用户名: 密码: 验证码:
大尺寸晶圆传输机器人末端执行器接触特性分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路(IC)制造装备是电子信息产业的核心,是推动国民经济和社会信息化发展的高新技术之一。晶圆传输系统是IC装备中必不可少的组成部分,其中的晶圆传输机器人是晶圆传输系统的关键部件,主要承担晶圆的精确定位与快速、平稳搬运任务,作为重要传输部分的晶圆传输机器人末端执行器,很大程度地影响晶圆的高效可靠传输。
     针对大尺寸晶圆高摩擦力和小变形的要求,结合国家973项目“超大规模集成电路制造装备基础问题研究”(项目编号2009CB724206),本课题对晶圆传输机器人两种末端执行器(摩擦传输式和真空吸附式末端执行器)与晶圆的接触特性进行了深入研究,设计了传输机器人的末端执行器,最终对末端执行器的传输性能进行了实验验证。
     在摩擦传输式末端执行器研究方面,分析了晶圆的材料参数,研究不同厚度的晶圆在不同接触方式下的变形,并以晶圆变形量最小为目标,确立了基于凸点接触的摩擦传输方式。针对凸点接触方式,结合仿生学理论,提出了一种基于壁虎刚毛接触凸点的晶圆传输方式,并建立了凸点与晶圆的接触模型,结合接触理论,对比分析了刚毛凸点、不锈钢凸点、橡胶凸点的参数与晶圆传输摩擦力的关系;通过末端执行器的静态和动态特性仿真分析,设计了仿壁虎刚毛接触凸点的摩擦传输式末端执行器。
     在真空吸附式末端执行器研究方面,以晶圆变形最小为目标,结合吸附点分布与晶圆变形的关系,确定了晶圆变形最小时的吸附点分布状态。研究晶圆传输摩擦力与末端执行器吸附点参数的关系,推导了晶圆传输时的摩擦力表达式。基于理论分析,通过静态和动态特性分析,设计了真空吸附式末端执行器。
     最后搭建了实验系统,对摩擦传输式末端执行器和真空吸附式末端执行器的性能进行验证。实验证明,基于接触特性分析设计的仿壁虎刚毛接触凸点摩擦传输式末端执行器有效地提高了平稳传输晶圆的加速度,性能优于其它摩擦传输式末端执行器;针对大尺寸超薄晶圆设计的真空吸附式末端执行器,有效地增加了晶圆传输的加速度,减小了晶圆的变形。
Integrated Circuit(IC) as core of electrical information industry is one of the new high technologies which promote the national economy and information-based social development. Wafer transmission system is an essential part of IC equipment. As an important part of IC equipment, wafer transfer robot must transfer wafers precisely, fast and steadily. As an important part of transmission, the end effector of transfer robot greatly affects the wafer high efficiency and reliable transmission.
     Aim at high friction force and small deformation requirements, according to the national 973 project "Research on the foundation of super large scale integrated circuit manufacturing equipment" (granted No.2009CB724206), this dissertation studies the contact properties of wafer and two kinds of end effector (friction transmission end effector and vacuum absorption end effector), then design and optimize the end effectors. Finally, the experiments of verifying end effector performance are studied.
     In the aspect of friction transmission end effector research, the dissertation firstly analyzes the wafer material parameters. The wafer deformation with different thickness under different contact way is analyzed. Aim at the minimal deformation, the friction transmission using convex contact is determined. According to the convex contact, based on the bionics, a new way of using gecko bristle micro-array contact convex is proposed for wafer transmission. The contact model between contact convex and the wafer is established. Combing with the contact theories, the dissertation comparatively analyzes the relationship of the friction force and parameters of different contact convexes, that is stainless convex, rubber convex and bristle convex. Finally, through the static and dynamic characteristics simulation analysis, the friction transmission end effector is designed.
     In the aspect of vacuum absorption end effector research, aim at the minimal deformation, the relationship among the location of absorption points, the number of absorption points and the wafer deformation is researched. Through the analysis, the distribution of vacuum absorption points with minimal wafer deformation is determined. The dissertation researches the relationship of the friction force and the parameters of vacuum absorption points. Then the friction expression is deduced. Finally, based on the theoretical analysis, through the static and dynamic characteristics analysis, the vacuum absorption end effector is designed.
     Finally, the experiment system of verifying the end effector performance is established. The performance of friction transmission end effector and vacuum absorption end effector is verified by experiments respectively. The experimental results demonstrate that the friction transmission end effector with micro-array contact convex greatly improves the acceleration of stable wafer transmission, which is better than other friction transmission end effectors. The vacuum absorption designed for large-size and ultra-thin wafer transmission greatly improves the acceleration of stable wafer transmission and reduces the deformation of wafers.
引文
1 汪劲松,朱煜.我国“十五”期间IC制造装备的发展战略研究.机器人技术与应用.2002,2:5-9
    2 朱贻玮.展望未来5年中国IC产业.电子工业专用设备.2006,35(3):8-9
    3 周旗刚.300mm硅片技术发展现状与趋势.电子工业专用设备.2005,34(10):16
    4 Anna Kochan. Clean Room Robot Become Cleaner and More Reliable. Industrial Robot,1998,25(1):27-29
    5 杨晓婵.全球各大硅片公司积极投资300mm硅片.现代材料动态.2005,7:18
    6 Masafumi, Kanetome著,一目译.在超高真空中应用的片子传输机械手.EEPM,1998,11:50-54
    7 William Fosnight, Raymond Martin, Anthony Bonora. Asyst Technologies, Milpitas, CA.300mm Wafer Isolation Technology:Lessons from the 200mm generationl Solid State Technology.1996(2):77-81
    8 Michael Quirk, Julian Serda,韩郑生,等译.半导体制造技术.电子工业出版社.2004:4-15
    9 杨国军,崔平远.机械手时间最优轨迹规划方法研究.中国机械工程.2002,13(20):1715-1717
    10甘文彩.硅片传输机器人关键技术研究.天津大学硕士学位论文.2007:9-11
    11丛明,于旭,徐晓飞.硅片机器人的发展及研究现状.机器人技术与应用.2007,4:18-23
    12 Cong M, Zhou Y M, Jiang Y. An Automated Wafer-handling System Based on the Integrated Circuit Equipments. IEEE International Conference on Robotics and Biomimetics, Hong Kong and Macau, China,2005:240-245
    13黄春雷.基于动力学模型的真空机械手控制系统研究.大连理工大学硕士学位论文.2007:1-3
    14 Zuberek W M. Petri nets. Cluster Tools with Chamber Revisiting-Modeling and Analysis Using Timed. IEEE Transactions on Semiconductor Manufacturing, 2004,17(3):333-344
    15 Chiaki Tsuzuku. The Trend of Robot Technology in Semi-conductor and LCD Industry. Industrial Robot:An International Journal,2001,28(5):406-414
    16于旭.硅片传输机器人设计及轨迹规划.大连理工大学硕士学位论文.2007:3-5
    17沈宝宏.面向IC制造的净化机器人的研究和设计.大连理工大学硕士学位论文.2006:2-5
    18丛明,杜宇,沈宝宏.面向IC制造的硅片机器人传输系统综述.机器人,2007,29(3):261-266
    19 Masafumi Kanetomo, Hideo Kashima, Takamichi Suzuki. Wafer-transfer Robot for Use in Ultrahigh Vacuum. American Vacuum Society,1997,15(3):1385-1388
    20 Dan A.Marohl, San Jose. End Effector for Semiconductor Wafer Transfer Device and Method of Moving a Wafer with an End Effector. United States Patent 5746460,1998
    21 Chee Wee Tang, Wee Fong Chow, Wai Leong Yip. End Effector for Transferring a Wafer. United States Patent 2007/0177963 A1,2007
    22 Anthony C.Bonora, Roger G.Hine. Ultra Low Contact Area End Effector. United States Patent 2006/0181095 A1,2006
    23 Murray Bullis. Book of Semiconductor Equipment and Material International Standards 0200. SEMI.E76-0299.1998
    24 Xavier F.Brun, Shreyes N.Melkote. Analysis of Stresses and Breakage of Crystalline Silicon Wafers during Handling and Transport. Solar Energy Materials & Solar Cells,2009(93):1238-1247
    25 A.Fisher, G.Kissinger. Load Induced Stresses and Plastic Deformation in 450mm Silicon Wafers. American Institute of Physics,2007,91(11):111911.1-111911.3
    26 Xavier F. Brun, Shreyes N. Melkote. Modeling and Experimental Verification of Partial Slip for Multiple Frictional Contact Problems. Wear,2007,8(14):34-41
    27 Wu Guixiang, Wu Chao, Peng Xiaolan. Mechanism of Adhesion and Cleaning between the Surface of Structural Glass and Dust. Journal of safety science and technology,2005,1(5):26-30
    28 Qian J, Gao H. Scaling Effects of Suet Adhesion in Biological Attachment systems. Acta Biomater,2006,2(1):51-58
    29 FS Wang, JM Block, WW Chen, A Martini, K Zhou. A Multilevel Model for Elastic-plastic Contact between a Sphere and a Flat Rough Surface. Journal of tribology,2009,131(2):021409.1-021409.6
    30 Li L, Mangipudi V, Tirrell M, et al. Fundamentals of Tribology and Bridging the Gap between the Macro-and Micro/Nanoscales. Dordrecht, Netherlands:Kluwer Academic Publishers Group,2001:305-329
    31 Johnson K L, Kendall K, Roberts A D. Surface Energy and Contact of Elastic Solids. Proc.R.Soc.Lond,1971, A324:301-313
    32 Landman U. Atomistic Mechanisms and Dynamics of Adhesions. Nanoindentation and Fracture Science,1990,248:454-461
    33 Derjaguin B M, Muller V M, Toprov Y P. Effect of Contact Deformation on the Adhesion of Particles. J Colloid Interface Science,1975,53(2):314-326
    34 Greenwood J A. Adhesion of Elastic Spheres. Proc.R.Soc.Land.A,1997,453: 1227-1297
    35赵亚薄,王立森,孙克豪.Tabor数、粘着数与微尺度粘着弹性接触理论.力学进展.2000,04(30):529-537
    36 G.G.Adams, M.Nosonovsky. Contact Modeling—Forces. Tribology International.2000,33:431-442
    37 Johnson K L, Greenwood J A. An Adhesion Map for the Contact of Elastic Spheres. Journal of Colloid and Intersurface Science,1997,192:326-333
    38陈国定,徐华,虞烈.基于粗糙接触理论的橡胶—金属摩擦副的摩擦分析.西安交通大学学报.2002,36(2):322-324
    39 Chui B W, Kenny T W, Mamin H M. Independent Detection of Vertical and Lateral Forces with a Slidewall-Implanted Dual-Axis Piezoresistive Cantilever. Applied Physics Letters,1998,72(11):1388-1390
    40赵林林.仿壁虎脚掌刚毛阵列接触力学分析及试验研究.南京航空航天大学硕士学位论文.2007:24-26
    41 Liang Y A, Autumn K, Hsieh S T, et al. Adhesion Force Measurements on Single Gecko Setae. Solid-State Sensor and Actuator,2000:33-38
    42张十军.硅片传输机器人的研制.大连理工大学硕士学位论文.2005:9-12
    43 R.B. Haber, C.S. Jog, M. P. Bendsoe. A New Approach to Variable Topology Shape Design using a Constraint on Perimeter. Structure Optimization,1996,11:1-12
    44 Gaurav J. Shah, Metin Sitti. Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs.2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China,2004,8
    45王辉静.仿壁虎微米阵列的加工及其粘附作用分析.MEMS器件与技术.2008,45(3):162-165
    46 C. Majidi, R. E. Groff, Y. Maeno, et al. High Friction from a Stiff Polymer Using Microfiber Arrays. The American Physical Society,2006,97(7):1-4
    47 N.P. Kruyt. Contact Forces in Anisotropic Frictional Granular Materials. International Journal of Solids and Structures,2003,40:3537-3556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700