用户名: 密码: 验证码:
煤燃烧和机动车排放对空气质量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶通过影响大气辐射、大气化学及云和降水过程,改变地水气系统内部的辐射能量收支和水循环,对全球气候和环境变化产生巨大影响。作为最大的气溶胶人为来源,燃煤、机动车排放的大量颗粒物、高浓度二氧化硫、氮氧化物、碳氢化合物等污染物,在大气中不但影响了区域环境,而且对全球气候和地球生物化学循环产生深远影响。本文通过在全国各地设置长期和短期地面观测点,同步采集各个采样点的不同粒径气溶胶(PM2.5、TSP),分析其主要化学组分(离子、元素、有机碳、黑碳),并获取污染气体浓度(S02、NOx)和气溶胶光学性质(散射光学厚度、吸收光学厚度、单次反照率等),结合气象参数、后向轨迹多种手段,研究了煤燃烧和机动车排放污染物对空气质量的影响。主要研究结果如下:
     1、定量研究了燃煤排放物包括直接向大气排放的污染物和扬起的粉煤灰对当地空气质量的影响。通过对山西省朔州市神头镇大气样品的采集分析,发现在没有任何外来污染源以及良好的扩散条件下,PM2.5平均浓度为101.0μgm-3,全部超过世界卫生组织的日均浓度标准(35μgm-3)。TSP平均值为355.7μgm-3,有3天超过我国国家环境空气质量标准规定的TSP浓度值的二级标准(300μgm-3)。粉煤灰和土壤矿物质会随风而被大量扬起,显著增加颗粒物浓度。离子分析表明粉煤灰和土壤的扬起带来了大量的粗颗粒态的SO42-和Ca2+的浓度。风速的增加不仅带来了大量的矿质元素,也带来了污染元素含量的明显增加。富集系数(EF)的研究发现EF>10的5种污染元素,P、Cu、Zn、As、S,其中4种Cu、Zn、As、S与煤燃烧有关,特别是S的EF甚至达到了4000以上,可见煤燃烧对当地大气质量的显著影响。对土壤样品进行了25种元素分析,只有5种元素,As、P、S、Pb、Sb,含量超过了地壳中的含量,其中四种元素As、Pb、S、Sb跟煤燃烧有关,特别是S和Sb在土壤中的含量比地壳平均值高出几千甚至上万倍,这些足以看出煤燃烧对当地土壤的严重影响。
     2、揭示了燃煤产生的大量污染物经由沙尘长途传输污染了全国各地的大气。通过对比沙尘暴(DS)期间和非沙尘期间(NDS)的化学组分发现As、Pb、S在各地气溶胶中的含量均在DS期间比NDS期间增加了几倍至数十倍,证明了煤燃烧污染物随沙尘的传输。气溶胶中PAH(4)/PAH(5,6)比值在其传输下游区域城市DS期间明显高于NDS期间,证明沙尘能吸附并携带燃煤产生的有机污染物。上海的As、Se、S的含量在DS期间比在NDS期间高出几倍以上,甚至几十倍,说明了煤炭污染物经由沙尘传输对沿海大城市的大气质量产生了严重的影响。在海岛采样点,As和S即使在弱DS期间也比在NDS期间含量增加了2-3倍,可见沙尘携带的煤炭污染物将影响海洋气溶胶。As、Pb在大部分气溶胶采样点中的富集系数均高达100以上,土壤中的含量也大大超过地壳中的含量,表明我国煤炭污染物已经污染了我国许多地区的大气和土壤。
     3、通过对中国的超大城市上海的气态污染物和颗粒物研究,揭示了煤燃烧和机动车排放污染物对灰霾形成的贡献。灰霾阶段颗粒物浓度以及污染气体浓度(SO2、NO2)、颗粒物光学参数(散射光学厚度和吸收光学厚度)、污染元素(S、As、Cd、Cr、Cu、Ti、Zn)浓度,污染元素(Cu、Cd、Pb、As、S)富集系数以及离子成分(8042-和NO3-)是平日的2~6倍。这些化学成分均同煤燃烧或机动车排放有关。5种富集系数在1000以上的元素Cd、Pb、Zn、As、S都同煤燃烧和机动车排放有关。通过主因子法解析到了煤燃烧和机动车排放。SO42-和NO3-在灰霾阶段的形成速率最快,SOR和NOR达到0.3~0.5,煤燃烧和机动车排放的SO2和NOx正是在有利的化学反应和不利的扩散条件下通过快速的转化却又不能得到很好的扩散进而形成高浓度的SO42-与NO3-贡献灰霾的形成。有机物占PM2.5的质量百分比为27.4%, OC、EC的主要来源是机动车尾气的排放。通过化学组分的光学性质的研究发现衰减光的组分中,有机物的比例最大,约占46%。EC对光衰减作用的比例达22%。对光衰减比例较大的还包括硫酸盐、硝酸盐,分别约占22%和20%,可以看出机动车排放和燃煤污染物对光衰减的重要作用。
     4、借助于2008年北京奥运会举办这一契机,定量研究了机动车排放和煤燃烧的控制对空气质量的改善作用。研究表明,尽管气象条件对于颗粒物质量浓度的变化影响是显著的,甚至几乎完全“掩盖”特殊措施所带来的积极作用。但是,在相似的气象条件下,奥运会前后实施的特殊的空气质量保障措施显著的降低了奥运会期间北京市的气溶胶的质量浓度、黑碳以及大部分元素和离子的质量浓度。在奥运会结束之后,一些二次形成的离子则由于北京市南方或东南方向即中国的东部地区的污染物的长距离传输而又开始增加,这进一步表明煤燃烧和机动车排放的污染物可以长距离传输。对于奥运会期间的良好的空气质量,机动车的控制起到了主导的作用,占62.3%,而煤燃烧控制贡献了24.7%,二者共贡献了87.0%,可见煤燃烧和机动车排放对空气质量的影响。
Aerosol can change interior energy balance of land, water, atmosphere systems and water circulation through affecting radiation in the atmosphere, atmospheric chemistry, and cloud and precipitation process, further exerts significant impact on the global climate and environmental change. As the largest sources of aerosol, coal combustion and motor vehicle emit a lot of particles, high-concentrated SO2, NOx, and HC, which not only affect regional environment, but also have a profound influence on the global climate and geobiochemical circulation. Long-term and short-term aerosol sampling of PM2.5 and TSP was conducted, analyzing their main chemical composition (water soluble ions, elements, organic carbon and black carbon), getting trace gaseous concentration (SO2 and NOx) and aerosol photochemical parameters (scattering AOD, absorption AOD and single albedo), combing with meteorological conditions and back trajectory analysis, systematically studying the impact of pollutants from coal combustion and motor vehicle emission on the air quality. The main study results are as follows:
     1. The impact of coal-fired pollutants including direct emission into the atmosphere and resuspended coal ash on the local air quality were quantitatively studied. Through sampling and analysis of aerosol in Shentou Town, Shuozhou City, Shanxi Province, it was found that without any outside pollution source and under favorable diffusion conditions, the average daily concentration of PM2.5 is 101.0μg m-3, and all days exceeded the annual standard of World Health Organization (35μg m-3). The average daily concentration of TSP was 355.7μg m-3, and 3 out of 7 days exceeded the second class national air quality standard(300μg m-3). Coal ash and soil were largely resuspended with wind, significantly increased the particulate concentration. Ionic anlysis indicated that coal ash and soil brought a great deal of SO42- and Ca2+ in coarse mode. The increased wind velocity not only brought large quantity of mineral elements, but also obvious increase of pollution elements. Enrichment factor study spotted 5 pollution elements, P, Cu, Zn, As, S, among which 4 are related with coal combustion, especially the EF of S was>4000, reflectiong the impact of coal combustion.25 elements of soil were also analyzed. It was found only the concentrations of 5 elements, As, P, S, Pb, Sb, were larger than that in crust, among which 4 elements, As, Pb, S, Sb, are related with coal combustion, especially the concentrations of S and Sb is several thousand and even ten thousand times larger than that in crust, thus, it is sufficient to convince that coal combustion had a serious impact on local soil.
     2.The fact that coal-fired pollutants constantly mix and interact with dust, further transport to downwind areas and exert a significant impact on air quality were revealed. The concentrations of As, Pb, S in aerosol in most of our sampling sites increased several folds, even 10 folds, during DS compared to NDS, indicating the transport of coal combustion pollutants with dust. The ratio of PAH (4)/PAH (5,6) in aerosol in downwind cities is obviously higher during DS compared to NDS, showing dust can absorb and carry coal-fired organic pollutants. The concentrations of As, Se, S in Shanghai increased several times even several tens during DS, verifying the coal-fired pollutants through long-range transport have severe impact on the air quality of coastal mega-cities. On the island, even during weak DS, As and S increased 2-3 times, indicating the coal-fired pollutants carried by dust can affect marine aerosol. What's more, the EFs of As and Pb in aerosol in a majority of our sampling sites reached as high as>100, and the concentrations also exceeded that in the curst, demonstrating coal-fired pollutants have contaminated air and soil of many places in China.
     3. The contribution of coal combustion and vehicle emission to the formation of haze in big cities of China was elucidated by comprehensive research of atmospheric aerosol and trace gases in Shanghai. The particulate concentrations, pollution gas concentrations, particulate photochemical parameters(scattering AOD and absorption AOD), concentrations of pollution elements(S, As, Cd, Cr, Cu, Ni, Pb, Ti, Zn), EFs of some elements(Cu, Cd, Pb, As, S) and ionic concentrations (SO42- and NO3-) during haze pollution episode (PE) were 2-6 times compared to non-pollution episode(Non-PE). These chemical components are all related to coal combustion and motor vehicle emission. Only EFs of 5 elements (Cd, Pb, Zn, As, S) were>1000, and all are related with coal combustion and vehicle emission. Factor Analysis also recognized coal combustion and vehicle emission. The formation rates of SO42- and NO3- were quite high, with SOR and NOR in the range of 0.3-0.5, indicating that under favorable chemical reaction and bad diffusion conditions, SO2 and NOx emitted from coal combustion and vehicle formed high concentrations of SO42- and NO3- and contributed to the formation of haze. Organic aerosol contributed 27.4% to PM2.5. OC and EC were mainly from vehicle. Organic aerosol, elemental carbon,sulfate, nitrate were the major contributors to light extinction, which accounted for an average of 46%,22%,22% and 20%, respectively, reflecting the important impact of vehicle emission and coal combustion on light extinction.
     4. The chance to study the effect of control of coal combustion and vehicle emission on air quality is fulfilled when Beijing implemented many special pollution-curbing measures before and during the Olympics to improve its oft-criticized air quality. It was found although the impact of meteorological conditions is significant, by which the effect of the special measures can be almost hidden. However, under the similar meteorological conditions, the special measures did contribute significantly to the decrease of the concentrations of black carbon, most elements and ions in PM2.5, as well as the aerosol mass. However, a few secondary formed ions increased again after the Olympic Games, which were mainly due to the long-range transport from the eastern China, further indicating that the pollutants from coal combustion and vehicle emission can long-range transport. For the better air-quality during the Olympics, the measures for vehicle control played a dominant role with a proportion of 62.3% and the contribution of coal combustion control accounted for 24.7%, that is 87.0% in sum, reflecting the impact of coal combustion and vehicle emission on air quality.
引文
[1]Yadav A K, Kumar K, Kasim A M b H A, Singh M P, Parida S K, Sharan M. Visibility and Incidence of Respiratory Diseases During the 1998 Haze Episode in Brunei Darussalam[J]. Pure and Applied Geophysics,2003,160 (1):265-277.
    [2]John H, Seinfeld S N P. Atmospheric Chemistry and Physics - From Air Pollution to Climate Change(2nd edition)[M]. America:Wiley, John & Sons,2006:1232.
    [3]Elliott S, Blake D R, Duce R A, Lai C A, McCreary L, McNair L A, Rowland F S, Russell A G, Streit G E, Turco R P. Motorization of China implies changes in Pacific air chemistry and primary production[J]. Geophysical Research Letters,1997,24 (21):2671-2674.
    [4]van Aardenne J A, Carmichael G R, Levy H, Streets D, Hordijk L. Anthropogenic NOx emissions in Asia in the period 1990-2020[J]. Atmospheric Environment,1999,33 (4):633-646.
    [5]Nowak J B, Parrish D D, Neuman J A, Holloway J S, Cooper O R, Ryerson T B, Nicks D K, Flocke F, Roberts J M, Atlas E, de Gouw J A, Donnelly S, Dunlea E, Hubler G, Huey L G, Schauffler S, Tanner D J, Warneke C, Fehsenfeld F C. Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean[J]. Journal of Geophysical Research-Atmospheres,2004,109 (D23).
    [6]Heald C L, Jacob D J, Park R J, Alexander B, Fairlie T D, Yantosca R M, Chu D A. Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States[J]. Journal of Geophysical Research-Atmospheres,2006,111 (D14).
    [7]Cahill C F. Asian aerosol transport to Alaska during ACE-Asia[J]. Journal of Geophysical Research-Atmospheres,2003,108 (D23).
    [8]Kim K W, Kim Y J, Oh S J. Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea[J]. Atmospheric Environment,2001,35 (30):5157-5167.
    [9]Chung Y S, Kim H S, Dulam J, Harris J. On heavy dustfall observed with explosive sandstorms in Chongwon-Chongju, Korea in 2002[J]. Atmospheric Environment,2003,37 (24): 3425-3433.
    [10]Lei Y C, Chan C C, Wang P Y, Lee C T, Cheng T J. Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats[J]. Environmental Research,2004,95 (1):71-76.
    [11]Benkovitz C M, Schwartz S E, Jensen M P, Miller M A. Attribution of modeled atmospheric sulfate and SO2 in the Northern Hemisphere for June-July 1997[J]. Atmospheric Chemistry and Physics,2006,6:4723-4738.
    [12]Kang C M, Lee H S, Kang B W, Lee S K, Sunwoo Y. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea[J]. Atmospheric Environment,2004,38 (28):4749-4760.
    [13]Schichtel B A, Husar R B, Falke S R, Wilson W E. Haze trends over the United States, 1980-1995[J]. Atmospheric Environment 2001,35 (30):5205-5210.
    [14]Chen L W, Chow J C, Doddridge B G, Dickerson R R, Ryan W F, Mueller P K. Analysis of a summertime PM2.5 and haze episode in the mid-Atlantic region[J]. Journal of the Air & Waste Management Association,2003,53:946-956.
    [15]Yadav A K, Kumar K, Kasim A M B H A, Singh M P, Parida S K, Sharan M. Visibility and incidence of respiratory diseases during the 1998 haze episode in Brunei Darussalam[J]. Pure and Applied Geophysics,2003,160 (1-2):265-277.
    [16]Kang C-M, Lee H S, Kang B-W, Lee S-K, Sunwoo Y. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea[J]. Atmospheric Environment 2004,38 (28):4749-4760.
    [17]Linak W P, Miller C A. Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil[J]. Journal of the Air & Waste Management Association,2000,50 (8):1532-1544.
    [18]Gaffney J S, Marley N A. The impacts of combustion emissions on air quality and climate -From coal to biofuels and beyond[J]. Atmospheric Environment,2009,43 (1):23-36.
    [19]Fott J, Vukic J, Rose N L. The spatial distribution of characterized fly-ash particles and trace metals in lake sediments and catchment mosses:Czech Republic[J]. Water Air and Soil Pollution 1998,106 (3-4):241-261.
    [20]Xin G U O, Dan C, Chu-guang Z, Jian-cai S U I, Ming-hou X U. Experimental study on emission characteristics of PM10 in coal-fired boilers[J]. Huanjing Kexue,2008,29 (3):587-592.
    [21]Tian H Z, Wang Y, Xue Z G, Cheng K, Qu Y P, Chai F H, Hao J M. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China,1980-2007[J]. Atmospheric Chemistry and Physics,2010,10 (23):11905-11919.
    [22]Tian H-z, Qu Y-p. Inventories of Atmospheric Arsenic Emissions from Coal Combustion in China,2005[J]. Huanjing Kexue 2009,30 (4):956-962.
    [23]Quan J N, Zhang Q, Zhang X S. Emission of Hg from Coal Consumption in China and Its Summertime Deposition Calculated by CMAQ-Hg[J]. Terrestrial Atmospheric and Oceanic Sciences 2009,20 (2):325-331.
    [24]Antonia Lopez-Anton M, Diaz-Somoano M, Fuente Cuesta A, Rubio Riesco A, Rosa Martinez-Tarazona M. Speciation of Cr and its leachability in coal by-products from spanish coal combustion plants[J]. JEM Journal of Environmental Monitoring 2008,10 (6):778-781.
    [25]Chen J G, Chen Y G, Zhou Y S, Lin G F, Li X J, Jia C G, Guo W C, Du H, Lu H C, Meng H, Zhang X J, Golka K, Shen J H. A follow-up study of mortality among the arseniasis patients exposed to indoor combustion of high arsenic coal in Southwest Guizhou Autonomous Prefecture, China[J]. International Archives of Occupational and Environmental Health 2007,81 (1):9-17.
    [26]Dreher K L, Jaskot R H, Lehmann J R, Richards J H, McGee J K, Ghio A J, Costa D L. Soluble transition metals mediate residual oil fly ash induced acute lung injury[J]. Journal of Toxicology and Environmental Health,1997,50 (3):285-305.
    [27]Furr A K, Parkinson T F, Hinrichs R A, Vancampen D R, Bache C A, Gutenmann W H, Stjohn L E, Pakkala I S, Lisk D J. National survey of elements and radioactivity in fly ashes absorption of elements by cabbage grown in fly ash-soil mixtures [J]. Environmental Science & Technology 1977,11 (13):1194-1201.
    [28]Ugur A, Ozden B, Yener G, Sac M M, Kurucu Y, Altinbas U, Bolca M. Distributions of Pb-210 around a uraniferous coal-fired power plant in Western Turkey[J]. Environmental Monitoring and Assessment,2009,149(1-4):195-200.
    [29]Vijayaraghavan K, Zhang Y, Seigneur C, Karamchandani P, Snell H E. Export of reactive nitrogen from coal-fired power plants in the U. S.:Estimates from a plume-in-grid modeling study[J]. Journal of Geophysical Research-Atmospheres,2009,114:11.
    [30]Kahn M E. Regional growth and exposure to nearby coal fired power plant emissions[J]. Regional Science and Urban Economics,2009,39 (1):15-22.
    [31]Dallarosa J B, Teixeira E C, Alves R C M. Application of numerical models in the formation of ozone and its precursors in areas of influence of coal-fired power station - Brazil[J]. Water Air and Soil Pollution 2007,178 (1-4):385-399.
    [32]Lin Y C, Cheng M T. Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere[J]. Atmospheric Environment 2007,41 (9):1903-1910.
    [33]Gillani N V, Kohli S, Wilson W E. Gas-to-particle conversion of sulfur in power-plant plumes.1. Parametrization of the conversion rate for dry, moderately polluted ambient conditions[J]. Atmospheric Environment 1981,15 (10-11):2293-2313.
    [34]Charlson R J, Wigley T M L. Sulfate aerosol and climatic-change[J]. Scientific American, 994,270 (2):48.
    [35]Kiehl J T, Briegleb B P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing[J]. Science,1993,260 (5106):311-314.
    [36]Twomey S. Influence of pollution on shortwave albedo of clouds[J]. Journal of the Atmospheric Sciences 1977,34 (7):1149-1152.
    [37]Hinkley J T, Bridgman H A, Buhre B J P, Gupta R P, Nelson P F, Wall T F. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations[J]. Science of the Total Environment,2008,391 (1):104-113.
    [38]Xie R K, Seip H M, Wibetoe G, Nori S, McLeod C W. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10[J]. Science of the Total Environment,2006,370 (2-3):409-415.
    [39]Zhang Y X, Schauer J J, Zhang Y H, Zeng L M, Wei Y J, Liu Y, Shao M. Characteristics of particulate carbon emissions from real-world Chinese coal combustion[J]. Environmental Science & Technology,2008,42 (14):5068-5073.
    [40]Zhi G R, Chen Y J, Feng Y L, Xiong S C, Li J, Zhang G, Sheng G Y, Fu J. Emission characteristics of carbonaceous particles from various residential coal-stoves in China[J]. Environmental Science & Technology,2008,42 (9):3310-3315.
    [41]Sharma A P, Tripathi B D. Assessment of atmospheric PAHs profile through Calotropis gigantea R.Br. leaves in the vicinity of an Indian coal-fired power plant[J]. Environmental Monitoring and Assessment,2009,149 (1-4):477-482.
    [42]Tsitouridou R, Anatolaki C. On the wet and dry deposition of ionic species in the vicinity of coal-fired power plants, northwestern Greece[J]. Atmospheric Research,2007,83 (1):93-105.
    [43]Dubnov J, Barchana M, Rishpon S, Leventhal A, Segal I, Carel R, Portnov B A. Estimating the effect of air pollution from a coal-fired power station on the development of children's pulmonary function[J]. Environmental Research,2007,103 (1):87-98.
    [44]Flues M, Hama P, Lemes M J L, Dantas E S K, Fornaro A. Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil[J]. Atmospheric Environment 2002,36 (14):2397-2404.
    [45]Rogge W F, Hildemann L M, Mazurek M A, Cass G R, Simoneit B R T. Sources of fine organic aerosol.2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks[J]. Environmental Science & Technology,1993,27 (4):636-651.
    [46]Brugge D, Durant J L, Rioux C. Near-highway pollutants in motor vehicle exhaust:A review of epidemiologic evidence of cardiac and pulmonary health risks[J]. Environmental Health,2007, 6.
    [47]Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer[J]. Scandinavian Journal of Work Environment & Health,1998,24 (1):8-11.
    [48]Singh R B, Huber A H. Development of a microscale emission factor model for CO for predicting real-time motor vehicle emissions[J]. Journal of the Air & Waste Management Association,2000,50 (11):1980-1991.
    [49]Chen F, Jackson H, Bina W F. Lung Adenocarcinoma Incidence Rates and Their Relation to Motor Vehicle Density[J]. Cancer Epidemiology Biomarkers & Prevention,2009,18 (3):760-764.
    [50]Harley R A, Hooper D S, Kean A J, Kirchstetter T W, Hesson J M, Balberan N T, Stevenson E D, Kendall G R. Effects of reformulated gasoline and motor vehicle fleet turnover on emissions and ambient concentrations of benzene[J]. Environmental Science & Technology,2006,40 (16): 5084-5088.
    [51]Marr L C, Harley R A. Modeling the effect of weekday-weekend differences in motor vehicle emissions on photochemical air pollution in central California[J]. Environmental Science & Technology,2002,36 (19):4099-4106.
    [52]Harrison R M, Jones M, Collins G. Measurements of the physical properties of particles in the urban atmosphere [J]. Atmospheric Environment,1999,33 (2):309-321.
    [53]Abu-Allaban M, Gillies J A, Gertler A W, Clayton R, Proffitt D. Motor vehicle contributions to ambient PM10 and PM2.5 at selected urban areas in the USA[J]. Environmental Monitoring and Assessment 2007,132(1-3):155-163.
    [54]Ristovski Z D, Jayaratne E R, Lim M, Ayoko G A, Morawska L. Influence of diesel fuel sulfur on nanoparticle emissions from city buses[J]. Environmental Science & Technology,2006, 40(4):1314-1320.
    [55]Stanier C O, Khlystov A Y, Pandis S N. Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS) [J]. Atmospheric Environment,2004,38 (20):3275-3284.
    [56]Kirchstetter T W, Harley R A, Kreisberg N M, Stolzenburg M R, Hering S V. On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles[J]. Atmospheric Environment 1999,33 (18):2955-2968.
    [57]Kwon S B, Lee K W, Saito K, Shinozaki O, Seto T. Size-dependent volatility of diesel nanoparticles:Chassis dynamometer experiments[J]. Environmental Science & Technology,2003, 37(9):1794-1802.
    [58]Kuhn T, Krudysz M, Zhu Y F, Fine P M, Hinds W C, Froines J, Sioutas C. Volatility of indoor and outdoor ultrafine particulate matter near a freeway[J]. Journal of Aerosol Science,2005,36 (3):291-302.
    [59]Lin C C, Chen S J, Huang K L, Lee W J, Lin W Y, Liao C J, Chaung H C, Chiu C H. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site[J]. Environmental Pollution,2007,145 (2):562-570.
    [60]Sardar S B, Fine P M, Mayo P R, Sioutas C. Size-fractionated measurements of ambient ultrafine particle chemical composition in Los Angeles using the NanoMOUDI[J]. Environmental Science & Technology 2005,39 (4):932-944.
    [61]Kim S, Shen S, Sioutas C, Zhu Y F, Hinds W C. Size distribution and diurnal and seasonal trends of ultrafine particles in source and receptor sites of the Los Angeles basin[J]. Journal of the Air & Waste Management Association,2002,52 (3):297-307.
    [62]Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment,1995,29 (23):3527-3544.
    [63]Sheesley R J, Deminter J T, Meiritz M, Snyder D C, Schauer J J. Temporal Trends in Motor Vehicle and Secondary Organic Tracers Using in Situ Methylation Thermal Desorption GCMS[J]. Environmental Science & Technology,2010,44 (24):9398-9404.
    [64]Polidori A, Hu S, Biswas S, Delfino R J, Sioutas C. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust[J]. Atmospheric Chemistry and Physics,2008,8 (5):1277-1291.
    [65]Lough G C, Schauer J J, Park J S, Shafer M M, Deminter J T, Weinstein J P. Emissions of metals associated with motor vehicle roadways[J]. Environmental Science & Technology,2005, 39 (3):826-836.
    [66]Morawska L, Jayaratne E R, Mengersen K, Jamriska M, Thomas S. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends[J]. Atmospheric Environment,2002,36 (27):4375-4383.
    [67]Ruuskanen J, Tuch T, Ten Brink H, Peters A, Khlystov A, Mirme A, Kos G P A, Brunekreef B, Wichmann H E, Buzorius G, Vallius M, Kreyling W G, Pekkanen J. Concentrations of ultrafine, fine and PM2.5 particles in three European cities[J]. Atmospheric Environment,2001,35 (21): 3729-3738.
    [68]Zhang Q, Stanier C O, Canagaratna M R, Jayne J T, Worsnop D R, Pandis S N, Jimenez J L. Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry[J]. Environmental Science & Technology,2004,38 (18):4797-4809.
    [69]Zhang K M, Wexler A S, Zhu Y F, Hinds W C, Sioutas C. Evolution of particle number distribution near roadways. Part Ⅱ:the 'road-to-ambient'process[J]. Atmospheric Environment, 2004,38 (38):6655-6665.
    [70]Guo H, Zhang Q Y, Shi Y, Wang D H. On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China[J]. Atmospheric Environment,2007,41 (14):3095-3107.
    [71]Hao J, Wu Y, Fu L, He K, He D. Motor vehicle source contributions to air pollutants in Beijing[J]. Huanjing Kexue,2001,22 (5):1-6.
    [72]He K B, Yang F M, Ma Y L, Zhang Q, Yao X H, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5 in Beijing, China[J]. Atmospheric Environment,2001,35(29):4959-4970.
    [73]Yao X H, Chan C K, Fang M, Cadle S, Chan T, Mulawa P, He K B, Ye B M. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China[J]. Atmos. Environ., 2002,36 (26):4223-4234.
    [74]Sun Y, Zhuang G, Wang Y, Han L, Guo J, Dan M, Zhang W, Wang Z, Hao Z. The air-borne particulate pollution in Beijing--concentration, composition, distribution and sources[J]. Atmospheric Environment,2004,38 (35):5991-6004.
    [75]Watson J G. Visibility:Science and Regulation[J]. Journal of the Air & Waste Management Association,2002,52:628-713.
    [76]Charlson R J. Atmospheric Visibility Related to Aerosol Mass Concentration-a ReviewfJ]. Environmental Science & Technology,1969,3 (10):913-918.
    [77]Dzubay T G, Stevens R K, Lewis C W, Hern D H, Courtney W J, Tesch J W, Mason M A. Visibility and aerosol composition in Houston, Texas[J]. Environmental Science & Technology 2002,16 (8):514-525.
    [78]Kim Y J, Kim K W, Oh S J. Seasonal characteristics of haze observed by continuous visibility monitoring in the urban atmosphere of Kwangju, Korea[J]. Environmental Monitoring and Assessment,2001,70 (1-2):35-46.
    [79]Chameides W L, Yu H, Liu S C, Bergin M, Zhou X, Mearns L, Wang G, Kiang C S, Saylor R D, Luo C, Huang Y, Steiner A, Giorgi F. Case Study of the Effects of Atmospheric Aerosols and Regional Haze on Agriculture:An Opportunity to Enhance Crop Yields in China through Emission Controls?[A]. In:National Academy of Sciences. Proceedings of the National Academy of Sciences of the United States of America[C]. Washington DC:NATL ACAD SCIENCES.1999, 96(24):13626-13633.
    [80]Wang M X, Zhang R J, Pu Y F. Recent researches on aerosol in China[J]. Adv Atmos Sci 2001,18 (4):576-586.
    [81]毛节泰,张军华,王美华.中国大气气溶胶研究综述[J].气象学报,2002,60(5):625-634.
    [82]汤洁,祁栋林.中国西部大气清洁地区黑碳气溶胶的观测研究[J].应用气象学报,1999,1(2):160-169.
    [83]王庚辰.北京地区大气中的黑碳气溶胶及其变化[J].过程工程学报,2002,2(增刊):284-288.
    [84]Zhuang G S, Guo J H, Yuan H, Zhao C Y. The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment[J]. Chinese Science Bulletin,2001,46 (11):895-901.
    [85]Guo J, Rahn K A, Zhuang G S. A mechanism for the increase of pollution elements in dust storms in Beijing[J]. Atmospheric Environment,2004,38 (6):855-862.
    [86]Wang Y, Zhuang G S, Tang A H, Yuan H, Sun Y L, Chen S A, Zheng A H. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmospheric Environment,2005,39(21): 3771-3784.
    [87]Sun Y, Zhuang G S, Yuan H, Zhang X Y, Guo J H. Characteristics and sources of 2002 super dust storm in Beijing[J]. Chinese Sci Bull,2004,49 (7):698-705.
    [88]Yuan H, Wang Y, Zhuang G S. MSA in Beijing aerosol[J]. Chinese Sci Bull,2004,49 (10): 1020-1025.
    [89]Han L H, Zhuang G S, Yele S, Wang Z F. Local and non-local sources of airborne particulate pollution at Beijing[J]. Sci China Ser B,2005,48 (3):253-264.
    [90]Sun Y L, Zhuang G S, Tang A H, Wang Y, An Z S. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J]. Environ Sci Technol,2006,40 (10):3148-3155.
    [91]Singh H B, Brune W H, Crawford J H, Flocke F, Jacob D J. Chemistry and transport of pollution over the Gulf of Mexico and the Pacific:spring 2006 INTEX-B campaign overview and first results[J]. Atmospheric Chemistry and Physics,2009,9 (7):2301-2318.
    [92]Chin M, Diehl T, Ginoux P, Malm W. Intercontinental transport of pollution and dust aerosols: implications for regional air quality[J]. Atmospheric Chemistry and Physics,2007,7:5501-5517.
    [93]Liu J F, Mauzerall D L. Potential influence of inter-continental transport of sulfate aerosols on air quality [J]. Environmental Research Letters,2007,2 (4).
    [94]Stohl A, Eckhardt S, Forster C, James P, Spichtinger N. On the pathways and timescales of intercontinental air pollution transport[J]. Journal of Geophysical Research-Atmospheres,2002, 107 (D23).
    [95]Jaffe D, McKendry I, Anderson T, Price H. Six 'new' episodes of trans-Pacific transport of air pollutants[J]. Atmospheric Environment,2003,37 (3):391-404.
    [96]Jaffe D, Anderson T, Covert D, Kotchenruther R, Trost B, Danielson J, Simpson W, Berntsen T, Karlsdottir S, Blake D, Harris J, Carmichael G, Uno I. Transport of Asian air pollution to North America[J]. Geophysical Research Letters,1999,26 (6):711-714.
    [97]Liu J, Mauzerall D L, Horowitz L W. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations [J]. Atmospheric Chemistry and Physics,2008,8(14):3721-3733.
    [98]Yu H B, Remer L A, Chin M, Bian H S, Kleidman R G, Diehl T. A satellite-based assessment of transpacific transport of pollution aerosol[J]. Journal of Geophysical Research-Atmospheres, 2008,113 (D14).
    [99]Jordan C E, Anderson B E, Talbot R W, Dibb J E, Fuelberg H E, Hudgins C H, Kiley C M, Russo R, Scheuer E, Seid G, Thornhill K L, Winstead E. Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P[J]. Journal of Geophysical Research-Atmospheres,2003,108 (D21).
    [100]Brock C A, Hudson P K, Lovejoy E R, Sullivan A, Nowak J B, Huey L G, Cooper O R, Cziczo D J, de Gouw J, Fehsenfeld F C, Holloway J S, Hubler G, Lafleur B G, Murphy D M, Neuman J A, Nicks D K, Orsini D A, Parrish D D, Ryerson T B, Tanner D J, Warneke C, Weber R J, Wilson J C. Particle characteristics following cloud-modified transport from Asia to North America[J]. Journal of Geophysical Research-Atmospheres,2004,109 (D23).
    [101]Andreae M O, Berresheim H, Andreae T W, Kritz M A, Bates T S, Merrill J T. Vertical-distribution of dimethylsulfide, sulfur-dioxide, aerosol ions, and radon over the northeast pacific-ocean[J]. Journal of Atmospheric Chemistry,1988,6 (1-2):149-173.
    [102]Roberts G, Mauger G, Hadley O, Ramanathan V. North American and Asian aerosols over the eastern Pacific Ocean and their role in regulating cloud condensation nuclei[J]. Journal of Geophysical Research-Atmospheres,2006,111 (D13).
    [103]Holzer M, McKendry I G, Jaffe D A. Springtime trans-Pacific atmospheric transport from east Asia:A transit-time probability density function approach[J]. Journal of Geophysical Research-Atmospheres,2003,108 (D22).
    [104]VanCuren R A. Asian aerosols in North America:Extracting the chemical composition and mass concentration of the Asian continental aerosol plume from long-term aerosol records in the western United States [J]. Journal of Geophysical Research-Atmospheres,2006,111 (D19).
    [105]van Donkelaar A, Martin R V, Leaitch W R, Macdonald A M, Walker T W, Streets D G, Zhang Q, Dunlea E J, Jimenez J L, Dibb J E, Huey L G, Weber R, Andreae M O. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada[J]. Atmospheric Chemistry and Physics,2008,8 (11):2999-3014.
    [106]Hadley O L, Ramanathan V, Carmichael G R, Tang Y, Corrigan C E, Roberts G C, Mauger G S. Trans-Pacific transport of black carbon and fine aerosols (D<2.5 mu m) into North America[J]. Journal of Geophysical Research-Atmospheres,2007,112 (D5).
    [107]Peltier R E, Hecobian A H, Weber R J, Stohl A, Atlas E L, Riemer D D, Blake D R, Apel E, Campos T, Karl T. Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B[J]. Atmospheric Chemistry and Physics,2008,8 (6):1835-1853.
    [108]Dunlea E J, DeCarlo P F, Aiken A C, Kimmel J R, Peltier R E, Weber R J, Tomlinson J, Collins D R, Shinozuka Y, McNaughton C S, Howell S G, Clarke A D, Emmons L K, Apel E C, Pfister G G, van Donkelaar A, Martin R V, Millet D B, Heald C L, Jimenez J L. Evolution of Asian aerosols during transpacific transport in INTEX-B[J]. Atmospheric Chemistry and Physics,2009, 9 (19):7257-7287.
    [109]Takami A, Miyoshi T, Shimono A, Kaneyasu N, Kato S, Kajii Y, Hatakeyama S. Transport of anthropogenic aerosols from Asia and subsequent chemical transformation[J]. Journal of Geophysical Research-Atmospheres,2007,112 (D22).
    [110]Miyakawa T, Takegawa N, Kondo Y. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo[J]. Journal of Geophysical Research-Atmospheres,2007,112.
    [111]Jaegle L. Pumping up surface air[J]. Science,2007,315 (5813):772-773.
    [112]Miyazaki Y, Kondo Y, Han S, Koike M, Kodama D, Komazaki Y, Tanimoto H, Matsueda H. Chemical characteristics of water-soluble organic carbon in the Asian outflow[J]. Journal of Geophysical Research-Atmospheres,2007,112 (D22).
    [113]Wang G H, Kawamura K, Watanabe T, Lee S, Ho K, Cao J J. High loadings and source strengths of organic aerosols in China [J]. Geophysical Research Letters,2007,34(22).
    [114]Bahreini R, Jimenez J L, Wang J, Flagan R C, Seinfeld J H, Jayne J T, Worsnop D R. Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer[J]. Journal of Geophysical Research-Atmospheres,2003,108 (D23).
    [115]Heald C L, Jacob D J, Park R J, Russell L M, Huebert B J, Seinfeld J H, Liao H, Weber R J. A large organic aerosol source in the free troposphere missing from current models[J]. Geophysical Research Letters,2005,32 (18).
    [116]Chuang M T, Fu J S, Jang C J, Chan C C, Ni P C, Lee C T. Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a Southward Asian high-pressure system[J]. Science of the Total Environment,2008,406 (1-2):168-179.
    [117]Cohen D D, Crawford J, Stelcer E, Vuong T B. Long range transport of fine particle windblown soils and coal fired power station emissions into Hanoi between 2001 to 2008[J]. Atmospheric Environment,2010,44 (31):3761-3769.
    [118]Solomon S, Qin D, Manning M, Alley R B, Berntsen T, Bindoff N L, Chen Z, Chidthaisong A, Gregory J M, Hegerl G C, Heimann M, Hevitson B, Hoskins B J, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker T F, Whetton P, Wood R A, Wratt D. Technical Summary. In: Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom and New York, NY, USA:the Intergovernmental Panel on Climate Change,2007:
    [119]Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley J A, Hansen J E, Hofmann D J. Climate Forcing by Anthropogenic Aerosols[J]. Science,1992,255 (5043):423-430.
    [120]Coakley J A J, Bernstein R L, Durkee P A. Effect of Ship-Stack Effluents on Cloud Reflectivity [J]. Science,1987,237 (4818):1020-1022.
    [121]Kruger O, Grassl H. The indirect aerosol effect over Europe[J]. Geophysical Research Letters,2002,29(19).
    [122]Kristjansson J E. Studies of the aerosol indirect effect from sulfate and black carbon aerosols[J]. Journal of Geophysical Research-Atmospheres,2002,107 (D15).
    [123]Mark N, Martin T, Mike H, Phil J. Precipitation measurements and trends in the twentieth century[J]. International Journal of Climatology 2001,21 (15):1889-1922.
    [124]Brenguier J L. Introduction to Special Section:An experimental study of the aerosol indirect effect for validation of climate model parameterizations[J]. Journal of Geophysical Research-Atmospheres,2003,108 (D15).
    [125]Henson B F. An adsorption model of insoluble particle activation:Application to black carbon[J]. Journal of Geophysical Research-Atmospheres,2007,112 (D24).
    [126]Albrecht B A. Aerosols, Cloud Microphysics, and Fractional Cloudiness[J]. Science,1989, 245 (4923):1227-1230.
    [127]Jiang Y L, Zhuang G S, Huang K, Li J, Wang Q Z, Fu J S. Characteristics, sources and formation of aerosol oxalate in Shanghai and its implication to haze pollution[J]. J. Geophys. Res., 2009, in review.
    [128]Sun Y L, Zhuang G S, Ying W, Han L H, Guo J H, Mo D, Zhang W J, Wang Z F, Hao Z P. The air-borne particulate pollution in Beijing - concentration, composition, distribution and sources[J]. Atmospheric Environment,2004,38 (35):5991-6004.
    [129]Wang Y, Zhuang G S, Zhang X Y, Huang K, Xu C, Tang A H, Chen J M, An Z S. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment 2006,40 (16):2935-2952.
    [130]Yuan H, Wang Y, Zhuang G S. Simultaneous Determination of Organic Acids, Methanesulfonic Acid and Inorganic Anions in Aerosol and Precipitation Samples by Ion Chromatography[J]. Journal of Instrumental Analysis,2003,22 (6):11-14(in Chinese).
    [131]Nelson P F. Trace metal emissions in fine particles from coal combustion[J]. Energy & Fuels, 2007,21 (2):477-484.
    [132]Li W Y, Zhong L, Feng J, Xie K C. Release Behavior of As, Hg, Pb, and Cd during Coal Gasification[J]. Energy Sources Part a-Recovery Utilization and Environmental Effects,2010,32 (9):818-825.
    [133]Huang Y J, Jin B S, Zhong Z P, Xiao R, Tang Z Y, Ren H F. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler[J]. Fuel Processing Technology,2004, 86(1):23-32.
    [134]Bhuiyan M A H, Parvez L, Islam M A, Dampare S B, Suzuki S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh[J]. Journal of Hazardous Materials,2010,173 (1-3):384-392.
    [135]Zhao Y, Wang S X, Duan L, Lei Y, Cao P F, Hao J M. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction[J]. Atmospheric Environment,2008,42 (36):8442-8452.
    [136]Sun Y Z, Fan J S, Qin P, Niu H Y. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China[J]. Environmental Geochemistry and Health 2009,31 (1): 81-89.
    [137]Malm W C, Sisler J F, Huffman D, Eldred R A, Cahill T A. Spatial and Seasonal Trends in Particle Concentration and Optical Extinction in the United-States[J]. Journal of Geophysical Research-Atmospheres,1994,99 (D1):1347-1370.
    [138]Sun J M, Zhang M Y, Liu T S. Spatial and temporal characteristics of dust storms in China and its surrounding regions,1960-1999:Relations to source area and climate[J]. Journal of Geophysical Research-Atmospheres,2001,106 (D10):10325-10333.
    [139]Kallenborn R, Christensen G, Evenset A, Schlabach M, Stohl A. Atmospheric transport of persistent organic pollutants (POPs) to Bjornoya (Bear island) [J]. Journal of Environmental Monitoring,2007,9(10):1082-1091.
    [140]Simoneit B R T, Sheng G Y, Chen X J, Fu J M, Zhang J, Xu Y P. Molecular marker study of extractable organic-matter in aerosols from urban areas of China. Atmospheric Environment Part a-General Topics,1991,25 (10):2111-2129.
    [141]Hsu S C, Liu S C, Huang Y T, Lung S C C, Tsai F J, Tu J Y, Kao S J. A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007[J]. Journal of Geophysical Research-Atmospheres,2008,113 (D18).
    [142]Feng Y L, Chen Y J, Guo H, Zhi G R, Xiong S C, Li J, Sheng G Y, Fu J M. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China[J]. Atmos. Res.,2009,92 (4): 434-442.
    [143]Feng J L, Chan C K, Fang M, Hu M, He L Y, Tang X Y. Characteristics of organic matter in PM2.5 in Shanghai[J]. Chemosphere,2006,64 (8):1393-1400.
    [144]Geng F H, Tie X X, Xu J M, Zhou G Q, Peng L, Gao W, Tang X, Zhao C S. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China[J]. Atmos. Environ., 2008,42(29):6873-6883.
    [145]Geng F H, Zhao C S, Tang X, Lu G L, Tie X X. Analysis of ozone and VOCs measured in Shanghai:A case study[J]. Atmos. Environ.,2007,41 (5):989-1001.
    [146]Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment[J]. Atmos Environ,2009,43 (9): 1650-1659.
    [147]Wang Y, Zhuang G S, Sun Y, An Z S. Water-soluble part of the aerosol in the dust storm season - evidence of the mixing between mineral and pollution aerosols[J]. Atmos Environ,2005, 39 (37):7020-7029.
    [148]Meng Z Y, Seinfeld J H. On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols[J]. Aerosol Sci Tech,1994,20 (3):253-265.
    [149]Xiu G L, Zhang D N, Chen J Z, Huang X J, Chen Z X, Guo H L, Pan J F. Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air[J]. Atmos. Environ.,2004,38 (2):227-236.
    [150]Zhao X S, Wan Z, Zhu H G, Chen R P. The carcinogenic potential of extractable organic matter from urban airborne particles in Shanghai, China[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis,2003,540 (1):107-117.
    [151]Mcmurry P H, Wilson J C. Droplet Phase (Heterogeneous) and Gas-Phase (Homogeneous) Contributions to Secondary Ambient Aerosol Formation as Functions of Relative-Humidity[J]. J Geophys Res-Oc Atm,1983,88 (NC9):5101-5108.
    [152]Bae M S, Schauer J J, Turner J R. Estimation of the monthly average ratios of organic mass to organic carbon for fine particulate matter at an urban site[J]. Aerosol Sci Tech,2006,40 (12): 1123-1139.
    [153]Chen X, Yu J Z. Measurement of organic mass to organic carbon ratio in ambient aerosol samples using a gravimetric technique in combination with chemical analysis[J]. Atmos Environ, 2007,41 (39):8857-8864.
    [154]Zhang X Y, Wang Y Q, Zhang X C, Guo W, Gong S L. Carbonaceous aerosol composition over various regions of China during 2006[J]. J. Geophys. Res.,2008,113(D14).
    [155]Cheng Y F, Wiedensohler A, Eichler H, Su H, Gnauk T, Brueggemann E, Herrmann H, Heintzenberg J, Slanina J, Tuch T, Hu M, Zhang Y H. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China[J]. Atmos Environ,2008,42 (25): 6351-6372.
    [156]Wang W T, Primbs T, Tao S, Simonich S L M. Atmospheric Particulate Matter Pollution during the 2008 Beijing Olympics[J]. Environmental Science & Technology,2009,43(14): 5314-5320.
    [157]Branis M, Vetvicka J. Particulate Matter Concentrations during the XXIX Summer Olympic Games in Beijing[A]. In:Chinese Soc Environm Sci, Beijing Inst Technol, Donghua Univ, Key Lab Explos Sci & Technol. International Symposium on Environmental Science and Technology[C]. Shanghai:Science Press Beijing,2009:785-789.
    [158]Mijling B, van der A R J, Boersma K F, Van Roozendael M, De Smedt I, Kelder H M. Reductions of NO2 detected from space during the 2008 Beijing Olympic Games[J]. Geophysical Research Letters,2009,36:6.
    [159]Wang X, Westerdahl D, Chen L C, Wu Y, Hao J M, Pan X C, Guo X B, Zhang K M. Evaluating the air quality impacts of the 2008 Beijing Olympic Games:On-road emission factors and black carbon profiles[J]. Atmospheric Environment,2009,43 (30):4535-4543.
    [160]Wang Y, Hao J, McElroy M B, Munger J W, Ma H, Chen D, Nielsen C P. Ozone air quality during the 2008 Beijing Olympics:effectiveness of emission restrictions[J]. Atmospheric Chemistry and Physics,2009,9(14):5237-5251.
    [161]Witte J C, Schoeberl M R, Douglass A R, Gleason J F, Krotkov N A, Gille J C, Pickering K E, Livesey N. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics[J]. Geophysical Research Letters,2009,36:6.
    [162]Liu J, Mu Y, Zhang Y, Zhang Z, Wang X, Liu Y, Sun Z. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing[J]. Sci Total Environ, 2009,408(1):109-16.
    [163]Bergin M H, Cass G R, Xu J, Fang C, Zeng L M, Yu T, Salmon L G, Kiang C S, Tang X Y, Zhang Y H, Chameides W L. Aerosol radiative, physical, and chemical properties in Beijing during June 1999[J]. Journal of Geophysical Research-Atmospheres,2001,106(D16): 17969-17980.
    [164]Chan C Y, Xu X D, Li Y S, Wong K H, Ding G A, Chan L Y, Cheng X H. Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing[J]. Atmospheric Environment,2005,39 (28):5113-5124.
    [165]Zhao X, Zhang X, Xu X, Xu J, Meng W, Pu W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing[J]. Atmospheric Environment, 2009,43 (18):2893-2900.
    [166]Shao M, Tang X Y, Zhang Y H, Li W J. City clusters in China:air and surface water pollution[J]. Frontiers in Ecology and the Environment,2006,4 (7):353-361.
    [167]Duan J C, Tan J H, Yang L, Wu S, Hao J M. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing[J]. Atmospheric Research,2008,88 (1):25-35.
    [168]Salthammer T. Heavy air pollution in Beijing and possible impact on Olympic athletes[J]. Clean-Soil Air Water,2008,36 (9):731-733.
    [169]Streets D G, Fu J H S, Jang C J, Hao J M, He K B, Tang X Y, Zhang Y H, Wang Z F, Li Z P, Zhang Q, Wang L T, Wang B Y, Yu C. Air quality during the 2008 Beijing Olympic Games[J]. Atmospheric Environment,2007,41 (3):480-492.
    [170]Chen D S, Cheng S Y, Liu L, Chen T, Guo X R. An integrated MM5-CMAQ modeling approach for assessing trans-boundary PM1o contribution to the host city of 2008 Olympic summer games-Beijing, China [J]. Atmospheric Environment,2007,41 (35):7683-7683.
    [171]Kleeman M J, Cass G R. Effect of emissions control strategies on the size and composition distribution of urban particulate air pollution[J]. Environmental Science & Technology,1999,33 (1):177-189.
    [172]Casale F, Nieddu G, Burdino E, Vignati D A L, Ferretti C, Ugazio G. Monitoring of Submicron Particulate Matter Concentrations in the Air of Turin City, Italy. Influence of Traffic-limitations[J]. Water Air and Soil Pollution,2009,196 (1-4):141-149.
    [173]Friedman M S, Powell K E, Hutwagner L, Graham L M, Teague W G. Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma[J]. Jama-Journal of the American Medical Association,2001, 285 (7):897-905.
    [174]Cheng Y F, Heintzenberg J, Wehner B, Wu Z J, Su H, Hu M, Mao J T. Traffic restrictions in Beijing during the Sino-African Summit 2006:aerosol size distribution and visibility compared to long-term in situ observations[J]. Atmospheric Chemistry and Physics,2008,8 (24):7583-7594.
    [175]Klingner M, Sahn E, Anke K, Hoist T, Rost J, Mayer H, Ahrens D. Potential reduction of PM1o and NOx immissions through traffic restrictions in comparison to variations caused by meteorological conditions[J]. Gefahrstoffe Reinhaltung Der Luft,2006,66 (7-8):326-334.
    [176]Kumar A V, Patil R S, Nambi K S V. Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India[J]. Atmospheric Environment,2001,35 (25):4245-4251.
    [177]Kawamura K, Ikushima K. Seasonal-changes in the distribution of dicarboxylic-acids in the urban atmosphere[J]. Environmental Science & Technology,1993,27 (10):2227-2235.
    [178]Kawamura K,Kaplan I R.Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air[J]. Environmental Science & Technology,1987,21 (1):105-110.
    [179]Wang L T, Hao J M, He K B,Wang S X, Li J H, Zhang Q, Streets D G, Fu J S, Jang C J, Takekawa H, Chatani S. A modeling study of coarse particulate matter pollution in Beijing: Regional source contributions and control implications for the 2008 summer Olympics[J]. Journal of the Air & Waste Management Association,2008,58 (8):1057-1069.
    [180]Fu J S, Streets D G, Jang C J, Hao J M, He K B, Wang L T, Zhang Q. Modeling Regional/Urban Ozone and Particulate Matter in Beijing, China[J]. Journal of the Air & Waste Management Association,2009,59 (1):37-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700