用户名: 密码: 验证码:
IL-10、IL-4及其信号通路在HSV-1激活KSHV复制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卡波济肉瘤相关疱疹病毒(Kaposi's sarcoma-associatedherpesvirus,KSHV)感染是卡波济肉瘤(Kaposi's sarcoma,KS)发生的必要条件,但如果没有其它协同因子的作用也不足以引发KS,然而促使KSHV引发KS的因素还未完全清楚。课题组先前的研究发现,人类疱疹病毒6型(human herpesvirus 6,HHV-6)和人类免疫缺陷病毒1型(human immunodelficiency virus type 1,HIV-1)反式激活蛋白(transactivative transcription protein,Tat)是激活KSHV裂解性周期复制的重要协同因子,本研究中我们进一步探讨了人类单纯疱疹病毒1型(human herpes simplex virus-1,HSV-1)影响KSHV复制的潜能。本文通过检测原发性渗出性淋巴瘤【primary effusionlymphoma,PEL,又称体腔渗出性淋巴瘤(body cavity-basedlymphoma,BCBL)】来源的BCBL-1细胞中KSHV裂解期基因mRNA转录、裂解期蛋白表达和感染性病毒颗粒释放,证实HSV-1是KS致病过程中的一个潜在的重要因素。检测KSHV ORF50启动子驱动活性的虫荧光素酶报告实验并配合针对ORF50的小干扰RNA(smallinterference RNA,siRNA)技术进一步确实了上述结果,表明HSV-1通过直接激活ORF50表达来诱导KSHV复制。机制方面的研究证实,HSV-1可以诱导人白细胞介素(interleukin,IL)-10及其受体(IL-10receptor alpha,IL-10Rα)、IL-4及其受体(IL-4 receptor,IL-4R)的表达;以中和抗体封闭IL-10或IL-4能够抑制HSV-1诱导的KSHV复制。另外,IL-10/IL-10Rα、IL-4/IL-4R能够激活PI3K/AKT、ERKMAPK和JAK2信号通路【PI3K:磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K);AKT:又称蛋白激酶B(proteinkinase B,PKB);MAPK:丝裂原活化蛋白激酶(mitogen-activatedprotein kinase,MAPK);ERK:细胞外信号调节蛋白激酶(extracellularsignal-regulated protein kinases,ERK);JAK2:Janus激酶(Janus kinase,JAK)2】。PI3K抑制剂LY294002、ERK抑制剂peptideⅡ和JAK2抑制剂AG490均可以降低HSV-1诱导的KSHV复制。上述研究结果表明,HSV-1可能通过诱导KSHV复制提高病毒载量从而参与KS的发病;IL-10、IL-4及其信号通路在调控HSV-1诱导KSHV复制的过程中发挥重要作用。本研究结果提示,阻断PI3K/AKT、ERK MAPK和JAK2信号通路对KS患者的治疗有一定意义。
Kaposi's sarcoma-associated herpesvirus (KSHV) infection appears to be necessary but not sufficient for Kaposi's sarcoma (KS) development without other cofactors. However, factors that facilitate KSHV to cause KS have not been well defined. Previously, we identified that both human herpesvirus 6 (HHV-6) and human immunodeficiency virus type 1 (HIV-1) Tat were important cofactors that activated lytic cycle replication of KSHV. Here, we further investigated the potential of human herpes simplex virus-1 (HSV-1) to influence KSHV replication. We demonstrated that HSV-1 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particls in BCBL-1 cells. These results were further confirmed by a luciferase reporter assay testing ORF50 promoter-driven luciferase activity and an RNA interference experiment using small interfering RNA (siRNA) targeting KSHV ORF50. Studies on mechanism showed that HSV-1 induced the production of interleukin-10 (IL-10) and its receptor (IL-10Rα), interleukin-4 (IL-4) and its receptor (IL-4R). Neutralization of IL-10 or IL-4 with corresponding neutralizing antibodies decreased the lytic cycle replication of KSHV by HSV-1. In addition, IL-10/IL-10Ra and IL-4/IL-4R from HSV-1-infected BCBL-1 cells activated PI3K/AKT, ERK MAPK and JAK2 signalings. Addition of LY294002, PI3K inhibitor, peptide II, ERK inhibitor and AG490, JAK2 inhibitor into cell culture significantly decreased the lytic replication of KSHV by HSV-1. These findings suggest that HSV-1 may participate in KS pathogenesis by inducing KSHV replication and increasing KSHV viral load. IL-10、IL-4 and their signalings played an important role in modulation of HSV-1-induced KSHV replication. These data also suggest that the blockage of PI3K/AKT, ERK MAPK and JAK2 signalings may be of therapeutic value in KS patients.
引文
1. Boshoff C, Weiss R. AIDS-related malignancies. Nat Rev Cancer. 2002;2:373-382.
    2. Damania B. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol. 2004;2:656-668.
    3. van Benthem BH, Spaargaren J, van Den Hoek JA, et al. Prevalence and risk factors of HSV-1 and HSV-2 antibodies in European HIV infected women. Sex Transm Infect. 2001;77:120-124.
    4. Huber MA. Herpes simplex type-1 virus infection. Quintessence Int. 2003;34:453-467.
    5. Birek C, Ficarra G. The diagnosis and management of oral herpes simplex infection. Curr Infect Dis Rep. 2006;8:181-188.
    6. Shieh MT, WuDunn D, Montgomery RI, et al. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol. 1992;116:1273-1281.
    7. Herold BC, Visalli RJ, Susmarski N, et al. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol. 1994;75 (Pt 6):1211-1222.
    8. Laquerre S, Argnani R, Anderson DB, et al. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol. 1998;72:6119-6130.
    9. Montgomery RI, Warner MS, Lum BJ, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996;87:427-436.
    10. Whitbeck JC, Peng C, Lou H, et al. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol. 1997;71:6083-6093.
    11. Geraghty RJ, Krummenacher C, Cohen GH, et al. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science. 1998;280:1618-1620.
    12. Shukla D, Liu J, Blaiklock P, et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 1999;99:13-22.
    13. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science. 1994;266:1865-1869.
    14. Katano H, Sata T. Human herpesvirus 8 virology, epidemiology and related diseases. Jpn J Infect Dis. 2000;53:137-155.
    15. Dourmishev LA, Dourmishev AL, Palmeri D, et al. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev. 2003;67:175-212, table of contents.
    16. Staskus KA, Zhong W, Gebhard K, et al. Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol. 1997;71:715-719.
    17. Decker LL, Shankar P, Khan G, et al. The Kaposi sarcoma-associated herpesvirus (KSHV) is present as an intact latent genome in KS tissue but replicates in the peripheral blood mononuclear cells of KS patients. J Exp Med. 1996;184:283-288.
    18. Sturzl M, Blasig C, Schreier A, et al. Expression of HHV-8 latency-associated TO.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi's sarcoma. Int J Cancer. 1997;72:68-71.
    19. Schulz TF, Moore PS. Kaposi's sarcoma-associated herpesvirus: a new human tumor virus, but how? Trends Microbiol. 1999;7: 196-200.
    20. Sun R, Lin SF, Staskus K, et al. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol. 1999;73:2232-2242.
    21. Sirianni MC, Vincenzi L, Topino S, et al. Human herpesvirus 8 DNA sequences in CD8+ T cells. J Infect Dis. 1997;176:541.
    22. Henry M, Uthman A, Geusau A, et al. Infection of circulating CD34+ cells by HHV-8 in patients with Kaposi's sarcoma. J Invest Dermatol. 1999;113:613-616.
    23. Mesri EA, Cesarman E, Arvanitakis L, et al. Human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med. 1996; 183:2385-2390.
    24. Beral V, Newton R. Overview of the epidemiology of immunodeficiency-associated cancers. J Natl Cancer Inst Monogr. 1998:1-6.
    25. Mendez JC, Procop GW, Espy MJ, et al. Relationship of HHV8 replication and Kaposi's sarcoma after solid organ transplantation. Transplantation. 1999;67:1200-1201.
    26. Monini P, Colombini S, Sturzl M, et al. Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood. 1999;93:4044-4058.
    27. Varthakavi V, Browning PJ, Spearman P. Human immunodeficiency virus replication in a primary effusion lymphoma cell line stimulates lytic-phase replication of Kaposi's sarcoma-associated herpesvirus. J Virol. 1999;73:10329-10338.
    28. Varthakavi V, Smith RM, Deng H, et al. Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus through induction of KSHV Rta. Virology. 2002;297:270-280.
    29. Beral V, Peterman TA, Berkelman RL, et al. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet. 1990;335:123-128.
    30. Vieira J, O'Hearn P, Kimball L, et al. Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol. 2001;75:1378-1386.
    31. Lu C, Zeng Y, Huang Z, et al. Human herpesvirus 6 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus. Am J Pathol. 2005;166:173-183.
    32. Ensoli B, Barillari G, Salahuddin SZ, et al. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature. 1990;345:84-86.
    33. Harrington W, Jr., Sieczkowski L, Sosa C, et al. Activation of HHV-8 by HIV-1 tat. Lancet. 1997;349:774-775.
    34. Casper C, Krantz E, Taylor H, et al. Assessment of a combined testing strategy for detection of antibodies to human herpesvirus 8 (HHV-8) in persons with Kaposi's sarcoma, persons with asymptomatic HHV-8 infection, and persons at low risk for HHV-8 infection. J Clin Microbiol. 2002;40:3822-3825.
    35. Chen T, Hudnall SD. Anatomical mapping of human herpesvirus reservoirs of infection. Mod Pathol. 2006;19:726-737.
    36. Kumar N, McLean K, Inoue N, et al. Human herpesvirus 8 genoprevalence in populations at disparate risks of Kaposi's sarcoma. J Med Virol. 2007;79:52-59.
    37. Lin SS, Chou MY, Ho CC, et al. Study of the viral infections and cytokines associated with recurrent aphthous ulceration. Microbes Infect. 2005;7:635-644.
    38. Miller CS, Avdiushko SA, Kryscio RJ, et al. Effect of prophylactic valacyclovir on the presence of human herpesvirus DNA in saliva of healthy individuals after dental treatment. J Clin Microbiol. 2005;43:2173-2180.
    39. Key NS, Vercellotti GM, Winkelmann JC, et al. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. Proc Natl Acad Sci USA. 1990;87:7095-7099.
    40. Lamontagne L, Jolicoeur P. Herpes simplex virus type 1 pathogenicity in mice expressed by lytic infection in pre-B and B cells. Clin Immunol Immunopathol. 1994;73:38-44.
    41. Harel L, Smetana Z, Prais D, et al. Presence of viremia in patients with primary herpetic gingivostomatitis. Clin Infect Dis. 2004;39:636-640.
    42. Delli Bovi P, Donti E, Knowles DM, 2nd, et al. Presence of chromosomal abnormalities and lack of AIDS retrovirus DNA sequences in AIDS-associated Kaposi's sarcoma. Cancer Res. 1986;46:6333-6338.
    43. Lu C, Gordon GM, Chandran B, et al. Human herpesvirus 8 reactivation and human immunodeficiency virus type 1 gp120. Arch Pathol Lab Med. 2002;126:941-946.
    44. Chang PJ, Shedd D, Miller G. Two subclasses of Kaposi's sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J Virol. 2005;79:8750-8763.
    45. Sun R, Lin SF, Gradoville L, et al. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci USA. 1998;95:10866-10871.
    46. Lukac DM, Renne R, Kirshner JR, et al. Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology. 1998;252:304-312.
    47. Seaman WT, Ye D, Wang RX, et al. Gene expression from the ORF50/K8 region of Kaposi's sarcoma-associated herpesvirus. Virology. 1999;263:436-449.
    48. Vieira J, O'Hearn PM. Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology. 2004;325:225-240.
    49. Chang J, Renne R, Dittmer D, et al. Inflammatory cytokines and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology. 2000;266:17-25.
    50. Zoeteweij JP, Rinderknecht AS, Davis DA, et al. Minimal reactivation of Kaposi's sarcoma-associated herpesvirus by corticosteroids in latently infected B cell lines. J Med Virol. 2002;66:378-383.
    51. Kudoh A, Daikoku T, Sugaya Y, et al. Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate-early and early genes, preventing viral lytic replication. J Virol. 2004;78:104-115.
    52. Kudoh A, Fujita M, Kiyono T, et al. Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Viroi. 2003;77:851-861.
    53. McAllister SC, Hansen SG, Messaoudi I, et al. Increased efficiency of phorbol ester-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus during S phase. J Virol. 2005;79:2626-2630.
    54. Mercader M, Taddeo B, Panella JR, et al. Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol. 2000;156:1961-1971.
    55. Zeng Y, Zhang X, Huang Z, et al. Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol. 2007;81:2401-2417.
    56. Li-Weber M, Salgame P, Hu C, et al. Th2-specific protein/DNA interactions at the proximal nuclear factor-AT site contribute to the functional activity of the human IL-4 promoter. J Immunol. 1998;161:1380-1389.
    57. Benjamin D, Knobloch TJ, Dayton MA. Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10. Blood. 1992;80:1289-1298.
    58. Masood R, Zhang Y, Bond MW, et al. Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma. Blood. 1995;85:3423-3430.
    59. Drexler HG, Meyer C, Gaidano G, et al. Constitutive cytokine production by primary effusion (body cavity-based) lymphoma-derived cell lines. Leukemia. 1999; 13:634-640.
    60. Jones KD, Aoki Y, Chang Y, et al. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi's sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood. 1999;94:2871-2879.
    61. Oksenhendler E, Carcelain G, Aoki Y, et al. High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric castleman disease in HIV-infected patients. Blood. 2000;96:2069-2073.
    62. Sirianni MC, Vincenzi L, Fiorelli V, et al. gamma-Interferon production in peripheral blood mononuclear cells and tumor infiltrating lymphocytes from Kaposi's sarcoma patients: correlation with the presence of human herpesvirus-8 in peripheral blood mononuclear cells and lesional macrophages. Blood. 1998;91:968-976.
    63. Husain SR, Kreitman RJ, Pastan I, et al. Interleukin-4 receptor-directed cytotoxin therapy of AIDS-associated Kaposi's sarcoma tumors in xenograft model. Nat Med. 1999;5:817-822.
    64. Puri RK. IL-4 receptor-directed cytotoxin for therapy of AIDS-associated KS tumors. Drug News Perspect. 2000;13:395-402.
    65. Miles SA, Testa M, Huang J, et al. Lack of antitumor activity and intolerance of interleukin-4 in patients with advanced HIV disease and Kaposi's sarcoma. J Interferon Cytokine Res. 2002;22:1143-1148.
    66. McLemore ML, Grewal S, Liu F, et al. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity. 2001;14:193-204.
    67. Zhou C, Saxon A, Zhang K. Human activation-induced cytidine deaminase is induced by IL-4 and negatively regulated by CD45: implication of CD45 as a Janus kinase phosphatase in antibody diversification. J Immunol. 2003;170:1887-1893.
    68. Finbloom DS, Winestock KD. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol. 1995;155:1079-1090.
    69. Kelly-Welch AE, Hanson EM, Boothby MR, et al. Interleukin-4 and interleukin-13 signaling connections maps. Science. 2003;300:1527-1528.
    70. Grehan JF, Levay-Young BK, Fogelson JL, et al. IL-4 and IL-13 induce protection of porcine endothelial cells from killing by human complement and from apoptosis through activation of a phosphatidylinositide 3-kinase/Akt pathway. J Immunol. 2005;175:1903-1910.
    71. Crawley JB, Williams LM, Mander T, et al. Interleukin-10 stimulation of phosphatidylinositol 3-kinase and p70 S6 kinase is required for the proliferative but not the antiinflammatory effects of the cytokine. J Biol Chem. 1996;271:16357-16362.
    72. Palmer-Crocker RL, Hughes CC, Pober JS. IL-4 and IL-13 activate the JAK2 tyrosine kinase and Stat6 in cultured human vascular endothelial cells through a common pathway that does not involve the gamma c chain. J Clin Invest. 1996;98:604-609.
    73. Ip WK, Wong CK, Lam CW. Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin Exp Immunol. 2006;145:162-172.
    74. Zhou JH, Broussard SR, Strle K, et al. IL-10 inhibits apoptosis of promyeloid cells by activating insulin receptor substrate-2 and phosphatidylinositol 3'-kinase. J Immunol. 2001;167:4436-4442.
    75. David M, Ford D, Bertoglio J, et al. Induction of the IL-13 receptor alpha2-chain by IL-4 and IL-13 in human keratinocytes: involvement of STAT6, ERK and p38 MAPK pathways. Oncogene. 2001;20:6660-6668.
    76. Deng J, Hua K, Lesser SS, et al. Interleukin-4 mediates STAT6 activation in 3T3-L1 preadipocytes but not adipocytes. Biochem Biophys Res Commun. 2000;267:516-520.
    77. Wery-Zennaro S, Letourneur M, David M, et al. Binding of IL-4 to the IL-13Ralpha(1)/IL-4Ralpha receptor complex leads to STAT3 phosphorylation but not to its nuclear translocation. FEBS Lett. 1999;464:91-96.
    78. Cohen A, Brodie C, Sarid R. An essential role of ERK signalling in TPA-induced reactivation of Kaposi's sarcoma-associated herpesvirus. J Gen Virol. 2006;87:795-802.
    79. Ford PW, Bryan BA, Dyson OF, et al. Raf/MEK/ERK signalling triggers reactivation of Kaposi's sarcoma-associated herpesvirus latency. J Gen Virol. 2006;87:1139-1144.
    80. Lan K, Murakami M, Choudhuri T, et al. Intracellular-activated Notchl can reactivate Kaposi's sarcoma-associated herpesvirus from latency. Virology. 2006;351:393-403.
    81. Pan H, Xie J, Ye F, et al. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J Virol. 2006;80:5371-5382.
    82. Wang L, Dittmer DP, Tomlinson CC, et al. Immortalization of primary endothelial cells by the K1 protein of Kaposi's sarcoma-associated herpesvirus. Cancer Res. 2006;66:3658-3666.
    83. Akula SM, Ford PW, Whitman AG, et al. Raf promotes human herpesvirus-8 (HHV-8/KSHV) infection. Oncogene. 2004;23:5227-5241.
    84. Deutsch E, Cohen A, Kazimirsky G, et al. Role of protein kinase C delta in reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol. 2004;78:10187-10192.
    85. Sodhi A, Montaner S, Patel V, et al. Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci U S A. 2004;101:4821 -4826.
    86. Murata T, Puri RK. Comparison of IL-13- and IL-4-induced signaling in EBV-immortalized human B cells. Cell Immunol. 1997;175:33-40.
    87. Benetti L, Roizman B. Protein kinase B/Akt is present in activated form throughout the entire replicative cycle of deltaU(S)3 mutant virus but only at early times after infection with wild-type herpes simplex virus 1. J Virol. 2006;80:3341-3348.
    88. Diao L, Zhang B, Xuan C, et al. Activation of c-Jun N-terminal kinase (JNK) pathway by HSV-1 immediate early protein ICPO. Exp Cell Res. 2005;308:196-210.
    89. McLean TI, Bachenheimer SL. Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J Virol. 1999;73:8415-8426.
    90. Teresa Sciortino M, Medici MA, Marino-Merlo F, et al. Signaling pathway used by HSV-1 to induce NF-kappaB activation: possible role of herpes virus entry receptor A. Ann N Y Acad Sci. 2007; 1096:89-96.
    1.Kaposi M.Idiopathisches multiples Pigmentsarkom der Haut.Arch Dermatol Syph.1872:265-273.
    2.Oettle AG.Geographical and racial differences in the frequency of Kaposi's sarcoma as evidence of envitonmental or genetic causes.Acta Unio Int Contra Cancrum.1962;18:330-363.
    3.G.Giraldo EB,F.Haguenau.Herpes-type virus particles in tissue culture of Kaposi's sarcoma from different geographic regions.J Natl Cancer Inst.1972;49:1509-1526.
    4.Chang Y,Cesarman E,Pessin MS,et al.Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.Science.1994;266:1865-1869.
    5.Cesarman E,Chang Y,Moore PS,et al.Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas.N Engl J Med.1995;332:1186-1191.
    6.Waterston A,Bower M.Fifty years of multicentric Castleman's disease.Acta Oncol.2004;43:698-704.
    7.Soulier J,Grollet L,Oksenhendler E,et al.Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease.Blood.1995;86:1276-1280.
    8.Russo JJ,Bohenzky RA,Chien MC,et al.Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus(HHV8).Proc Natl Acad Sci U S A.1996;93:14862-14867.
    9.Neipel F,Albrecht JC,Fleckenstein B.Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8:determinants of its pathogenicity? J Virol.1997;71:4187-4192.
    10. Sarid R, Flore O, Bohenzky RA, et al. Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol. 1998;72:1005-1012.
    11. Jenner RG, Alba MM, Boshoff C, et al. Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol. 2001;75:891-902.
    12. Parravicini C, Chandran B, Corbellino M, et al. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am J Pathol. 2000;156:743-749.
    13. Katano H, Sato Y, Kurata T, et al. Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi's sarcoma, and multicentric Castleman's disease. Virology. 2000;269:335-344.
    14. Dupin N, Fisher C, Kellam P, et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A. 1999;96:4546-4551.
    15. Dittmer DP. Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res. 2003;63:2010-2015.
    16. L. Chang MK. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37-40.
    17. Bruening W, Giasson B, Mushynski W, et al. Activation of stress-activated MAP protein kinases up-regulates expression of transgenes driven by the cytomegalovirus immediate/early promoter. Nucleic Acids Res. 1998;26:486-489.
    18. McLean TI, Bachenheimer SL. Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J Virol. 1999;73:8415-8426.
    19. Zachos G, Clements B, Conner J. Herpes simplex virus type 1 infection stimulates p38/c-Jun N-terminal mitogen-activated protein kinase pathways and activates transcription factor AP-1. J Biol Chem. 1999;274:5097-5103.
    20. Sharma-Walia N, Krishnan HH, Naranatt PP, et al. ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J Virol. 2005;79:10308-10329.
    21. Xie J, Pan H, Yoo S, et al. Kaposi's sarcoma-associated herpesvirus induction of AP-1 and interleukin 6 during primary infection mediated by multiple mitogen-activated protein kinase pathways. J Virol. 2005;79:15027-15037.
    22. Naranatt PP, Akula SM, Zien CA, et al. Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J Virol. 2003;77:1524-1539.
    23. Ford PW, Bryan BA, Dyson OF, et al. Raf/MEK/ERK signalling triggers reactivation of Kaposi's sarcoma-associated herpesvirus latency. J Gen Virol. 2006;87:1139-1144.
    24. Cohen A, Brodie C, Sarid R. An essential role of ERK signalling in TPA-induced reactivation of Kaposi's sarcoma-associated herpesvirus. J Gen Virol. 2006;87:795-802.
    25. An J, Lichtenstein AK, Brent G, et al. The Kaposi sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expression: role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood. 2002;99:649-654.
    26. An J, Sun Y, Sun R, et al. Kaposi's sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-kappaB and JNK/AP1 pathways. Oncogene. 2003;22:3371-3385.
    27. An J, Sun Y, Rettig MB. Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood. 2004; 103:222-228.
    28. Liu L, Eby MT, Rathore N, et al. The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Ikappa B kinase complex. J Biol Chem. 2002;277:13745-13751.
    29. Field N, Low W, Daniels M, et al. KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci. 2003;116:3721-3728.
    30. Kieser A, Kilger E, Gires O, et al. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. Embo J. 1997;16:6478-6485.
    31. Sadler R, Wu L, Forghani B, et al. A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 1999;73:5722-5730.
    32. McCormick C, Ganem D. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science. 2005;307:739-741.
    33. Li H, Komatsu T, Dezube BJ, et al. The Kaposi's sarcoma-associated herpesvirus K12 transcript from a primary effusion lymphoma contains complex repeat elements, is spliced, and initiates from a novel promoter. J Virol. 2002;76:l 1880-11888.
    34. Sturzl M, Blasig C, Schreier A, et al. Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi's sarcoma. Int J Cancer. 1997;72:68-71.
    35. Kliche S, Nagel W, Kremmer E, et al. Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell. 2001;7:833-843.
    36. Choi JK, Lee BS, Shim SN, et al. Identification of the novel K15 gene at the rightmost end of the Kaposi's sarcoma-associated herpesvirus genome. J Virol. 2000;74:436-446.
    37. Glenn M, Rainbow L, Aurade F, et al. Identification of a spliced gene from Kaposi's sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J Virol. 1999;73:6953-6963.
    38. Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol. 2006;87:1047-1074.
    39. Lanier LL. Viral immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling in cell transformation and cancer. Trends Cell Biol. 2006;16:388-390.
    40. Chen SY, Lu J, Shih YC, et al. Epstein-Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J Virol. 2002;76:9556-9561.
    41. Wang L, Dittmer DP, Tomlinson CC, et al. Immortalization of primary endothelial cells by the K1 protein of Kaposi's sarcoma-associated herpesvirus. Cancer Res. 2006;66:3658-3666.
    42. Bais C, Santomasso B, Coso O, et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998;391:86-89.
    43. Brinkmann MM, Glenn M, Rainbow L, et al. Activation of mitogen-activated protein kinase and NF-kappaB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J Virol. 2003;77:9346-9358.
    44. Hamza MS, Reyes RA, Izumiya Y, et al. ORF36 protein kinase of Kaposi's sarcoma herpesvirus activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem. 2004;279:38325-38330.
    45. Lee BS, Lee SH, Feng P, et al. Characterization of the Kaposi's sarcoma-associated herpesvirus K1 signalosome. J Virol. 2005;79:12173-12184.
    46. Gonzalez CM, Wong EL, Bowser BS, et al. Identification and characterization of the Orf49 protein of Kaposi's sarcoma-associated herpesvirus. J Virol. 2006;80:3062-3070.
    47. Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N Engl J Med. 2005;352:1317-1323.
    48. Sin SH, Roy D, Wang L, et al. Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood. 2007;109:2165-2173.
    49. Tomlinson CC, Damania B. The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol. 2004;78:1918-1927.
    50. Guo HG, Browning P, Nicholas J, et al. Characterization of a chemokine receptor-related gene in human herpesvirus 8 and its expression in Kaposi's sarcoma. Virology. 1997;228:371-378.
    51. Gershengorn MC, Geras-Raaka E, Varma A, et al. Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J Clin Invest. 1998;102:1469-1472.
    52. Geras-Raaka E, Varma A, Clark-Lewis I, et al. Kaposi's sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1 alpha inhibit signaling by KSHV G protein-coupled receptor. Biochem Biophys Res Commun. 1998;253:725-727.
    53. Geras-Raaka E, Varma A, Ho H, et al. Human interferon-gamma-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Exp Med. 1998;188:405-408.
    54. Sodhi A, Montaner S, Gutkind JS. Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol. 2004;5:998-1012.
    55. Cannon M, Philpott NJ, Cesarman E. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol. 2003;77:57-67.
    56. Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99:13571-13576.
    57. Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995;267:2003-2006.
    58. Manning BD, Tee AR, Logsdon MN, et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10:151-162.
    59. Fukada T, Hibi M, Yamanaka Y, et al. Two signals are necessary for cell proliferation induced by a cytokine receptor gpl30: involvement of STAT3 in anti-apoptosis. Immunity. 1996;5:449-460.
    60. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004; 18:2893-2904.
    61. Brugarolas JB, Vazquez F, Reddy A, et al. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell. 2003;4:147-158.
    62. Minet E, Arnould T, Michel G, et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 2000;468:53-58.
    63. Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998;95:7987-7992.
    64. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468-472.
    65. Hoffman EC, Reyes H, Chu FF, et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science. 1991;252:954-958.
    66. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U SA. 1993;90:4304-4308.
    67. Acker T, Plate KH. A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J Mol Med. 2002;80:562-575.
    68. Montaner S, Sodhi A, Ramsdell AK, et al. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi's sarcoma. Cancer Res. 2006;66:168-174.
    69. Sodhi A, Chaisuparat R, Hu J, et al. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell. 2006;10:133-143.
    70. Montaner S, Sodhi A, Molinolo A, et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell. 2003;3:23-36.
    71. Bais C, Van Geelen A, Eroles P, et al. Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell. 2003;3:131-143.
    72. Murakami Y, Yamagoe S, Noguchi K, et al. Ets-1-dependent expression of vascular endothelial growth factor receptors is activated by latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus through interaction with Daxx. J Biol Chem. 2006;281:28113-28121.
    73. Verma A, Kambhampati S, Parmar S, et al. Jak family of kinases in cancer. Cancer Metastasis Rev. 2003;22:423-434.
    74. Burger M, Hartmann T, Burger JA, et al. KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene. 2005;24:2067-2075.
    75. Hideshima T, Chauhan D, Teoh G, et al. Characterization of signaling cascades triggered by human interleukin-6 versus Kaposi's sarcoma-associated herpes virus-encoded viral interleukin 6. Clin Cancer Res. 2000;6:1180-1189.
    76. Osborne J, Moore PS, Chang Y. KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol. 1999;60:921-927.
    77. Meads MB, Medveczky PG. Kaposi's sarcoma-associated herpesvirus-encoded viral interleukin-6 is secreted and modified differently than human interleukin-6: evidence for a unique autocrine signaling mechanism. J Biol Chem. 2004;279:51793-51803.
    78. Punjabi AS, Carroll PA, Chen L, et al. Persistent activation of STAT3 by latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells. J Virol. 2007;81:2449-2458.
    79. Zeng Y, Zhang X, Huang Z, et al. Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol. 2007;81:2401-2417.
    80. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003; 1653:1-24.
    81. Fujimuro M, Wu FY, ApRhys C, et al. A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med. 2003;9:300-306.
    82. Fujimuro M, Hayward SD. The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J Virol. 2003;77:8019-8030.
    83. Fujimuro M, Liu J, Zhu J, et al. Regulation of the interaction between glycogen synthase kinase 3 and the Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen. J Virol. 2005;79:10429-10441.
    84. Wang HW, Trotter MW, Lagos D, et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet. 2004;36:687-693.
    85. Hong YK, Foreman K, Shin JW, et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet. 2004;36:683-685.
    86. Carroll PA, Brazeau E, Lagunoff M. Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology. 2004;328:7-18.
    87. Liang Y, Ganem D. Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci U S A. 2003;100:8490-8495.
    88. Liang Y, Chang J, Lynch SJ, et al. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev. 2002;16:1977-1989.
    89. Chang H, Dittmer DP, Shin YC, et al. Role of Notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene expression. J Virol. 2005;79:14371-14382.
    90. Lan K, Kuppers DA, Verma SC, et al. Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol. 2004;78:6585-6594.
    91. Lan K, Kuppers DA, Robertson ES. Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jkappa, the major downstream effector of the Notch signaling pathway. J Virol. 2005;79:3468-3478.
    92. Matsumura S, Fujita Y, Gomez E, et al. Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol. 2005;79:8493-8505.
    93. Lan K, Kuppers DA, Verma SC, et al. Induction of Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol. 2005;79:7453-7465.
    1. Boshoff C, Weiss R. AIDS-related malignancies. Nat Rev Cancer. 2002;2:373-382.
    2. Damania B. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol. 2004;2:656-668.
    3. Salahuddin SZ, Ablashi DV, Markham PD, et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986;234:596-601.
    4. Lopez C, Pellett P, Stewart J, et al. Characteristics of human herpesvirus-6. J Infect Dis. 1988; 157:1271-1273.
    5. Lusso P, Salahuddin SZ, Ablashi DV, et al. Diverse tropism of HBLV (human herpesvirus 6). Lancet. 1987;2:743.
    6. Human herpesvirus-6 strain groups: a nomenclature. Arch Virol. 1993;129:363-366.
    7. Frenkel N, Schirmer EC, Wyatt LS, et al. Isolation of a new herpesvirus from human CD4+ T cells. Proc Natl Acad Sci U S A. 1990;87:748-752.
    8. Wyatt LS, Frenkel N. Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. J Virol. 1992;66:3206-3209.
    9. Black JB, Inoue N, Kite-Powell K, et al. Frequent isolation of human herpesvirus 7 from saliva. Virus Res. 1993;29:91-98.
    10. Wyatt LS, Rodriguez WJ, Balachandran N, et al. Human herpesvirus 7: antigenic properties and prevalence in children and adults. J Virol. 1991;65:6260-6265.
    11. Berneman ZN, Ablashi DV, Li G, et al. Human herpesvirus 7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus 6 and human cytomegalovirus. Proc Natl Acad Sci U S A. 1992;89:10552-10556.
    12. Tanaka K, Kondo T, Torigoe S, et al. Human herpesvirus 7: another causal agent for roseola (exanthem subitum). J Pediatr. 1994;125:1-5.
    13. Yamanishi K. Human herpesvirus 6. Microbiol Immunol. 1992;36:551-561.
    14. Yamanishi K, Okuno T, Shiraki K, et al. Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet. 1988;1:1065-1067.
    15. Frenkel N, Katsafanas GC, Wyatt LS, et al. Bone marrow transplant recipients harbor the B variant of human herpesvirus 6. Bone Marrow Transplant. 1994;14:839-843.
    16. Drobyski WR, Knox KK, Majewski D, et al. Brief report: fatal encephalitis due to variant B human herpesvirus-6 infection in a bone marrow-transplant recipient. N Engl J Med. 1994;330:1356-1360.
    17. Carrigan DR, Knox KK. Human herpesvirus 6 (HHV-6) isolation from bone marrow: HHV-6-associated bone marrow suppression in bone marrow transplant patients. Blood. 1994;84:3307-3310.
    18. Secchiero P, Carrigan DR, Asano Y, et al. Detection of human herpesvirus 6 in plasma of children with primary infection and immunosuppressed patients by polymerase chain reaction. J Infect Dis. 1995;171:273-280.
    19. Katsafanas GC, Schirmer EC, Wyatt LS, et al. In vitro activation of human herpesviruses 6 and 7 from latency. Proc Natl Acad Sci U S A. 1996;93:9788-9792.
    20. Frenkel N, Schirmer EC, Katsafanas G, et al. T-cell activation is required for efficient replication of human herpesvirus 6. J Virol. 1990;64:4598-4602.
    21. Hidaka Y, Okada K, Kusuhara K, et al. Exanthem subitum and human herpesvirus 7 infection. Pediatr Infect Dis J. 1994;13:1010-1011.
    22. Asano Y, Suga S, Yoshikawa T, et al. Clinical features and viral excretion in an infant with primary human herpesvirus 7 infection. Pediatrics. 1995;95:187-190.
    23. Sutherland S, Christofinis G, O'Grady J, et al. A serological investigation of human herpesvirus 6 infections in liver transplant recipients and the detection of cross-reacting antibodies to cytomegalovirus. J Med Virol. 1991 ;33:172-176.
    24. Irving WL, Ratnamohan VM, Hueston LC, et al. Dual antibody rises to cytomegalovirus and human herpesvirus type 6: frequency of occurrence in CMV infections and evidence for genuine reactivity to both viruses. J Infect Dis. 1990;161:910-916.
    25. Henle W, Henle G, Lennette ET. The Epstein-Barr virus. Sci Am. 1979;241:48-59.
    26. Henle G, Henle W, Diehl V. Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U SA. 1968;59:94-101.
    27. Hanto DW, Frizzera G, Gajl-Peczalska KJ, et al. Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation. 1985;39:461-472.
    28. Hanto DW, Gajl-Peczalska KJ, Frizzera G, et al. Epstein-Barr virus (EBV) induced polyclonal and monoclonal B-cell lymphoproliferative diseases occurring after renal transplantation. Clinical, pathologic, and virologic findings and implications for therapy. Ann Surg. 1983;198:356-369.
    29. Henle W, Henle G. Epstein-Barr virus and human malignancies. Cancer. 1974;34:suppl: 1368-1374.
    30. Lindahl T, Klein G, Reedman BM, et al. Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. Int J Cancer. 1974; 13:764-772.
    31. Raab-Traub N, Flynn K, Pearson G, et al. The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int J Cancer. 1987;39:25-29.
    32. zur Hausen H, Schulte-Holthausen H, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature. 1970;228:1056-1058.
    33. Dillner J, Kallin B. The Epstein-Barr virus proteins. Adv Cancer Res. 1988;50:95-158.
    
    34. Biggin M, Bodescot M, Perricaudet M, et al. Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol. 1987;61:3120-3132.
    35. Rabson M, Heston L, Miller G. Identification of a rare Epstein-Barr virus variant that enhances early antigen expression in Raji cells. Proc Natl Acad Sci U S A. 1983;80:2762-2766.
    36. Flamand L, Stefanescu I, Ablashi DV, et al. Activation of the Epstein-Barr virus replicative cycle by human herpesvirus 6. J Virol. 1993;67:6768-6777.
    37. Hatfull G, Bankier AT, Barrell BG, et al. Sequence analysis of Raji Epstein-Barr virus DNA. Virology. 1988;164:334-340.
    38. Polack A, Delius H, Zimber U, et al. Two deletions in the Epstein-Barr virus genome of the Burkitt lymphoma nonproducer line Raji. Virology. 1984;133:146-157.
    39. Knowles DM, Inghirami G, Ubriaco A, et al. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood. 1989;73:792-799.
    40. Purtilo DT, Sakamoto K, Barnabei V, et al. Epstein-Barr virus-induced diseases in boys with the X-linked lymphoproliferative syndrome (XLP): update on studies of the registry. Am J Med. 1982;73:49-56.
    41. Young L, Alfieri C, Hennessy K, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med. 1989;321:1080-1085.
    42. Josephs SF, Buchbinder A, Streicher HZ, et al. Detection of human B-lymphotropic virus (human herpesvirus 6) sequences in B cell lymphoma tissues of three patients. Leukemia. 1988;2:132-135.
    43. Krueger GR, Manak M, Bourgeois N, et al. Persistent active herpes virus infection associated with atypical polyclonal lymphoproliferation (APL) and malignant lymphoma. Anticancer Res. 1989;9:1457-1476.
    44. Weller TH. The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. I. N Engl J Med. 1971;285:203-214.
    45. Boppana SB, Pass RF, Britt WJ, et al. Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J. 1992; 11:93-99.
    46. Hebart H, Einsele H. Diagnosis and treatment of cytomegalovirus infection. Curr Opin Hematol. 1998;5:483-487.
    47. Cheung TW, Teich SA. Cytomegalovirus infection in patients with HIV infection. Mt Sinai J Med. 1999;66:113-124.
    48. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science. 1994;266:1865-1869.
    49. Boshoff C, Weiss RA. Kaposi's sarcoma-associated herpesvirus. Adv Cancer Res. 1998;75:57-86.
    50. Chang Y, Moore PS. Kaposi's Sarcoma (KS)-associated herpesvirus and its role in KS. Infect Agents Dis. 1996;5:215-222.
    51. Katano H, Sata T. Human herpesvirus 8 virology, epidemiology and related diseases. Jpn J Infect Dis. 2000;53:137-155.
    52. Dourmishev LA, Dourmishev AL, Palmed D, et al. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev. 2003;67:175-212, table of contents.
    53. Neipel F, Fleckenstein B. The role of HHV-8 in Kaposi's sarcoma. Semin Cancer Biol. 1999;9:151-164.
    54. Schulz TF, Moore PS. Kaposi's sarcoma-associated herpesvirus: a new human tumor virus, but how? Trends Microbiol. 1999;7:196-200.
    55. Sun R, Lin SF, Staskus K, et al. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol. 1999;73:2232-2242.
    56. Kempf W, Adams V. Viruses in the pathogenesis of Kaposi's sarcoma-a review. Biochem Mol Med. 1996;58:1-12.
    57. Gallo RC. The enigmas of Kaposi's sarcoma. Science. 1998;282:1837-1839.
    58. Beral V, Peterman TA, Berkelman RL, et al. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet. 1990;335:123-128.
    59. Adams V, Kempf W, Hassam S, et al. Detection of several types of human papilloma viruses in AIDS-associated Kaposi's sarcoma. J Med Virol. 1995;46:189-193.
    60. Giraldo G, Beth E, Huang ES. Kaposi's sarcoma and its relationship to cytomegalovirus (CMNV). III. CMV DNA and CMV early antigens in Kaposi's sarcoma. Int J Cancer. 1980;26:23-29.
    61. Britt WJ, Mach M. Human cytomegalovirus glycoproteins. Intervirology. 1996;39:401-412.
    62. Drew WL, Conant MA, Miner RC, et al. Cytomegalovirus and Kaposi's sarcoma in young homosexual men. Lancet. 1982;2:125-127.
    63. Vieira J, O'Hearn P, Kimball L, et al. Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol. 2001;75:1378-1386.
    64. Bovenzi P, Mirandola P, Secchiero P, et al. Human herpesvirus 6 (variant A) in Kaposi's sarcoma. Lancet. 1993;341 :1288-1289.
    65. Blasig C, Zietz C, Haar B, et al. Monocytes in Kaposi's sarcoma lesions are productively infected by human herpesvirus 8. J Virol. 1997;71:7963-7968.
    66. Lu C, Zeng Y, Huang Z, et al. Human herpesvirus 6 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus. Am J Pathol. 2005;166:173-183.
    67. Grunewald K, Desai P, Winkler DC, et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396-1398.
    68. Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513-1518.
    69. Looker KJ, Garnett GP. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex Transm Infect. 2005;81:103-107.
    70. Arduino PG, Porter SR. Oral and perioral herpes simplex virus type 1 (HSV-1) infection: review of its management. Oral Dis. 2006;12:254-270.
    71. Qin D, Zeng Y, Qian C, et al. Induction of lytic cycle replication of Kaposi's sarcoma-associated herpesvirus by herpes simplex virus type 1: involvement of IL-10 and IL-4. Cell Microbiol. 2008;10:713-728.
    72. Pagano JS. Epstein-Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians. 1999;111:573-580.
    73. Moore PS, Chang Y. Molecular virology of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci. 2001;356:499-516.
    74. West JT, Wood C. The role of Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 regulator of transcription activation (RTA) in control of gene expression. Oncogene. 2003;22:5150-5163.
    75. Carbone A, Gloghini A, Vaccher E, et al. Kaposi's sarcoma-associated herpesvirus DNA sequences in AIDS-related and AIDS-unrelated lymphomatous effusions. Br J Haematol. 1996;94:533-543.
    76. Cesarman E, Chang Y, Moore PS, et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186-1191.
    77. Horenstein MG, Nador RG, Chadburn A, et al. Epstein-Barr virus latent gene expression in primary effusion lymphomas containing Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. Blood. 1997;90:1186-1191.
    78. Trivedi P, Takazawa K, Zompetta C, et al. Infection of HHV-8+ primary effusion lymphoma cells with a recombinant Epstein-Barr virus leads to restricted EBV latency, altered phenotype, and increased tumorigenicity without affecting TCL1 expression. Blood. 2004;103:313-316.
    79. Miller G, Heston L, Grogan E, et al. Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol. 1997;71:314-324.
    80. Xu Y, AuCoin DP, Huete AR, et al. A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol. 2005;79:3479-3487.
    81. Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1993 ;90:9150-9154.
    82. Kilger E, Kieser A, Baumann M, et al. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. Embo J. 1998;17:1700-1709.
    83. Chevallier-Greco A, Manet E, Chavrier P, et al. Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. Embo J. 1986;5:3243-3249.
    84. Countryman J, Miller G. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A. 1985;82:4085-4089.
    85. Xu D, Coleman T, Zhang J, et al. Epstein-Barr virus inhibits Kaposi's sarcoma-associated herpesvirus lytic replication in primary effusion lymphomas. J Virol. 2007;81:6068-6078.
    86. Jiang Y, Xu D, Zhao Y, et al. Mutual Inhibition between Kaposi's Sarcoma-Associated Herpesvirus and Epstein-Barr Virus Lytic Replication Initiators in Dually-Infected Primary Effusion Lymphoma. PLoS ONE. 2008;3:e1569.
    87. Arcenas R, Widen RH. Epstein-Barr virus reactivation after superinfection of the BJAB-B1 and P3HR-1 cell lines with cytomegalovirus. BMC Microbiol. 2002;2:20.
    88. Cuomo L, Angeloni A, Zompetta C, et al. Human herpesvirus 6 variant A, but not variant B, infects EBV-positive B lymphoid cells, activating the latent EBV genome through a BZLF-1-dependent mechanism. AIDS Res Hum Retroviruses. 1995;11:1241-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700