997,13 (10): 2591-2595.
    [19] M. G?tz, H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn, and Mo for PEMFCs operated on methanol or reformate gas, Electrochim. Acta, 1998, 43 (24): 3637-3644.
    [20] P. K. Shen, K.Y. Chen, A.C.C. Tseung. CO oxidation on Pt-Ru/WO3electrode, J. Electrochem. Soc. 1995, 142 (6): L85-L86.
    [21] D. C. Papageorgopoulos, M. Keijzer, F.A. de. Bruijn. The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3electrocatalysts in the quest for improved CO tolerance PEMFC anodes, Electrochim. Acta, 2002, 48 (2): 197-204.
    [22] T. C. Deivaraj, W. Chen, J.Y. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol, J. Mater. Chem. 2003, 13 (10): 2555-2560.
    [23] K. W. Park, J. H. Choi, B. K. Kwon, S. A .Lee, Y. E. Sung, H. Y. Ha, S. A Hong, H. Kim. A. J. Wieckowski, Chemical and electronic effects of Ni in Pt/Niand PtRuNi alloy nanoparticles in methanol electooxidation, J. Phys.Chem. B 2002, 106: 1869-1877.
    [24] K. W. Park, J. H. Choi, S. A. Lee, C.Pak, H. Chang, Y. E. Sung. PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell, J. Catal. 2004, 224: 236-242.
    [25] H.R. Colón-Mercado, H. Kim, B.N. Popov. Durability of Pt3Ni1 catalysts as cathode in PEM fuel cells, Electrochem. Commun. 2004, 6 (8): 795-799.
    [26] T. J. Schmidt, Z. Jusys, H.A. gasteiger, R. J.Behm, U.Endruschat, H. Boennemann. On the CO tolerance of novel colloidal PdAu/carbon electrocatalysts, J. Electrocanal. Chem., 2001,501:132-140.
    [27] 戴莺莺,刘振泰,蒋淇忠,章冬云,马紫峰。 Ir改性的Pt-Ru/C催化剂的研究。中国有色金属学报,2004,14 (S3): 402-409。
    [28] A. Chen, D. J. La Russa, B. Miller. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles, Langmuir, 2004, 20: 9695-9702.
    [29] R. K?tz, S. Stucki. Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta, 1986, 31(10): 1311-1316.
    [30] L. A. da Silva, V. A. Alves, M. A.P.da Silva, S. Trasatti, J. F. C. Boodts.Oxygen evolution in acid solution on IrO2 + TiO2 ceramic films. A study by impedance, voltammetry and SEM, Electrochim. Acta 1997, 42 (2): 271-281.
    [31] D.R. Lide (editor-in-chief), Handbook of Chemistry and Physics (80th ed.), CRC Press LLC, New York, 1999, Chapter 6, p. 148-149.
    [32] S. Komarneni, R. Pidugu, Q. H. Li, R. Roy. Microwave-hydrothermal processing of metal powders, J. Mater. Res. 1995, 10, 1687-1692.
    [33] X. Li, W. X. Chen, J. Zhao, W. Xing, Z. D. Xu, Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization, Carbon, 2005, 43: 2168-2174.
    [34] Z. Liu, L.M. Gan, L. Hong, W. Chen, J.Y. Lee. Carnon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells, J. Power Sources, 2005,139 (1): 73-78.
    [35] K. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, J. Mater. Chem., 2004, 14 (4): 505-516.
    [36] R. Harpeness, A. Gedanken. Microwave synthesis of cor-shell gold/palladium bimetallic nanoparticles, Langmuir 2004, 20 (8): 3431-3434.
    [37] I. Dobrosz, K. Jiratova, V. Pitchon, J.M. Rynkowski, Effect of the preparation of supported gold particles on the catalytic activity in CO oxidation reaction, J. Molec. Catal. A: Chem. 2005, 234 (1-2):187-197.
    [38] Y. Verde, G. Alonso-Nunez, M. Miki-Yoshida, M. José-Yacamán, V.H. Ramos, A. Keer. Active area and particle size of Pt particle synthesized from (NH4)2PtCl6 on a carbon support, Catal. Today 2005,107–108: 826-830.
    [39] T. Kobayashi, A. Ueda, Y. Yamada, H. Shioyama, A combined study on catalytic synergism in supported metal catalysts for fuel cell technology, Appl. Surf. Sci., 2004,223 (1-3): 102-108.
    [40] B. L. Gratiet, H. Remita, G. Picq, M. O. Delcourt, CO-stabilized supported Pt catlalysts for fuel cells: radiolytic synthesis, J. Catal., 1996, 164, 36.
    [41] D.G. Liu, J.F. Lee, M.T. Tang. Characterization of Pt-Ru/C catalysts by X-rayabsorption spectroscopy and temperature-programmed surface reaction, J. Molec. Catal. A: Chem., 2005, 240 (1-2): 197-206.
    [42] Y. J. Zhang, A. Maroto-Valiente, I. Rodriguez-Ramos, Q. Xin, A.Guerrero-Ruiz. Synthesis and characteization of carbon black supported Pt-Ru alloy as a mmodel catalyst for fuel cells, Catal. Today, 2004, 93–95: 619-626.
    [43] H. A. Gasteiger, N.M. Markovi?, P.N. Ross Jr. H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 oC, J. Phys. Chem., 1995, 99 (45): 16757.
    [44] A. Hamnett, B. J. Kennedy. Bimetallic carbon supported anodes for the direct methanol-air fuel cell, Electrochim. Acta, 1988, 33 (11):1613-1618.
    [45] 臧憬龄, 熊国兴。用X光电子能谱研究铱催化剂的表面性质,催话学报,1980,1 (1):73–80。
    [1] E. Antolini. Formation of carbon–supported PtM alloys for low temperature fuel cells : a review, Mater, Chem. Phys. 2003, 78 (3): 563–573.
    [2] J. J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, 25 (8): 695–713.
    [3] H. A. Gasteiger, S. S. Kocha, B. Somapalli, F. T. Wagner. Activity benchmarks and requirements for Pt, Pt–alloy, and non–Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B: Enviormental, 2005, 56 (1–2): 9–35.
    [4] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I Fundamental scientific aspects J. Power Sources 2001, 102: 242–252.
    [5] G. Hoogers, D. Thomposett, Catalysis in proton exchange membrane fuel cell technology, CATTECH 3 (1999) 106–123.
    [6] D. L. Boxall, G. A. Deluga, E. A. Kenik, W.D. King, C. M. Lukehart. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: a DMFC anode catalyst of high relative performance, Chem. Mater., 2001, 13: 891–900.
    [7] E. I. Santiago, G..A. Camara, E.A. Ticianelli. CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method, Electrochemica Acta 2003, 48 (23):3527–3534.
    [8] E. Christoffersen, P. Liu, A. Ruban, H.L. Skriver, J.K. N?rskov, Anode materials for low–temperature fuel cells: a density functional theory study, J. Catal. 2001, 199 (1): 123–131.
    [9] X. Xue, T. Lu, C. Liu, W. Xu, Y. Su, Y. Lv, W. Xing. Novel preparation method of Pt–Ru/C catalyst using imidazolium ionic liquid as solvent, Electrochim. Acta, 2005, 50, 3470–3478.
    [10] C. Lu, R. I. Masel, The effect of Ruthenium on the binding of CO, H2 and H2O on Pt(110), J. Phys. Chem. B, 2001,105: 9793–9797.
    [11] S. Komarneni, R. Pidugu, Q. H. Li, R. Roy. Microwave–hydrothermal processing of metal powders, J. Mater. Res. 1995, 10, 1687–1692.
    [12] K. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, J. Mater. Chem., 2004, 14 (4): 505–516.
    [13] Z. L. Liu, J.Y. Lee, W. Chen, M. Han, L. M. Gan. Physical and electrochemical characterization of microwave–assisted polyol preparation of carbon–supported PtRu nanoparticles, Langmuir, 2004, 20: 181–187.
    [14] X. Liu, B. Tian, C. Yu, B. Tu, D. Zhao. Microwave–assisted solvothermal synthesis of radial ZnS nanoribbons, Chem. Lett., 2004, 33: 522–523.
    [15] G. A. Camara, M. J. Giz, V. A. Paganin, E. A. Ticianelli. Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells, J. Electroanal. Chem., 2002, 537 (1): 21–29.
    [16] J. Horkans, M. W. Shafer. Effect of orientation, composition, and electronic factors in the reduction of O2 on single crystal electrodes of the conducting oxides of molybdenum and tungsten, J. Electrochem. Soc., 1977, 124 (8), 1196–1202.
    [17] I. Dobrosz, K. Jiratova, V. Pitchon, J.M. Rynkowski, Effect of the preparation of supported gold particles on the catalytic activity in CO oxidation reaction, J. Molec. Catal. A: Chem. 2005, 234 (1–2): 187–197.
    [18] V. Radmilovi?, H.A. Gasteiger, P.N. Ross, Jr. Structure and chemical composition of a supported Pt–Ru electrocatalyst for methanol oxidation, J. Catal., 1995, 154 (1): 98–106.
    [19] Z. Liu, L.M. Gan, L. Hong, W. Chen, J.Y. Lee. Carnon–supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells, J. PowerSources, 2005,139 (1): 73–78.
    [20] D. C. Papageorgopoulos, M. Keijzer, F.A. de. Bruijn. The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3electrocatalysts in the quest for improved CO tolerance PEMFC anodes, Electrochim. Acta, 2002, 48 (2): 197–204.
    [21] Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimoto. Effect of structure of carbon–supported PtRu electrocatalysts on the electrochemical oxidation of methanol, J. Electrochem. Soc., 2000, 147 (12): 4421–4427.
    [22] E. Antolini, L. Giorgi, F. Cardellini, E. Passalacqua. Physical and morphological characteristics and electrochemical behaviour in PEM fuel cells of PtRu/C catalysts, J. Solid State Electrochem., 2001, 5 (2), 131–140.
    [23] X. Li, W. X. Chen, J. Zhao, W. Xing, Z. D. Xu, Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization, Carbon, 2005, 43: 2168–2174.
    [24] Y. Verde, G. Alonso–Nunez, M. Miki–Yoshida, M. José–Yacamán, V.H. Ramos, A. Keer. Active area and particle size of Pt particle synthesized from (NH4)2PtCl6 on a carbon support, Catal. Today 2005,107–108: 826–830.
    [25] B. L. Gratiet, H. Remita, G. Picq, M. O. Delcourt, CO–stabilized supported Pt catlalysts for fuel cells: radiolytic synthesis, J. Catal., 1996, 164, 36.
    [26] Y. M. Liang, H.M. Zhang, B.L. Yi, Z.H. Zhang, Z.C. Tan, Preparation and characterization of multi–walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells, Carbon, 2005, 43 (15): 3144–3152.
    [27] T. C. Deivaraj, W. Chen, J.Y. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol, J. Mater. Chem. 2003, 13 (10): 2555–2560.
    [28] Y. J. Zhang, A. Maroto–Valiente, I. Rodriguez–Ramos, Q. Xin, A.Guerrero–Ruiz. Synthesis and characteization of carbon black supported Pt–Ru alloy as a mmodel catalyst for fuel cells, Catal. Today, 2004, 93–95: 619–626.
    [29] S. D. Lin, T. C. Hsiao, J. R. Chang, A. S. Lin. Morphology of carbon supported Pt–Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells, J. Phys. Chem. B 1999, 103 (1): 97–103.
    [30] T. J. Schmidt, M. Noeske, H.A. Gasteiger, R.J. Behm, P. Britz, W. Brijoux, H. B?nnemann. Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements, Langmuir, 1997,13 (10): 2591–2595.
    [31] G. Samjeské, H. Wang, T. L?ffler, H. Baltruschat. CO and methanol oxidation at Pt-electrodes modified by Mo, Electrochim. Acta, 2002, 47: 3681–3692.
    [32] T. Kobayashi, A. Ueda, Y. Yamada, H. Shioyama, A combined study on catalytic synergism in supported metal catalysts for fuel cell technology, Appl. Surf. Sci., 2004,223 (1–3): 102–108.
    [33] [25] H.R. Colón–Mercado, H. Kim, B.N. Popov. Durability of Pt3Ni1 catalysts as cathode in PEM fuel cells, Electrochem. Commun. 2004, 6 (8): 795–799.
    [34] K. W. Park, J. H. Choi, B. K. Kwon, S. A .Lee, Y. E. Sung, H. Y. Ha, S. A Hong, H. Kim. A. J. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and PtRuNi alloy nanoparticles in methanol electooxidation, J. Phys.Chem. B 2002, 106: 1869–1877.
    [35] C. Bock, C .Paquet, M. Couillard, G. A. Botton, B. R. MacDougall. Sized–selected synthesis of PtRu nano – catalysts: reaction and size control mechanism, J. Am. Chem. Soc., 2004, 126: 8028–8037.
    [36] K. Y. Chen, P. K.Shen, A. C. C. Tseung. Anodic Oxidation of Impure H2 onTeflon–Bonded Pt–Ru/WO3/C Electrodes, J. Electrochem. Soc. 1995, 142 (10): L185–L187.
    [37] P. K. Shen, K.Y. Chen, A.C.C. Tseung. CO oxidation on Pt–Ru/WO3 electrode, J. Electrochem. Soc. 1995, 142 (6): L85–L86.
    [1] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I Fundamental scientific aspects J. Power Sources, 2001, 102: 242–252.
    [2] M. G?tz, H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn, and Mo for PEMFCs operated on methanol or reformate gas, Electrochim. Acta, 1998, 43 (24): 3637–3644.
    [3] J. Solla–Gullón, F.J. Vidal–Iglesias, V. Montiel, A. Aldaz, Electrochemical characterization of platinum–ruthenium nanoparticles prepared by water–in–oil microemulsion, Electrochim. Acta, 2004, 49: 5079–5088.
    [4] X. Xue, T. Lu, C. Liu, W. Xu, Y. Su, Y. Lv, W. Xing. Novel preparation method of Pt–Ru/C catalyst using imidazolium ionic liquid as solvent, Electrochim. Acta, 2005, 50, 3470–3478.
    [5] X. Li, W. X. Chen, J. Zhao, W. Xing, Z. D. Xu, Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization, Carbon, 2005, 43: 2168–2174.
    [6] D. L. Boxall, G. A. Deluga, E. A. Kenik, W.D. King, C. M. Lukehart. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: a DMFC anode catalyst of high relative performance, Chem. Mater., 2001, 13: 891–900.
    [7] B. L. Gratiet, H. Remita, G. Picq, M. O. Delcourt, CO–stabilized supported Pt catlalysts for fuel cells: radiolytic synthesis, J. Catal., 1996, 164, 36.
    [8] Y. Letichevsky, L. Sominski, J. C. Moreno, A. Gedanken, The sonochemical and microwave–assisted synthesis of nanosized YAG particles, New J. Chem., 2005, 29: 1445–1449.
    [9] K. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang. Supported mixed metalnanoparticles as electrocatalysts in low temperature fuel cells, J. Mater. Chem., 2004, 14 (4): 505–516.
    [10] V. Machek, J. Hanika, K. Sporka, V. R??i?ka. Saturation of activated carbon with hexachloroplatinic acid, Collection Czechoslovak Chem. Commun., 1981, 46: 1588–1593.
    [11] Y. J. Zhang, A. Maroto–Valiente, I. Rodriguez–Ramos, Q. Xin, A.Guerrero–Ruiz. Synthesis and characteization of carbon black supported Pt–Ru alloy as a mmodel catalyst for fuel cells, Catal. Today, 2004, 93–95: 619–626.
    [12] I. Dobrosz, K. Jiratova, V. Pitchon, J.M. Rynkowski, Effect of the preparation of supported gold particles on the catalytic activity in CO oxidation reaction, J. Molec. Catal. A: Chem. 2005, 234 (1–2): 187–197.
    [13] V. Radmilovi?, H.A. Gasteiger, P.N. Ross, Jr. Structure and chemical composition of a supported Pt–Ru electrocatalyst for methanol oxidation, J. Catal., 1995, 154 (1): 98–106.
    [14] Z. Liu, L.M. Gan, L. Hong, W. Chen, J.Y. Lee. Carnon–supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells, J. Power Sources, 2005,139 (1): 73–78.
    [15] G. A. Camara, M. J. Giz, V. A. Paganin, E. A. Ticianelli. Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells, J. Electroanal. Chem., 2002, 537 (1): 21–29.
    [16] H. A. Gasteiger, N.M. Markovi?, P.N. Ross Jr. H2 and CO electrooxidation on well–characterized Pt, Ru, and Pt–Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 oC, J. Phys. Chem., 1995, 99 (45): 16757.
    [17] D. C. Papageorgopoulos, M. Keijzer, F.A. de. Bruijn. The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3electrocatalysts in the quest for improved CO tolerance PEMFC anodes, Electrochim. Acta, 2002, 48 (2): 197–204.
    [18] W. Chrzanowski, A. Wieckowski. Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis, Langmuir, 1998, 14 (8): 1967–1970.
    [19] J. H. Wang, C. Y. Fan, Q. Sun, K. Reuter, K. Jcobi, M. Scheffler, G. Ertl. Surface coordination chemistry: dihydrogen versus hydride complexes on RuO2 (110), Angew. Chem. Int. Ed., 2003, 42 (19): 2151–2154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700