用户名: 密码: 验证码:
基于MAP汽油发动机富氧进气控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境是人类赖以生存的根本,能源短缺与环境污染己经成为阻碍社会可持续发展的两大难题,汽车在给人类带来文明进步的同时,也带来了大量的资源消耗和严重的环境污染。富氧进气能够增加进气中的O2等助燃气体的体积分数,进而改善发动机的燃烧状况,提高动力性,改善燃料经济性并降低HC和CO的排放,但同时会引发NOx排放过高的负面效应。本文以风冷四冲程单缸汽油发动机为研究对象,提出基于MAP的一种富氧进气控制方法,根据发动机运行工况控制进气中的氧体积分数,保证发动机在目标富氧进气组分条件下实现稳定可控燃烧,从而达到节能减排的目的,主要进行了以下几方面的研究工作:
     第一,借鉴喷油控制、点火控制和EGR控制等方法,提出了基于MAP的汽油机富氧进气控制方法;构建了根据发动机运行工况匹配目标氧体积分数控制量的富氧进气配气试验系统,搭建了富氧进气控制发动机台架试验系统;设计了汽油机富氧进气测控系统,基于C语言开发了汽油机富氧进气测控系统软件。
     第二,在模型法和图表法的基础上,提出了汽油机富氧进气MAP图的测取方法,分析了进气MAP图的稳态控制参数和动态控制参数对控制效果的影响;根据节气门开度变化率等动态控制参数,对进气氧体积分数控制量进行了修正,完成了稳态进气MAP图的动态修正,实现了富氧进气的动态MAP控制;根据试验用汽油机的结构参数,确定了MAP控制的富氧配气比例。
     第三,基于富氧进气MAP控制的不同目标,根据PWM原理控制氧气流量电磁阀的通断周期及占空比,匹配了各个工况点的目标氧体积分数控制量;生成了动力型、经济型、和排放型进气初始MAP图,同时绘制了转矩、油耗率、HC排放、CO排放和NOx排放的万有特性曲线;利用双三次插值法,对各种类型的进气初始MAP图进行了插值优化计算,得到全工况范围内的基本进气氧体积分数控制量;生成了动力型、经济型和排放型进气插值MAP图。
     第四,提出了基于不同类型MAP图的富氧进气控制策略和富氧进气组合型控制策略,生成了组合型进气初始MAP图和组合型进气插值MAP图。基于组合型控制策略,在富氧进气控制条件下进行了汽油机万有特性试验,并与发动机常态进气条件进行了对比分析。分析结果表明,最大转矩增大了15.85%、最低油耗率降低了17.05%、最低HC排放量下降了11.65%、最低CO排放量减小了13.89%、最低NOx排放量增大了7.55%。试验过程中富氧进气测控系统稳定工作,最大控制误差不超过±1.5%,平均误差不超过±0.5%;最大响应时间不超过6s,平均响应时间不超过5s。
     第五,根据富氧进气MAP控制的不同控制目标,分别采用常态进气和MAP控制富氧进气两种方式,进行了速度特性、负荷特性、万有特性等验证性试验,对汽油机的转矩、油耗率、HC排放量、CO排放量和NOx排放量等指标参数进行了对比分析。验证结果表明,动力型进气MAP控制能够大幅提升汽油机的动力性能,经济型进气MAP控制能够明显提高汽油机的经济性能,排放型进气MAP控制能够相对改善汽油机的排放性能,组合型进气MAP控制能够全面提升汽油机的综合性能。
Energy and environment are essential for human survival, energy shortage and environmental pollution have become obstacles to society sustainable development for the time being. The automobile brings not only mankind civilization progress but also a lot of resource consumption and serious environmental pollution. Rich oxygen combustion technology could increase the the O2volume fraction, and then improve the combustion condition and promote the dynamic performance. As a result, the rich oxygen can decrease the HC and CO emission, but it also brings the high emission of NOx. Therefore, this paper presented the oxygen-enriched intake air control method based on MAP through an air-cooling four stroke gas engine, which through study the oxygen volume, to define the controlled combustion, and then optimize the dynamic performance, economical performance, and emission performance, and finally decreace the exhaust gas. The main contents are shown as follows:
     (1) According to foe injection control and ignition and EGR controlled method, this paper puted forward the MAP control method, then established the test system and bench test system. In additional, the hardware control platform and the software system based on C have been designed.
     (2) This paper proposed the oxygen-enriched MAP test method base on the module and diagram. Influence of intake MAP static control parameters and dynamic parameters for control effect is also disscused. The intake oxygen volume fraction control quantity is revised at first, and then the dynamic revise is carried out of static MAP diagram according to the throttle percentage change rate, so the dynamic MAP control for oxygen-enrich intake is achieved. Furtherfore, the valve ration of MAP is defined base on the construction.
     (3) The intake oxygen control quantity is defined according to the PWM based on the various MAP control goals, and the dynamic MAP, economical MAP, emission MAP and comprehensive MAP are produced. Moreover, universal characters curve in torque, oil consumption, HC emission, CO emission and NOx emission curve is drawed. The different type intake MAPs are optimized through double three insert method, and then get the oxygen volume controlled quantity for full condition, so the dynamic intake insert MAP, economical MAP, emission MAP and comprehensive MAP are produced.
     (4) Promote the various combined control trageies based on MAP, and produce the combined intake initial MAP diagrame and insert MAP diagrame, and the universal character experiment for gasoline is carried out based on it. The result shows that, the largest torque increases12.94%, the least fuel consumption decreases17.05%, the least HC emission decreases11.65%, and the CO is13.89%, furthermore, the least NOx emission increases7.55%. The experimental syatem is stable, and the largest control error is±1.5%, average control error is±0.5%, the largest response time is short than6s and the average response time is short than5s.
     (5) Normal intake and oxygen-enriched intake MAP control are adoptted to verification test for the engine characters in speed, load and universal according to the different control goals of oxygen-enriched intake MAP. Moreover, the compration analysis of the torque, fuel consumption, HC emission, CO emission and NOx emission for gasoline engine are also carried. The verification results show that, the dynamic intake MAP could promote the dynamic performance largely of gasoline engine, the economic intake MAP could promote the economic performance largely of gasoline engine, the emmission intake MAP control could promote the gas economical performance of gasoline engine and the combined intake MAP could promote the gas comprehensive performace of gasoline engine, respectively.
引文
[1]许沧粟,齐放,魏建勤.柴油机进气富氧燃用油包水包油时的排放研究[J].内燃机学报,2007,25(6):545-549.
    [2]张全长,尧命发,郑尊清,等.进气氧浓度对柴油机低温燃烧影响的试验研究[J].内燃机学报,2009,27(4):298-305.
    [3]张韦,舒歌群,沈颖刚,等.富氧进气与水乳化柴油的掺烧试验及数值模拟[J].燃烧科学与技术,2012,18(4):344-352.
    [4]张韦,舒歌群,彭益源,等.柴油机富氧进气燃用乳化柴油的循环变动与燃烧特性[J].农业机械学报,2010,41(9):1-7.
    [5]栗工,乔信起,李理光,等.LPG点燃式发动机冷起动首循环进气富氧试验研究[J].内燃机学报,2007,25(1):53-59.
    [6]肖广飞,乔信起,栗工,等.高海拔富氧进气柴油发动机的排放性能[J].汽车工程,2011,33(7):618-622.
    [7]刘成材,金英爱,高淳,等.变组分富氧进气发动机起动与怠速过程排放研究[J].汽车技术,2009,27(12):33-36.
    [8]金英爱,高青,马纯强,等.可变进气组分发动机燃烧控制及分析[J].汽车技术,2008,26(6):17-20.
    [9]G. A, K., W. G, The examination of the combustion processes in a compression-ignition engine by changing the partial pressure of oxygen in the intake chargefC]. SAE.1968.
    [10]Wartinbee J.W., Jr. Emissions. Study of Oxygen-Enriched Air, in Society of Automotive Engineers[C].1971:Detroit.SAE 710606
    [11]Olikara C. and G. L. Borman. A Computer Program for Calculating Properties of Equilibrium combustion Products with Some Application to IC Engines[C]. SAE 750468
    [12]A. A. Quader. Exhaust Emissions and Performance of a Spark Ignition Engine Using Oxygen Enriched Intake Air[J]. Combustion Science and Technology,1978,19:81-86.
    [13]Yu, R.C.,and S.M. Shahed. Effects of Injection Timing and Exhaust Gas Recirculation on Emissions from a D.I. Diesel Engine [C]. SAE Paper 1981,No.811234.
    [14]Lida N, Yasutoshi Suzuki, Takeshi Sato, et al. Effects of intake oxygen concentration on the characterstics of particulate emissions from a D.I. diesel Engine[J]. SAE Paper 861233, 1986.
    [15]B.Detuncq, J.Williams, C.Guernier, et al. Performance of a Spark Ignition Engine Fueled by Natural Gas Using Oxygen Enriched Air[C]. Society of Automotive Engineers. SAE 881658
    [16]S. Kajitani, N. Sawa, T. Mccomiskey, et al. A Spark Ignition Engine Operated by Oxygen Enriched Air[C]. Society of Automotive Engineers. SAE 922174
    [17]H. K. Ng, R. R. Sekar, S. W. Kraft, et al. The Potential benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle[C]. Society of Automotive Engineers. SAE 932803
    [18]Kashmir S. Virk, Uygur Kokturk and Craig R. Bartels. Effects of Oxygen-Enriched Air on Diesel Engine Exhaust Emissions and Engine Performance[C]. SAE 931004
    [19]Hattori F, Takeda K, Yaegashi T et al. Analysis of fuel and combustion behavior during cold starting of a SI engine[C]. JSAE 9735844,1997.
    [20]Crane M E,Thring R,H. Podnar D J et al.Reduced cold-start emissions using rapid exhaust port oxidation (REPO) in a spark-ignition engine[C]. SAE 970264,1997
    [21]R. B. Poola, K. C. Stork, R. Sekar, et al. Variable Air Composition with Polymer Membrane-A New Low Emissions Tool[C]. SAE 980178
    [22]K. Callaghan, S. Nemser, W. Johanson. Oxygen enriching membranes for reduced cold Start emissions[C]. SAE 1999-10-1232.
    [23]Nishimura, Makoto, Studies on fuel savings and NOx reduction in oxygen enriched air combustion (Ⅰ)-examination of fuel savings and possibility of low NOx combustion [J]. Journal of the Japan Institute of Energy, Apr 2000.79(4):p.321-328.
    [24]Assanis, D.N., et al., Study of using oxygen-enriched combustion air for locomotive diesel engines[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 2001.123(1):p.157-166.
    [25]Poola, Ramesh, Simultaneous reduction of NOx and particulate emissions by using oxygen-enriched combustion air, in American Society of Mechanical Engineers [J]. Internal Combustion Engine Division (Publication) ICE,2001,p.77-88.
    [26]Tzabar Nur.Improvement of Internal combustion Engine Performance by Oxygen Enriched Air-Supply [C].MD Thesis, Israel Institute of Technology,2002.
    [27]Zhao D., Liu Q., Yamashita H., et al., Effects of velocity gradient on NOx formation of oxygen-enriched air/methane counterflow diffusion flame[J]. Combustion Science and Technology in Asia-Pacific Area:Today and Tomorrow,2003:p.199-202.
    [28]Poola, R.B., R. Sekar, Reduction of NOx and particulate emissions by using oxygen-enriched combustion air in a locomotive diesel engine[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,2003.125(2):p.524-533.
    [29]Yiannis Levendis, Constantine Rakopoulos, Dimitrios Hountalas, et al., Operational and Environmental Evaluation of Diesel Engines Burning Oxygen-Enriched Intake Air Or Oxygen-Enriched Fuels:a Review, in SAE Diesel Engine Experiment (Part A&B).2004: Tampa,FL, USA.
    [30]Udayakumar, R., Use of oxygen enriched air in a direct injection diesel engine[J]. Journal of the Institution of Engineers, October 2005, v 86:p.156-159.
    [31]Caton, J. A, The effects of oxygen enrichment of combustion air for spark-ignition engines using a thermodynamic cycle simulation[J]. Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division.2005:p.135-147.
    [32]Longman, D.E., Cole,R.L., Aggarwal,S.K., In-cylinder injection of oxygen-enriched air to reduce diesel exhaust emissions [J]. Proceedings of the 2006 Spring Technical Conference of the ASME Internal Combustion Engine Division.2006, New York:Amer Soc Mechanical Engineers.499-506.
    [33]Roy, G. D., Novel approaches to control emissions, from marine diesel and gas-turbine engines [J]. Journal of Propulsion and Power,2006.22(5):p.1068-1074.
    [34]Byun, H., B. Hong, and B. Lee, The effect of oxygen enriched air obtained by gas separation membranes from the emission gas of diesel engines[J]. Desalination,2006. 193(1-3):p.73-81.
    [35]Hamel, Christof, Experimental and modeling study of the 02-enrichment by perovskite fibers[J]. AIChE Journal, September 2006.52(9):p.3118-3125.
    [36]Coombe, H.S.,S. Nieh, Polymer membrane air separation performance for portable oxygen enriched combustion applications [J]. Energy Conversion and Management,2007. 48(5):p.1499-1505.
    [37]Yuh-Yih Wu, K. David Huang. Improving the Performance of a Small Spark-Ignition Engine by Using Oxygen-Enriched Intake Air[J]. SAE Paper 2007-32-0004,2007
    [38]张黎立.富氧助燃对天然气/汽油双燃料发动机动力性能与排放性能影响实验研究[D].重庆:重庆大学,2006.
    [39]肖广飞.氧化剂设计改善内燃机燃烧的研究[D].上海:上海交通大学,2007.
    [40]张人杰.富氧条件下发动机燃烧的数值模拟与分析[D].长春:吉林大学,2007.
    [41]张广军.变组分进气发动机燃烧与排放实验研究[D].长春:吉林大学,2008.
    [42]陈龙华.汽油机富氧进气基本燃烧特征理论分析[D].长春:吉林大学,2008.
    [43]李胜琴.汽油发动机富氧燃烧理论分析及试验研究[D].哈尔滨:东北林业大学,2008.
    [44]张祚.进气富氧对增压柴油机燃烧与排放影响的试验与计算研究[D].天津:天津大学,2009.
    [45]隆愈强.不同氮氧组分进气发动机性能及其排放实验研究[D].长春:吉林大学,2009.
    [46]金英爱.不同进气组分发动机燃烧机理及排放特性研究[D].长春:吉林大学,2009.
    [47]张韦.柴油机富氧燃烧及排放的实验研究与理论计算[D].天津:天津大学,2010.
    [48]彭益源.富氧进气和掺水乳化对增压柴油机燃烧和排放影响的研究[D].昆明:昆明理工大学,2010.
    [49]姚春玲.汽油机进气混合O2/CO2的燃烧机理与性能研究[D].哈尔滨:东北林业大学,2011.
    [50]赵伟.柴油机富氧燃烧机理及燃烧路径的研究[D].天津:天津大学,2011.
    [51]梁友才.燃用水乳化油来实现富氧低温燃烧的试验研究[D].昆明:昆明理工大学,2011.
    [52]曲振爱.船艇柴油机膜法富氧燃烧技术的研究[D].杭州:浙江大学,2012.
    [53]杨庆刚.柴油机富氧燃烧机理与排放性能数值模拟研究[D].大连:大连理工大学,2012.
    [54]杨洪庆.汽车发动机电控技术[M].北京:中国人民大学出版社,2012.
    [55]谭凯.摩托车发动机电喷改造的理论与实验研究[D].长沙:湖南大学,2003.
    [56]张峰.基于QMI152摩托车发动机的电控喷射技术研究[D].杭州:浙江大学,2004.
    [57]翟立谦.电控摩托车发动机喷油及点火控制MAP建模仿真与实验研究[D].长沙:湖南大学,2006.
    [58]谭德荣.小排量汽油机燃油喷射控制系统及其优化技术研究[D].武汉:武汉理工大学,2006.
    [59]包生重.四缸汽油发动机电控系统设计及其仿真系统研究[D].长沙:中南大学,2007.
    [60]万晓东.高压共轨柴油机喷油量控制策略及外特性标定研究[D].长春:吉林大学,2007.
    [61]张翠平.电控汽油机燃油喷射及点火控制系统的设计与实验研究[D].太原:太原理工大学,2007.
    [62]黄钰.柴油-甲醇组合燃烧发动机的控制策略及试验研究[D].天津:天津大学,2008.
    [63]黄建.基于MATLAB的汽油发动机空燃比控制方法研究[D].沈阳:东北大学,2008.
    [64]陈林林.二冲程煤油发动机性能数值模拟与喷油控制研究[D].南京:南京航空航天大学,2009.
    [65]黄贵芬.汽油发动机气路控制算法研究[D].长春:吉林大学,2011.
    [66]江明欣LHZV70发动机电控燃油喷射系统喷油及点火控制MAP技术研究[D].南京:南京理工大学,2011.
    [67]李德刚.基于整车性能的高压共轨柴油机燃烧系统开发与控制[D].长春:吉林大学,2011.
    [68]徐宁宁.单缸摩托车发动机电喷及试验系统设计与分析[D1.武汉:华中科技大学,2011.
    [69]姚春玲.汽油机冷起动过程富氧燃烧试验研究[J].哈尔滨工程大学学报,2009,30(8):940-943.
    [70]金英爱,高青,马纯强,等.空气变组分富氧进气发动机性能及其排放作用影响分析[J].内燃机工程,2011,32(3):23-27.
    [71]赵伟,舒歌群,张韦,等.富氧燃烧对柴油机低温燃烧反应机理影响的数值分析[J].西安交通大学学报,2012,46(3):69-74.
    [72]朱昌吉,王立军,李君,等.富氧下EGR对增压中冷CNG发动机性能的影响[J].汽车工程,2010,32(7):579-581.
    [73]张韦,舒歌群,韩睿,等.高比率冷EGR与进气富氧对柴油机燃烧及排放特性的影响[J].内燃机工程,2011,32(4):12-16.
    [74]高青,金英爱,刘成材,等.怠速工况发动机富氧燃烧排放及其稳定性研究[J].内燃机学 报,2009,27(1):36-40.
    [75]张永虎,熊云,刘晓,翟小敏.富氧进气改善高原汽车发动机动力性和经济性研究[J].汽车技术,2011,34(3):24-27.
    [76]张韦,舒歌群,沈颖刚,等.EGR与进气富氧对直喷柴油机NO和碳烟排放的影响[J].内燃机学报,2012,30(1):16-21.
    [77]熊云,张永虎,刘晓.高海拔富氧进气柴油发动机的排放性能[J].汽车工程,2011,33(7):618-622.
    [78]姚春玲.富氧条件下汽油机燃烧过程数值模拟与试验研究[J].小型内燃机与摩托车,2009,38(3):27-30.
    [79]刘成材,高青,马纯强,等.发动机可变组分进气系统的膜气体分离特性[J].吉林大学学报(工学版),2010,40(3):625-629.
    [80]肖广飞,乔信起,孙恺,等.膜法富氧进气改善直喷式柴油机的起动性能[J].上海交通大学学报,2007,41(10):1629-1632.
    [81]杨玉如.发动机与汽车理论[M].北京:人民交通出版社,1988.
    [82]F.Zhao, M. C. Lai, D. L. Haa-ington. Automotive spark-ignited direct-injection gasoline EnginesfJ]. Progress in Energy and Combustion Science,1999,25:437-62.
    [83]杨连生.内燃机性能及其与传动装置的优化匹配[M].北京:学术期刊出版社,1988.
    [84]Nasser S H, Morris S and James S.A Novel Fuel Efficient and Emission Abatement Technique for Internal Combustion Engines[C].SAE 982561.
    [85]李胜琴,关强,张文会.富氧燃烧发动机缸内过程实验研究[J].公路交通科技,2008,25(3):143-146.
    [86]H. K. Ng, R. R. Sckar, S.W..Kraft, et al. The Potential benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle[C]. Society of Automotive Engineers, SAE paper 932803.1993.
    [87]冯健璋.汽车发动机原理与汽车理论[M].北京:机械工业出版社,2011.
    [88]Guillaume Bression,Dominique Soleri,Sylvain Savy,et al.A Study of Methods to Lower HC and CO Emissions in Diesel HCCI[C].SAE 2008-01-0034
    [89]Reggie Zhan,Scott T.Eakle,Phillip Weber.Simultaneous Reduction of PM, HC, CO and NOx Emissions from a GDI Engine[C].SAE 2010-01-0365
    [90]Swati Bhimasenrao Wadawadagi,Reddy C Venkataramana.Experrimental Investigations on Reduction of CO and HC in SI Engine with Catalytic Converter[C].SAE 2007-32-0055
    [91]栗工,李理光,邱冬平,等.冷起动首循环瞬态HC排放与进气道燃料输运特性的关系[J].燃烧科学与技术,2008,14(1):73-75.
    [92]Huang Z. H.,Guo H. T..Predietion and Experimental study on hydroearbon Emission from combustion Chamber DePositsinas Park Ignition Engine[J].Combust.Sei and Tech,1998,(3):67-83.
    [93]栗工,李理光,邱冬平等.冷起动首循环瞬态HC排放特性试验研究[J].内燃机学报,2007,25(2):118-124.
    [94]蒋德明,黄左华.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007.
    [95]新井纪男.燃烧生成物的发生与抑制技术[M].北京:科学出版社,2001.
    [96]高青.缸内燃烧光电测量的可视化技术[J].吉林大学学报(工学版),2002,32(1):12-16.
    [97]蒋德明,内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001.
    [98]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005.
    [99]谭理刚,龚金科,翟立谦,等.电控发动机喷油控制MAP的建模与仿真[J].汽车工程,2006,28(7):630-633.
    [100]龚金科,翟立谦,谭理刚,等.电控摩托车发动机喷油及点火控制建模与仿真[J].内燃机工程,2005,26(5):49-53.
    [101](英)A.J.马特,M.A.普林特著.宋进桂,于京诺,杨占鹏,等译.发动机试验理论与实践[M].北京:机械工业出版社,2009.
    [102](美)S.V哈奇著,宋建才,等译.汽车发动机计算机控制系统解析[M].北京:机械工业出版社,2007.
    [103]U. Kiencke,L. Nielsen著.李道飞,俞小莉译.汽车控制系统:发动机、传动系和整车控制[M].北京:高等教育出版社,2010.
    [104]宋雪桦,翁乙文,袁银男,等.基于分布式技术的VGT和EGR控制研究[J].内燃机工程,2011,32(6):30-33.
    [105](美)Elisabeth H.Dorries,Ken Dickrill著.付百学,窦磊,杨琳等编.汽车发动机电子控制技术[M].北京:北京理工大学出版社,2012.
    [106]施树明,任有.汽车电器与电子控制[M].北京:人民交通出版社,2009.
    [107]黄海燕.汽车发动机试验学教程[M].北京:清华大学出版社,2009.
    [108]周长发,科学与工程数值算法[M].北京:清华大学出版社,2002.
    [109]PeterL.Perez,刘景宝.在废气再循环条件下的柴油机富氧燃烧试验研究[J].国外内燃机车,2010,412(4):14-23.
    [110]肖广飞,乔信起,栗工.膜法富氧进气降低点燃式发动机冷起动排放[J].上海交通大学学报,2006,40(8):1297-1301.
    [111]Kristine Drobot Isherwood,Jan-Roger Linna,et al,Using On-board Fuel Reforming by Partial Oxidation to Improve SI Engine Cold-Start Performance and Emissions[C].SAE980939
    [112]Jerald A.Caton.Use of a Cycle Simulation Incorporating the Second Law of Thermodynamics:Results for Spark-Ignition Engines Using Oxygen Enriched Combustion Air[C].SAE 2005-01-1130
    [113]李胜琴,巴兴强,关强,等.柴油发动机富氧燃烧理论分析[J].东北林业大学学报,2006,34(2):80-81.
    [114]吴建华,王军.Principles of Internal Combustion Engine[M].北京:国防工业出版社,2012.
    [115]崔心存.现代汽车新技术[M]北京:人民交通出版社,2001.
    [116]王建听,帅石金.汽车发动机原理[M].北京:清华大学出版社,2011.
    [117]张学锋.基于目标油门开度预测的AMT汽车起步控制[D].重庆:重庆大学,2012.
    [118]刘文光,何仁.考虑油门开度快速变化的自动变速器换挡控制策略[J].农业机械学报,2009,40(9):16-19.
    [119]肖宗成,王忠恕,金文华,等.进气温度对车用柴油机排放性能的影响[J].吉林大学学报(工学版),2005,35(3):263-266.
    [120]张波,尧命发,杨冬冬,等.不同进气温度条件下燃料特性对均质压燃燃烧过程影响的试验研究[J].内燃机学报,2008,26(1):1-10.
    [121]苏岩,刘忠长,韩永强,等.进气温度对直喷式柴油机冷起动初始期燃烧和排放的影响[J].内燃机工程,2007,28(6):28-32.
    [122]倪计民.汽车内燃机试验技术[M].上海:同济大学出版社,1998.
    [123]解明明.单缸四冲程汽油机怠速工况转速控制策略研究[D].秦皇岛:燕山大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700