用户名: 密码: 验证码:
爬壁机器人动力特性研究及仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爬壁机器人(WCR)作为移动机器人领域的一个重要分支,在工业生产中得到了越来越广泛的应用,也越来越受到人们的重视。使用轮式负压吸附的爬壁机器人具有结构简单,工作效率高,实用化程度高等优点。它在轮式移动机器人(WMR)的基础上增加了吸附装置,实现了在垂直或倾斜壁面爬行,并携带各种作业工具进行壁面作业的目的;它可以使人从危险、繁重的工作中解放出来,并能提高工作效率和自动化水平。
     本文通过对爬壁机器人进行样机总体结构的设计,完成样机开发,在此基础上研究爬壁机器人的运动特性及动力性能,最后基于虚拟样机技术对其建模仿真分析。
     爬壁机器人的本体结构设计部分包括车体外壳、吸附方案、密封方案、移动方式、动力系统和控制系统部分。设计出样机的结构之后对爬壁机器人滑落与倾覆两种情况进行静力学分析,得出避免发生滑落与倾覆的吸附力的范围及吸附力大小对运动性能与功耗的影响的结果。最终在原有爬壁机器人基础上设计出一种体积小、成本低、移动灵活、壁面适应能力强、吸附安全可靠和可根据工作需要搭载不同设备的爬壁机器人。
     运动特性及动力性能分析部分首先通过对爬壁机器人运动学的分析,得出其速度与转向的控制特性。然后基于拉格朗日方程,通过分别对爬壁机器人直线运动和转向运动动力学的分析,将吸附力设为变量,使其根据实际情况可以调整大小,得出机器人直线运动滑动吸盘吸附力的变化对爬壁机器人运动特性的影响,与转向运动时的驱动力与驱动力矩。从而得出一个通过改变吸盘吸附力来使爬壁机器人适应不同工作环境的方案。在保证安全可靠吸附力和壁面运动灵活能力的基础下,改善和提高爬壁机器人的运动性能并为其机构优化设计与运动控制提供理论研究基础。
     基于虚拟样机技术的仿真分析部分共用到了三种建模仿真分析软件。首先通过使用三维实体建模软件Pro/E建立三维参数化模型,然后将此模型导入动力学仿真分析软件MSC.ADAMS中,在虚拟环境下对爬壁机器人进行运动特性及动力特性的仿真分析,求解出最佳吸附力与驱动力的值。最后用求解出的吸附力与驱动力的值,对车轴、车轮、车体部件在有限元软件ANSYS中进行结构强度仿真分析,达了到为爬壁机器人系统优化设计提供实践指导的目的。
As one of the key parts of mobile robot, wall climbing robot have been paid moreand more attention and also obtained more and more application. The wheeled wallclimbing robot with vacuum adsorption has simple structure, high efficiency,practicality, ect. The vacuum adsorption is increased in the wheeled mobile robot, andthen it can work at the wall of horizontal or vertical. It can improve work efficiencyand is developed to deliver automation of the dangerous and heavy work.
     In this paper, a study on dynamic characteristics and dynamic performance ofwall climbing robot was carried out after overall structure design and prototypedevelopment. Then modeling simulation analysis was taken to practices based onvirtual prototyping technology.
     The structure design of wall climbing robot includes body shell, adsorptionscheme, sealing solutions and movement, the power system and control system. Thenstatic analysis of wall climbing robot including falling and overturn was performedafter overall structure design, the range of adsorption force and the influence whichadsorption force to motion performance and power were obtained. Finally, the wallclimbing robot was designed based on the original wall climbing robot with smallvolume, low cost, flexible moving and adaptive wall, ect.The analysis on dynamic characteristics and dynamic performance of wall climbing robot set the vacuum adsorption in variable. Then kinematics and dynamicsmodeling analysis was performed in pure rolling and steering movement condition.The influence of which the sliding type sucker to steering and movementcharacteristics was analyzed, and it provides a theoretical research foundation formechanism optimization design and motion control.
     The simulation analysis was made by using three modeling simulation analysissoft wares. At the first, the 3d parametric model is established by usingthree-dimensional modeling software Pro/E. Then the simulation analysis on motioncharacteristics and dynamic characteristics of wall climbing robot was performed byusing the model dynamics simulation software MSC. ADAMS in a virtual environment,and the solution of the optimal value of the driving force and adsorption force wereobtained. Finally, simulation analysis of structure strength of robot body, wheels andother structures were carried out by using finite element software ANSYS. It providesa guiding significance for system optimization design of wall climbing robo
引文
[01]C.Weisbin, et al. Miniature robots for space and military missions[J]. IEEE Robotics andAutomation Magazine, 1999, 3(6): 9~18
    [02]L.Briones, et al. Wall-climbing robot for inspection in nuclear power plants[C]. IEEEInternational Conference on Robotics and Automation,1994: 1409~1415
    [03]A Fujita, et al. Development of inspection robot for spherical gas storage tanks[C].Proceedings of the 16th International Symposium on Industrial Robots, 1986: 1185~1194
    [04]刘海波,武学民.国外建筑业的机器人化:国外建筑机器人发展概述[J].机器人, 1994,2(16): 119~128
    [05]肖立,佟仕忠,丁启敏等.爬壁机器人的现状与发展[J].自动化博览, 2005, 22(1):81~82,84
    [06]田政.磁力吸附式船体喷漆装置[J].世界发明, 1984, 11(17): 13
    [07]Mel Siegel. Remote and automated inspection: status and prospects[C]. The First Joint DoD/FAA/NASA Conference on Aging Aircraft, Ogden UT, 1997, 7
    [08]姜勇,王洪光,房立金等.一种用于反恐侦察的爬壁机器人系统[J].机器人, 2006, 28(5):530~535
    [09] NishiA. Development of wall-climbing robot[J]. Computer and Electrical Engineering, 1996,22(2): 123~149
    [10]Luk B L, Collie A A, Billingsley J. RobugⅡ: an intelligent wall climbing robot[C].Proceedings of the 1991 IEEE International Conference on Robotics and AutomationSacramento, Clifomia,1991: 3442~3447
    [11]Mark Green, Sean Halliday. A geometric modeling and animation systems for virtual reality[J].Communications of the ACM, 1996, 39(5): 47~53
    [12]Shigeo Hirose, Kazuyoshi. Ceiling Walk of Quadruped Wall Climbing Robot NINJA-2[C].CLAWAE'98 First International Symposium, Brussels Nov.1998:143~147
    [13]Balaguer C.,Gimenez A, Abderrahim M. ROMA robots for inspection of steel basedinfrastructures[J]. The Industrial Robot, 2002, 29(3): 246~251
    [14]Elkmann.N, Felsch.T, Sack.M, et al. Innovative service robot systems for facade cleaning ofdifficult-to-access areas[C]. Proceedings of the IEEE/RSJ International Conference onIntelligent Robots and Systems, EPFL, Lausanne, Switzerland, 2002:756~762
    [15]Totsten Bohme, et al. Service robots for facade cleaning[C]. Industrial Electronics Society,IECON 98. Proceedings of the 24th Annual Conference of the IEEE, 1998(12): 1204~1207
    [16]刘淑霞,王炎,徐殿国等.爬壁机器人技术的应用[J].机器人, 1999, 21(2): 148~155
    [17]刘淑良,邵浩,高波等.壁面清洗机器人及其控制系统[J].黑龙江自动化技术与应用, 1997,(3): 42~45
    [18]周延武,宗光华. Cleanbot-I擦窗机器人的智能化技术[J].机器人, 2002, 24 (1): 6~11
    [19]宗光华,王巍等.蓝天洁宝幕墙清洗机器人系统设计报告[R].北京:北京航空航天大学,2002
    [20]于波,刘荣,张厚祥等.超高层吊篮式幕墙清洗机器人控制系统的开发[J].计算机工程与设计, 2003, 24 (3): 61~64
    [21]唐伯雁,张慧慧,费仁元等.自攀爬式幕墙清洗机器人设计[J].制造业自动化, 2004,26(2): 46~48
    [22]付宜利,李志海.爬壁机器人的研究进展[J].机械设计, 2008 (4): 1~5
    [23]王富耻,张朝辉. ANSYS10.0有限元分析理论与工程应用.北京:电子工业出版社, 2006.5
    [24]邢洁.四轮驱动轮式机器人的差速转向及其力矩匹配[D].同济大学硕士学位论文, 2008
    [25]朱花,黄阁,仲卫东.轮式机器人机械结构研究[J].黑龙江科技信息,2007(10X): 39~40
    [26]洪鲁宾.嵌入式系统在工程机械上的应用[J].机电技术, 2005, 28(2): 34~37
    [27]蔡自兴.机器人学[M].清华大学出版社, 2003: 46~89
    [28]O Bottema, B Roth. Theoretical Kinematics[M]. Amsterdam, New York: North-Holland Pub.Co. 1979
    [29]Cai C S, Roth B. On the Planar Motion of Rigid Bodies with Point Contact[J]. Mechanismand Machine Theory, 1986, 6(21): 453~466
    [30]Chen W, Kumar V. Workspace of planar cooperating robots with rolling contacts[J]. AdvancedRobotics, 1994, 5(9): 483~504
    [31]Agrawal S K, Pandravada R. Kinematics and Workspace of a Rolling Disk Between PlanarManipulators[C]. Proc. of ACC, San Francisco, California, 1993: 741~745
    [32]SHETH PN, UICKER JR JJ. Generalized symbolic notation for mechanisms[J]. Journal ofEngineering for Industry, 1971, 1(93): 102~112
    [33]P F Muir, C P Neuman. Kinematic modeling of wheeled mobile robot[J]. Journal of RoboticSystem, 1987, 2(4): 281~340
    [34]R Rajagopalan. Generic kinematic formulation for wheeled mobile robots[J]. Journal ofRobotic Systems, 1997, 2(14): 77~91
    [35]N Sarkar, X Yun, V Kumar. Control of Mechanical Systems with Rolling Constraints:Application To Dynamic Control of Mobile Robots[J]. The International Journal of RoboticsResearch, 1994, 1(13): 55~69
    [36]X Yun, Y Yamamoto. Stability Analysis of the Internal Dynamics of a Wheeled MobileRobot[J]. Journal of Robotic systems, 1998, 10(14): 697~709
    [37]余志生,汽车理论[M].北京:机械工业出版社, 1990
    [38]李军,邢俊文,覃文洁等. ADAMS实例教程[M].北京理工大学出版社, 2002.7
    [39]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西北工业大学出版社, 2002
    [40]韩朝晖.基于ADAMS和MATLAB的汽车悬架系统仿真分析[J].机械设计, 2008, 25(7):16-19
    [41]吴志红,朱文吉,朱元.电动车电子差速控制方法的研究[J].电力电子技术, 2008, 42(10):64~66
    [42]范成健,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高[M].机械工业出版社,2006
    [43]王瑁成,邵敏.有限元法基本原理和数值方法[M].北京:清华大学出版社, 1997
    [44]李景湧.有限元法[M].第一版,北京:北京邮电大学出版社, 1999: 136~155
    [45]FAN Tao, DING Nan sheng, XU Xiang tao. Finite element analysis for the reinforcementbeam with wet steel encased based on ANSYS[J]. Sichuan Building Science,2008,1(134)79~82
    [46]Par Klingstam, Per Gullander. Overview of simulation tools for computer-aided productionengineering[J]. Computers in Industry. 1999(38): 173~186
    [47]刘延柱.高等动力学[M].北京:高等教育出版社,2001
    [48]钱志源.带滑动式吸盘的爬壁机器人运动特性分析及其应用研究[D].上海交通大学博士学位论文, 2006
    [49]杜中华,薛德庆,赵迎红. Pro/E和ADAMS传递过程中若干问题的讨论[J].机械与电子,2003 (2): 68-70
    [50]李增刚. ADAMS入门详解与实例[M].北京:国防工业出版社, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700