用户名: 密码: 验证码:
基于控制理论的网络拥塞控制中的若干算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于网络资源和网络流量分布的不均衡,拥塞的发生是Internet网络的固有属性。随着网络规模的快速增长和各种应用的不断产生,网络拥塞问题日益加剧,成为了影响网络性能的主要因素,所以对网络拥塞控制算法的研究也成为了网络研究领域的热点问题。
     拥塞控制算法可以分为源算法和链路算法两类。源算法,如TCP协议等,在主机及网络边缘设备中执行,根据网络设备的反馈信息调整数据发送的速率;链路算法,如主动队列管理算法,在网络设备中执行,作用是检测拥塞的发生,并将拥塞信息反馈给用户。动态的网络环境以及网络延时的不确定性,给网络的建模以及设计拥塞控制算法带来了很多困难。此外,有线/无线网络、无线多跳网络等一些新的网络结构的涌现,给Internet网络带来了很多新的特性,使得传统的拥塞控制机制暴露了很多局限性。针对这些问题,本文通过控制理论来提高网络拥塞控制算法的稳定性和鲁棒性,并设计能够适应新的网络类型的网络拥塞控制算法。本文的主要研究成果与创新点如下:
     1、针对动态网络环境,设计了一类具有H∞性能指标的主动队列管理算法。在忽略网络系统高频性能的前提下,设计了一种H∞PI控制器,通过线性矩阵不等式方法给出了一种简单的H_∞PI控制参数的整定方法。考虑H∞PI控制器在建模过程中的不足,通过线性时滞系统的风控制方法,设计了一种主动队列管理的输出反馈控制器。证明了这种输出反馈控制器具有较好的稳定性和鲁棒性,同时给出了基于线性矩阵不等式方法的参数求解方法。仿真结果表明这类具有H∞性能指标的主动队列管理算法具有良好的控制性能且在变化的网络环境下具有较强的鲁棒性。
     2、针对通讯过程中时延的不确定性,给出了一类基于变时滞的主动队列管理算法。考虑TCP协议中的超时重传机制,在小信号线性化的基础上,设计了一个基于观测器的时滞相关H∞状态反馈控制器。针对小信号线性化存在局部稳定性的问题,根据RTT与队列长度的线性关系,建立了非线性的网络模型。基于反步设计法给出了系统的状态反馈控制律,同时给出了控制律系数的取值范围。设计了基于TCP窗口值的观测器,证明了当丢包率的取值范围在0到1之间时,TCP窗口观测值收敛到实际值。ns仿真表明这类基于变时滞的主动队列管理算法维持了较好的网络性能。
     3、针对传统TCP协议在有线/无线网络中的局限性,基于模糊控制理论,设计了一种模糊速率选择拥塞控制算法。通过对路由器中队列长度和数据速率的测量,能够结合AIAD策略和AIMD策略的特点,我们提出的模糊速率选择拥塞控制算法能够有效地区分无线比特错误导致的丢包和拥塞导致的丢包。仿真结果表明算法在有线/无线网络环境下具有很好的控制性能,能够保证动态网络环境下拥塞控制的有效性。
     4、针对TCP协议在队列延时等方面控制性能不佳的局限性,设计了一种基于卡尔曼滤波器的TCP窗口控制器。首先设计了一种基于比例控制原理的TCP窗口控制器,由于这种基于比例控制的控制器是非因果的,通过对网络中队列长度和往返时间的测量,利用卡尔曼滤波器理论对这种非因果的控制器进行逼近。ns仿真表明,这种TCP窗口控制算法能够较好的预测TCP窗口值,并且在动态网络环境下依然具有较高的链路吞吐量和较低的队列延时。
     5、针对无线多跳网络的“多跳”特性,根据分布式动态系统理论和有向图的基本理论设计了无线多跳网络的基于速率的拥塞控制算法。首先给出了基于无线Ad hoc网络的最小速率算法,可以保证所有正在通讯的节点收敛到最小的可用带宽;其次设计了一个无线传感器网络中的基于领导者的拥塞控制算法,把汇聚节点作为这个网络系统的领导者,由其来决定每个TCP连接的可用带宽;最后综合Ad hoc网络的最小速率算法和无线传感器网络的基于领导者的拥塞控制算法给出了一个基于无线Mesh网络的拥塞控制算法。
Due to the unbalance distributions of network resources and traffics, the occurrence of congestion is an intrinsic characteristic of Internet. With the rapid growth of network scale and the emerging of the variety of applications, network congestion problems is growing, which becomes the main factor to affect the network performance. So network congestion control algorithms have been the hotspots in the network research field.
     Congestion control algorithms can be broadly classified into two categories:source algorithm and link algorithm. Source algorithm, such as TCP, is executed in the end hosts or edge devices to adjust sending rate in response to feedback. Link algorithm, such as active queue management, is executed in network devices to detect congestion and send feedback information to the host. It is hard for network modeling and congestion control algorithm designing by the dynamic network environment and uncertainty of the network delay. Otherwise, with the development of the wired/wireless network and wireless multihop network, which introduce some new characteristic into the Internet, many limitations of the traditional congestion control mechanisms emerged. To address these problems, with the help of the control theory, some congestion control algorithm is proposed in order to improve the stability and robustness of the algorithms. Several congestion control algorithm is also designed in the thesis, which is suitable for the novel network structure. The main results obtained in this thesis are as follow:
     1. A class of active queue management algorithms is proposed to execute in the dynamic network environment based on H∞performance index. In the premise of ignoring the frequency characteristics of the network, a H∞PI controller is designed, whose coefficient can be determined by the linear matrix inequality. Considering the shortage of the H∞PI controller, an output feedback controller is designed by H∞control method of the linear time-delayed system. The robust stabilization of the proposed controller is proved, whose coefficient also can be determined by the linear matrix inequality. Finally, simulation results indicate a clear advantage in controlled network performance of the proposed controller, which also has high robust stabilization under diverse network conditions.
     2. In view of the uncertainty of the communication delay, a class of active queue management algorithms are proposed based on delay-varying. Considering the retransmission timeout mechanism in TCP, a delay-dependent H∞state feedback controller by observer is proposed via the small-signal linearization. Due to the local stability of the small-signal linearization, the nonlinear network model is set up by the linear function between the RTT and queue length. A nonlinear output feedback controller is designed via backstepping technique, the value range of the parameters are also discussed. A nonlinear TCP window size observer is proposed. It can be proved that the observer state converges to the real sate asymptotically, when packet dropping or marking ratio falls between 0 and 1. Ns simulation results indicate that the proposed algorithms maintain better network performance.
     3. Considering the shortage of the conventional TCP algorithms in wired/wireless network, a fuzzy selective rate congestion control algorithm is presented, which is based on the fuzzy logic control theory. Measuring the queue length and the data rate in the router, the proposed congestion control algorithm combines the strengths of AIAD and AIMD, acting conservatively on wireless loss and aggressively on congestion. Simulation results indicate that our algorithm performs well in heterogeneous wired/wireless links, adapting effectively to the dynamics of the network.
     4. As the performance of TCP is still poor in some way, such as queue delay, a TCP window controller is presented based on Kalman filter. A TCP windows controller is proposed by the proportional control theory. Via measuring the queue length and RTT of the network, the non-causal TCP traffic controller is approximated by the kalman filter theory. Ns simulation results indicate a clear advantage in TCP windows prediction of the proposed controller, which even provides high link throughput and low queue delay in a dynamic network condition.
     5. Due to the "hop-to-hop" characteristic of the wireless multihop network, the congestion control algorithm based on data rate is proposed by the distributed dynamic system theory and digraph theory. First of all, the congestion control algorithm based on Min-Rate is designed for wireless Ad hoc network, and it can be proved that the send rate for all nodes converges to the minimal available bandwidth by the proposed Min-Rate algorithm. Second, the congestion control algorithm based on leader is designed for wireless sensor network. The aggregation node is considered as the leader, and determines the available bandwidth for every TCP connection. Finally, the congestion control algorithm is proposed for the wireless mesh network, combining both the algorithms of the wireless Ad hoc network and wireless sensor network.
引文
[1]Nagle J. Congestion control in IP/TCP internet works. Computer Communication ACM Review.1984,14(4):61-65.
    [2]Jacobson V. Congestion avoidance and control. ACM Computer Communication Review.1998,18(4):314-329.
    [3]Satoshi U, Salahuddin M, Norio S. TCP-Cherry:A new approach for TCP congestion control over satellite IP networks. Computer Communications.2008, 31(10):2541-2561.
    [4]任立勇.面向网络QoS的拥塞控制研究.西安电子科技大学硕士学位论文,2002.
    [5]罗万明,林闯,阎保平.TCP/IP拥塞控制研究.计算机学报.2001,24(1):1-18.
    [6]章森,吴建平,林闯.互联网端到端拥塞控制研究综述.软件学报.2002,13(3):354-363.
    [7]Thompson K, Miller G J, Wilder R. Wide-area Internet traffic patterns and characteristics. IEEE Network.1997,11(6):10-23.
    [8]Miguel-Alonso J, Izu C, Gregorio J A. Improving the performance of large interconnection networks using congestion control mechanisms. Performance Evaluation.2008,65(3-4):203-211.
    [9]Harris B, Hunt R. TCP/IP security threats and attack methods. Computer Communications.1999,22(10):885-897.
    [10]Floyd S. A report on some recent developments in TCP congestion control. IEEE Communication Magazine.2001,39(4):1-7.
    [11]Jain R. Congestion control in computer networks:issues and trends. IEEE Network Magazine.1990,24(5):24-30.
    [12]汪小帆,孙金生,王执铨.控制理论在Internet拥塞控制中的应用.控制与决策.2002,17(2):129-134.
    [13]Floyd S, Handley M, Padhye J, et al. Equation-based congestion control for unicast applications. ACM SIGCOMM Computer Communication Review.2000, 30(4):43-56.
    [14]卢显良,任立勇.一种基于速率的组播拥塞控制机制.电子科技大学学报.2001,30(6):585-588.
    [15]Sun W, Tian N S, Li S Y, et al. End-to end rate-based congestion control with random loss:conbergence and stability. Journal of Systems Engineering and Electronics.2008,19(6):1208-1214.
    [16]Cuiqing Yang, Reddy V S. A taxonomy for congestion control algorithms in packet switching networks. IEEE Network Magazine.1995,9(5):33-34.
    [17]Stevens W. TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms. Network Working Group, RFC2001.1997, http://www.rfc.net/rfc2001.html.
    [18]Floyd S, Henderson T. The NewReno modification to TCP's fast recovery algorithm. Network Working Group, RFC2583.1999, http://www.rfc.net/rfc2583.html.
    [19]Tanenbaum. Computer network. Prentice Hall,1996.
    [20]Brakmo L S, Peterson L L. TCP Vegas end congestion avoidance on a global Internet. IEEE Journal on Selected Areas in Communication.1995,13(8): 1465-1480.
    [21]Casetti C, Gerla M, Mascolo S, et al. TCP Westwood:bandwidth estimation for enhanced transport over wireless links. Proc. ACM/IEEE MobiCom 2001.2001,1: 287-297.
    [22]Andren J, Hilding M, Veitch D. Understanding end-to-eEnd Internet traffic dynamics. Proceedings of IEEE GLOBECOM 1998.1998,2:1118-1122.
    [23]Cheng J, Wei D X, Low S H. FAST TCP:motivation, architecture, algorithms, performance. Proceedings of IEEE INFOCOM 2004.2004,4:2490-2501.
    [24]王建新,龚皓,陈建二.高带宽延时网络中一种协同式拥塞控制协议.软件学报.2008,19(1):125-135.
    [25]程金,沈永坚,张大方,黎文伟.TCP-Shape:一种改进的网络拥塞控制算法研究.电子学报.2006,34(9):1621-1625.
    [26]Ludwig R, Katz R H. The Eiffel algorithm:making TCP robust against spurious retransmissions. ACM Computer Communication Review.2000,30(1):23-26.
    [27]Katabi D, Handley M, Rohrs C. Congestion control for high bandwidth delay product networks. In proceedings of SIGCOMM.2002,1:89-102.
    [28]Xia Y, Subramanian L, Stoica I, et al. One more bit is enough. In Proceedings of ACM SIGCOMM.2005,1:37-48.
    [29]卢广,朱淼良,王东辉.快速收敛的高速网络可变结构拥塞控制协议.浙江大学学报(工学版).2008,42(5):774-779.
    [30]Hoe J C. Improving the start-up behavior of a congestion control scheme for TCP. Computer Communication Review.1996,26(4):270-280.
    [31]Allman M, Floyd S, Partridge C. Increasing TCP's initial window. Network Working Group, RFC2414.1998, http://www.rfc.net/rfc2414.html.
    [32]Wang H, Xin H, Reeves D S, et al. A simple refinement of slow-start of TCP congestion control. Proceedings of the IEEE Symposium on Computers and Communications 2000.2000,1:98-105.
    [33]Seshan S, Stemm M, Katz R H. Network measurement architecture for adaptive applications. Proceedings of the IEEE INFOCOM 2000.2000,1:285-294.
    [34]葛一楠,周驰岷,易勇.高速TCP拥塞控制算法的公平性改进.电子科技大学学报.2008,37(2):270-273.
    [35]Border J, Kojo M, Griner J, et al. Performance enhancing proxies intended to mitigate link-related degradations. Network Working Group, RFC3135.2001, http://www.rfc.net/rfc3135.html.
    [36]Vikram V, John H. Rate based pacing for TCP.1997, http://www.isi.edu/lsam/publications/rate_based_pacing/.
    [37]Aggarwal A, Savage S, Anderson T. Understanding the performance of TCP pacing. Proceedings of the IEEE INFOCOM 2000.2000,1:1157-1165.
    [38]Floyd S. High Speed TCP for large congestion windows. Network Working Group, RFC3649,2003, http://www.rfc.net/rfc3649.html.
    [39]张民,罗光春,王俊峰等.空间信息网络可靠传输协议研究.通信学报.2008,29(6):63-68.
    [40]曾波,徐成,李向荣.无线网络多媒体传输拥塞控制机制研究.计算机系统应用.2009,15(5):73-75.
    [41]Panagiotis P, Vassilis T. On TCP performance over asymmetric satellite links with real-time constriants. Computer Communications.2007,30(7):1451-1465.
    [42]Floyd S, Fall K. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Transactions on Networking.1999,7(4):458-472.
    [43]刘海华,钟华彪,高智勇.一种改进的TCP友好拥塞控制算法.中南民族大学学报(自然科学版).2009,28(2):70-74.
    [44]陶军,陆一飞.一种基于Stackelberg博弈的流速与拥塞控制算法.东南大学学报(自然科学版).2009,39(4):710-715.
    [45]刘俊,隆克平.两种改善无线TCP性能的机制.电子学报.2004,32(11):2059-2062.
    [46]姚凌,纪红.一种改进的无线TCP拥塞控制算法及其稳态流量模型.北京邮电大学学报.2005,28(2):42-45.
    [47]冯彦军,张方舟.Ad hoc网络中一种基于端点节点的启发式TCP改进方法.微电子学与计算机.2005,22(1):1-9.
    [48]葛鸽,张国清.一种适用于异构网络的TCP协议及其仿真.系统仿真学报.2004,16(12):2875-2879.
    [49]张顺亮,叶澄清,李方敏.一种基于速率的BLUE改进方法.计算机研究与发展.2004,41(4):660-666.
    [50]Floyd S, and Jacobson V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Networking.1993,1(4):397-413.
    [51]Low S H. TCP congestion control:algorithms and models. Tutorial Slides.2000.
    [52]Athuraliya S, Li V H, Low S H, Yin Q. REM:active queue management. IEEE Network.2001,15(3):48-53.
    [53]Feng W, Kandlur D, Saha D, Shin K. A self-configuring RED gateway. Proceedings of IEEE INFOCOM'99.1999,1:1320-1328.
    [54]Ott T, Lakshman T, Wong L. SRED:stabilized RED. Proceedings IEEE SIGCOMM'99.1999,1:1346-1355.
    [55]Aweya J, Ouellette M, Montuno D Y. A control theoretic approach to active queue management. Computer Networks.2001,36(2-3):203-235.
    [56]R Mahajanb, S Floyd. Controlling high bandwidth flows at the congestion router. AT&T Center for Internet Research at ICSI(ACIRI) TechReport TR-01-001.2001.
    [57]Gang Feng, AgarwaA K 1, Jayaraman A, Siew C K. Modified RED gateways under bursty traffic. IEEE Communications Letters.2004,8(5):323-325.
    [58]沈伟,邵慧鹤.基于P-RED算法的计算机网络TCP拥塞控制.上海交通大学学报.2004,33(4):527-532.
    [59]安智平,张德运,党红梅,于会宁.一种改进的随机早期检测算法.西安交通大学学报.2003,37(8):829-832.
    [60]张克平,田辽,李增智.PRED:一种具有优先级自适应的队列管理新算法.电子学报.2004,32(6):1039-1043.
    [61]Feng W, Kandlur D, Saha D, Shin K. Blue:a new cClass of active queue management algorithms. Technical Report, UM CSE-TR-387-99.1999.
    [62]Yaghmaee M H, AminToosi H. A fuzzy based active queue management algorithm. International Symposium on Performance Evaluation of Computer and Telecommunication Systems 2003.2003,1:458-462.
    [63]Feng W. Improving Internet congestion control and queue management algorithms. Ph.D. Thesis.1999.
    [64]Srisankar K. Analysis and design of an adaptive virtual queue algorithms for active management. ACM SIGCOMM'01.2001,1:123-134.
    [65]Rong P, Balaji P, Konstantinos P. CHOKE:a stateless active queue management scheme for approximating fair bandwidth allocation. IEEE INFOCOM'00.2000, 1:942-951.
    [66]Athuraliya S, Li V H, Yin Q. REM:active queue management. IEEE Network. 2001,15(3):48-53.
    [67]Low S H. A duality model of TCP and queue management algorithms. IEEE/ACM Trans on Networking.2003,11(4):525-536.
    [68]Low S H, Lapsley D E. Optimization flow control(1):basic algorithm and convergence. IEEE/ACM Transactions on Network.1999,7(6):861-875.
    [69]Athuraliya S, Low S H. Optimization flow control(2):implementation.2001, http://netlab.caltech.edu.
    [70]Kelly F P. Mathematical modeling of the Internet. Mathematics Unlimited'01 and Beyond.2001:685-702.
    [71]Misra V, Cong W B, Towsley D. Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. Proceedings of the ACM SIGCOMM'00.2000:151-160.
    [72]Hollet C V, Misra V, Towsley D, et al. On designing improved controllers for AQM routers supporting TCP flwos. Proceeding of INFOCOM'01.2001: 1193-1202.
    [73]Hollet C V, Misra V, Towsley D, et al. A control theoretic analysis of RED. IEEE INFOCOM'01.2001:1510-1519.
    [74]Aweya J, Ouellette M, Montuno DY. DRED:a random early detection algorithm for TCP/IP networks. International Journal of Communication Systems.2002, 15(4):287-307.
    [75]章淼,吴建平,林闯.P2I:一种新的主动队列管理算法.计算机学报.2003,26(19):1288-1294.
    [76]王晓曦,王永吉,周津慧,王秀利.基于改进网络模型的大时滞网络拥塞控制算法.电子学报.2005,33(5):842-846.
    [77]Jinsheng S, Ko K T, Guanrong C, et al. PD-RED:to improve the performance of RED. IEEE Communications Letters.2003,7(8):406-408.
    [78]Mascolo S. Congestion control in high-speed communication networks using the smith principle. Automatic.1999,35(12):1921-1935.
    [79]施建俊,诸鸿文.业务量自相似特性对ATM缓存溢出概率的影响.上海交通大学学报.2000,34(2):205-208.
    [80]张娅,朱娜,朱国军.自相似业务下拥塞避免机制的实现.计算机工程与应用.2008,44(3):167-169.
    [81]汪浩,严伟.基于自相似聚合业务流量的AQM算法性能评价.软件学报.2006,17(9):1958-1968.
    [82]Paganini F, Doyle J, Low S H. Scalable laws for stable network congestion control. Proc. IEEE Conf. Decision and Control'01.2001:185-190.
    [83]Hespanha J P, Bohacek K, Obraczka K, et al. Hybrid modeling of TCP congestion control. hybrid systems:computation and control. Hybrid Systems:Computation and Control.2001:502-510.
    [84]Li K, Shor M H, Walpole J, et al. Modeling the transient rate behavior of bandwidth sharing as a hybrid control system. Oregon Graduate Institute Tech. Report CSE-01-02.2000.
    [85]钱晓龙,郑艳,任涛等.线性时变不确定系统的滑模控制及其在网络拥塞中的应用.东北大学学报(自然科学版).2008,29(6):777-781.
    [86]闫明,井元伟,沈孝钧.不确定TCP网络中的滑模主动队列管理算法.东北大学学报(自然科学版),2008,29(2):157-160。
    [87]Padlhye J, Firoiu V, Towsley D, et al. Modeling TCP throughput:a simple model and its empirical validation. Technical Report UM-CS-1998-008.2001.
    [88]王丹,于灏,井元伟等.基于感知流量算法的复杂网络拥塞问题研究.物理学报.2009,58(10):6802-6807.
    [89]徐胜,向少华,武赛等.基于时滞鲁棒分析技术的AQM拥塞控制算法.计算机工程与应用.2006,6(3):6-8.
    [90]尹凤杰,井元伟,岳承君等.不确定输入延时网络系统的鲁棒拥塞控制.控制与决策.2007,22(2):198-201.
    [91]刘治,倪杰,文俊朝等.基于参数不敏感设计的网络拥塞控制算法.控制理论与应用.2009,26(11):1239-1246.
    [92]胡为民,陈亮.基于二次型优化的神经元PID无线拥塞控制算法.苏州大学学报(自然科学版).2009,25(3):42-46.
    [93]周川,张璐,陈庆伟.基于显示拥塞指示的自适应主动队列管理算法.系统仿真学报.2009,21(23):7577-7580.
    [94]陆锦军,王执铨.基于混沌理论的网络数据流RBF神经网络预测.计算机工程.2006,32(23):100-103.
    [95]钱艳平,李奇.时滞网络预测PI控制算法鲁棒稳定性分析.东南大学学报.2007,37(1):159-163.
    [96]余义斌,曹长修,李昌兵.基于神经模型预测控制的主动队列管理算法.控制与决策.2006,21(9):1042-1049.
    [97]李金东,马东堂,李卫等.基于RED算法的非线性拥塞控制.计算机工程.2008,34(20):91-95.
    [98]张少博,周之平,吴介一等.一种基于组合型模糊控制的主动队列管理算法.信息与控制.2007,36(2):204-210.
    [99]葛龙,万春方,孙金生.基于模糊控制的主动队列管理算法.南京理工大学学报(自然科学版).2008,32(2):218-221.
    [100]尹凤杰,井元伟,杨晖.基于模糊滑模控制的主动管理算法.东北大学学报(自然科学版).2006,27(5):473-476.
    [101]Ding D W, Zhu J, Lou X S, et al. Nonlinear dynamics in Internet congestion control model with TCP Westwood under RED. The Journal of China Universities of Posts and Telecommunications.2009,16(4):53-58.
    [102]Ge L, Fang B, Sun J S, Wang Z Q. Novel graphical approach to analyze the stability of TCP/AQM Networks. Acta Automatica Sinica.2010,36(2):314-321.
    [103]侯萍,王执铨.基于混沌优化的大时滞网络拥塞控制算法.系统仿真学报.2009,21(17):5486-5490.
    [104]杨洪勇,田玉平.具有反馈时延的TCP Vegas拥塞控制算法的稳定性分析.控制与决策.2004,19(4):12-16.
    [105]于宏毅等.无线移动自组织网.北京:人民邮电出版社,2005.
    [106]Guo S, Liao X F, Liu Q et al. Necessary and sufficient condition for hopf bifurcation in exponential RED algorithm with communication delay. Nonlinear Analysis:Real World Applications.2008,9(4):1768-1793.
    [107]Chen W, Yang S H. The mechanism of adapting RED parameters to TCP traffic. Comuter Communications.2009,32(13-14):1525-1530.
    [108]何凌,张楠楠,杨木易等.一种基于改进的模糊Smith控制主动队列管理算法.东北大学学报(自然科学版).2007,28(12):1673-1676.
    [109]Bakre A and Badrinath B R. I-TCP:indirect TCP for mobile hosts. Proc.15th IDCS. May 1995:136-143.
    [110]Balakrishnan H, Padmanabhan V, Seshan S, et al. A comparison of mechanisms for improving TCP performance over wireless links. ACM/IEEE Transactions on Networking.1997,5(6):756-769.
    [111]Papadimitriou P and Tsaoussidis V. Performance evaluation of real-time transport with link-layer retransmissions in wired/wireless networks. Journal of Mobile Multimedia. December 2006,2(4):327-343.
    [112]Biaz S and Vaidya N H. Discriminating congestion losses from wireless losses using Inter-Arrival Times at the receiver. Proc. IEEE Symposium ASSET'99. 1999:10-17.
    [113]Cen S, Cosman P, and Voelker G. End-to-end differentiation of congestion and wireless losses. IEEE/ACM Transactions on Networking.2003,11(5):703-717.
    [114]Naqvi I H, Perennou T. A DCCP congestion control mechanism for wired-cum-wireless environments. IEEE Wireless Communications and Networking Conference 2007.2007:3912-3917.
    [115]Ferorelli R, Grieco L A, Mascolo S, et al. Live internet measurements using Westwood+ TCP congestion control. Proceedings of the IEEE GLOBECOM'02. November 2002,3:2583-2587.
    [116]黄家伟.有线/无线网络中TCP拥塞控制的公平性研究.中南大学博士论文.
    [117]IEEE 802.11-1999, IEEE Standard for Local and Metropolitan Area Networks Specific Requirements-Part 2:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,1999.
    [118]IEEE 802.11g-2003, IEEE Standard for Local and Metropolitan Area Networks Specific Requirements-Part 2:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4:Further Higher Data Rate Extension in the 2.4GHz Band,2003.
    [119]Chlamtac I, Conti M and Liu J. Mobile Ad hoc networking:imperatives and challenges. Ad Hoc Networks.2003,1(1):13-64.
    [120]Chen Y, Liu M, Wang S, et al. On adaptive gain tuning for wireless Ad hoc networks. Proceeding of the 27th Chinese Control Conference.2008:380-383.
    [121]Gobel J, Krzesinski A, Mandjes M. Incentive-based control of Ad hoc networks: A performance study. Computer Networks.2009,53(14):2427-2443.
    [122]Xu W, Wu T. TCP issues in mobile Ad hoc networks:challenges and solutions. Journal of Computer Science and Technology.2006,21(1):72-81.
    [123]Chandran K, Raghunathan S, Venkatesan S, et al. A feedback based scheme for improving TCP performance in Ad hoc wireless network. Proc. of the International Conference on Distributed Computing Syetem'98.1998,17(9): 345-357.
    [124]Holland G, Vaidya N. Analysis of TCP performance over mobile Ad hoc networks. ACM Wireless Networks.2002,8(2):275-288.
    [125]Wang F, Zhang Y. Improving TCP performance over mobile Ad hoc networks with out-of-order detection and response. Porc. of ACM MOBIHOC'02.2002, 20(13):217-225.
    [126]Zhou J X, Shi B X, Zou L. Improve TCP performance in Ad hoc network by TCP-RC. PIMRC'03.2003:216-220.
    [127]冯彦君,张方舟,叶润国等.Ad Hoc网络中一种基于端节点的启发式TCP改进方法.微电子学与计算机.2005,22(1):1-5.
    [128]Jacobson V, Braden R and Borman D. TCP extensions for high performance. Network Working Group, RFC 1323.1992, http://www.rfc.net/rfc1323.html.
    [129]Chiang M. Balancing transport and physical layers in wireless multihop:jointly optimal congestion control and power control. IEEE Journal Selected Area Communications.2005,23(1):104-116.
    [130]Chen L, Low S, Doyle J C. Cross-layer congestion control, routing and scheduling design in Ad hoc wireless networks. Proc. of the 25th Annual Joint Conf. of the IEEE Computer and Communications Societies'06.2006:1-13.
    [131]Eryilmaz A, Srikant R. Joint congestion control, routing, and MAC for stability and fairness in wireless networks. IEEE Journal on Selected Areas in Communications.2006,24(3):1514-1524.
    [132]Xue Y, Li B, Nahrstedt K. Optimal resource allocation in wireless Ad hoc networks:a price-based approach. IEEE Trans. on Mobile Computing.2006,5(4): 347-364.
    [133]徐伟强,吴铁军,汪亚明等.强动态Ad Hoc网的拥塞控制:价格协作和滚动优化.软件学报.2008,19(9):2389-2402.
    [134]Akyildiz I F, Wang X, Wang W. Wireless mesh network:a survey. Computer Networks.2005,47(4):455-487.
    [135]S Sesay, Yang Z, He J. A survey on mobile Ad hoc wireless network. Information Technology Journal.2004,3(2):168-175.
    [136]宋文,方旭明.无线Mesh网络公平感知路由算法设计和仿真.系统仿真学报.2007,19(18):4320-4325.
    [137]IEEE Draft P802.11s-D1.01-2007. Draft Amendment to Standard for Information Technology-Telecommunications and Information Exchange between Systems-LAN/MAN Specific Requirements-Part 2:Wireless Medium Access Control (MAC) and Physical Layer (PHY)Specifications:Amendment:ESS Mesh Networking.2007.
    [138]Akira Y, Atsushi F, Yang L, et al. EDCA based congestion control for WLAN mesh networks. IEEE 63rd Vehicular Technology Conference.2006,3:1288-1292.
    [139]朱晓东.基于IEEE 802.11s Mesh WLAN的拥塞控制策略研究.硕士学位论文.2007.
    [140]Yoo J Y, Kim J W. Distributed bandwidth allocation for multimedia streaming based on normalized congestion price in IEEE 802.11 wireless mesh networks. IEEE International Conference on Multimedia'08.2008:521-524.
    [141]Yoshida A, Yamaguchi T, Wakamiya N, et al. Proposal of a reaction-diffusion based congestion control method for wireless mesh networks. IEEE International Conference on Advanced Communication Technlogy'08.2008:455-460.
    [142]任娟,裘正定,王升辉.无线Mesh网络中多跳数据流的拥塞控制.通信学报.2008,29(4):99-107.
    [143]魏登宇,李云,王海宝等.基于IEEE 802.16 Mesh网络的拥塞控制方法.计算机工程.2009,35(6):119-121。
    [144]孙国栋,廖明宏,邱硕:无线传感器网络中一种避免节点拥塞的算法.计算机研究与发展.2009,46(6):934-939.
    [145]Yaghmaee M H, Adjeroh D A. Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks. Computer Networks.2009,53(11):1798-1811.
    [146]方维维,钱德沛,刘轶.无线传感器网络传输控制协议.软件学报.2008,19(6):1439-1451.
    [147]Scheuermann B, Lochert C, Mauve M. Implicit hop-by-hop congestion control in wireless multihop networks. Ad Hoc Networks.2008,6(2):260-286.
    [148]Clare L P, Jennings E H, Ciao J L. Performance evaluation modeling of networked sensors. Proc. of IEEE Aerospace Conference.2003:1313-1322.
    [149]Lee J J, Krishnamachari B, Kou C C J. Impact of heterogeneous deployment on lifetime sensing coverage in sensor networks. Proc. of the 1st Annual IEEE Communications Society Conference on Sensor and Ad hoc Communications and Networks.2004:367-376.
    [150]Felemban E, Lee C G, Ekigi E, et al. Probabilistic QoS guarantee in reliability and timeliness domains in wireless sensor networks. Proc. of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies.2005: 2646-2657.
    [151]Bhatnagar S, Deb B, Nath B. Service differentiation in sensor networks. Proc. of the 4th International Symposium on Wireless Personal Multimedia Communications.2001:892-898.
    [152]Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion:a scalable and robust communication paradigm for sensor networks. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (Mobicom 2000). August 2000:56-67.
    [153]Woo A, CulleD r. A transmission control scheme for media access in sensor networks. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking(Mobicom 2001). July 2001:221-235.
    [154]Sankarasubramaniam Y, Akan O, AkyildiI z. Event-to-sink reliable transport in wireless sensor networks. Proceedings of the 4th ACM Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc 2003). June 2003:177-188.
    [155]Cheng Tien Ee, Ruzena Bajcsy. Congestion control and fairness for many-to-one routing in sensor networks. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems.2004:148-161.
    [156]Sridharan A, Moeller S and Krishnamachari B. Making distributed rate control using lyapunov drifts reality in wireless sensor networks.6th International Symposium on Modeling and Optimization in Mobile, Ad hoc, Wireless Networks and Workshops'08 (WiOPT 2008).2008:452-461.
    [157]Georgiadis L, Neely M J, and Tassiulas L. Resource allocation and cross-layer control in wireless networks. Foundations and Trends in Networking.2006,1(1): 1-144.
    [158]Kim J H, Yeom I. Reducing queue oscillation at a congested link. Parallel and Distributed Systems.2008,19(3):394-407.
    [159]Long L, Aikat J, Jeffey K, et al. The effects of active queue management and explicit congestion notification on web performance. IEEE/ACM Trans on Networking.2007,15(6):1217-1230.
    [160]Guo S T,Liao X F, Li C D, et al. Stability analysis of a novel exponential-RED model with heterogeneous delays. Computer Communications.2007,30(5): 1058-1074.
    [161]Hollot C, Misra V, Towsley D, et al. On Designing Improved Controllers for AQM Routers Supporting TCP Flows. Proceedings of the INFOCOM 2001.2001: 1726-1734.
    [162]Gao Y, Hou J C. A state feedback control approach to stabilizing queue for ECN-enabled TCP connections. Proc. of IEEE INFOCOM 2003.2003,3:2301-2311.
    [163]Zhu R J, Yang B, Wang W. LMI-based state feedback control for AQM router supporting TCP with ECN. Proc. of WCICA 2006.2006,1:1123-1126.
    [164]Peng D Z, Xu B G, Lin Q H. Congestion control research based on time-delay system robust analysis. Proc. of the 6th World Congress on Intelligent Control and Automation 2006.2006:611-614.
    [165]Hollot CV, Misra V, Towsley D, et al. Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Trans. Automat Control.2002,47(6): 945~959.
    [166]Michele M, Nelson LS, Jose C. An optimal active queue management controller. IEEE International Conference on Communications 2004.2004:2261~2266.
    [167]俞立.鲁棒控制—线性矩阵不等式处理方法.清华大学出版版社,2002。
    [168]Yan P, Gao Y and Ozbay H. Variable structure control in active qQueue management for TCP with ECN. Proceedings of ISCC'03.2003,2:1005-1011.
    [169]Zheng F, Nelson J. An H∞ approach to the controller design of AQM routers supporting TCP flows. Automatica.2009,45(3):757-763.
    [170]Srikant R. The mathematics of Internet congestion control. Birkhauser, Boston, 2004.
    [171]Yan M, Jing Y and Ya L A. Congestion control over Internet with uncertainties and input delay based on variable structure control algorithm. Proc. of the 2007 IEEE International Conference on Mechatronics and Automation.2007: 1788-1793.
    [172]Peet M, Lall S. Global stability analysis of a nonlinear model of Internet congestion control with delay. IEEE transactions on automatic control.2007, 52(3):553-559.
    [173]Fan Y, Jiang Z P, Panwar S, et al. Nonlinear output feedback control of TCP/AQM network. IEEE International Symposium on Circuits and Systems.2005,3: 2072-2075.
    [174]KhaliH K l. Nonlinear system. Prentice Hall, Upper Saddle River.2002.
    [175]Chiu D M, Jain R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN Systems.1989, 17(1):1-14.
    [176]Steven W. TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms. Network Working Group, RFC 2001.1997, http://www.faqs.org/rfcs/rfc2001.html.
    [177]Stah L H, Hippe P. Design of pole placing controllers for stable and unstable systems with pure time delay. International Journal of Control.1987,45(6): 2176-2182.
    [178]Hwang S H, Shiu S J. A new auto tuning method with specifications on dominant Pole. International Journal of Control.1994,60(2):265-282.
    [179]钱同惠,徐跃东,关治洪.基于TCP协议的网络拥塞控制改进算法的研究.武汉理工大学学报.2004,26(7):88-90.
    [180]Chiu D, Jain R. Analysis of the increase/decrease algorithms for congestion avoidance in computer networks. Journal of Computer Networks and ISDN.1989, 17(1):1-14.
    [181]Panagiotis P, Vassilis T. Selective rate control for media-streaming applications in wireless Internet environments. Proc.18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.2007:1-5.
    [182]Shorten R, King C, Wirth F, et al. Modelling TCP congestion control dynamics in drop-tail environment. Automatica.2007,43(3):441-449.
    [183]Liu S, Basar T, Srikant R. TCP-Illinois:A loss-and-delay-based congestion control algorithm for high-speed networks. Performance Evaluation.2008,65(6-7): 417-440.
    [184]Lim C H, Jang J W. Robust end-to-end loss differentiation scheme for transport control protocol over wired/wireless networks. IET Communications.2008,2(2): 284-291.
    [185]Fu Z, Zerfos P, Luo H Y, et al. Impact of multihop wireless channel on TCP throughput and loss. Proc. of IEEE INFOCOM 2003.2003,3:1744-1753.
    [186]Weirong Liu, Jianqiang Yi, Dongbin Zhao, et al. A smooth control to avoid congestion for wireless network. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control.2006:613-618.
    [187]Jun Wang, Min Song, Houjun Yang. Rate-based active queue management for congestion control over wired and wireless links. First International Conference on Communications and Networking.2006:1-6.
    [188]Kunniyur S, Srikant R. An adaptive virtual queue (AVQ) algorithm for active queue management.IEEE ACM Transactions on Networking.2004,12(2): 286-299.
    [189]Nyirend C N, Dawoud D S. Fuzzy logic congestion control in IEEE 802.11 wireless local area networks:a performance evaluation. AFRICON 2007.2007, 26(28):1-7.
    [190]Ren F Y, Yong R, Xuemin S. Design of a fuzzy controller for active queue management. Computer Communications.2002,25(9):874-883.
    [191]Nyirenda C N, Dawoud D S. Multi-objective particle swarm optimization for fuzzy logic based active queue management. Proceedings of the 15th IEEE International Conference in Fuzzy Systems.2006:2231-2238.
    [192]Stevens W. TCP/IP illustrated volume 1:the protocols. Addison-Wesley, Massachusetts.1994.
    [193]Lakshman T, Madhow U. The performance of TCP/IP for networks with high bandwidth-delay products and random loss. IEEE/ACM Trans. Networking.1997, 5(3):336-350.
    [194]Padhye J, Firoiu V, Towsley D, et al. Modeling TCP throughput:a simple model and its empirical validation. ACM SIGCOMM'98.1998:303-314.
    [195]Zorzi M, Rao R R and Milstein L B. On the accuracy of a first-order Markov Model for data transmission on fading channels. Proc. IEEE ICUPC'95.1995: 211-215.
    [196]Prawit C. An example of wireless error simulation. http://blog.chinaunix.net/u2/76263/showart_1768145.html.
    [197]Zhang H, Yang O, Mouftah H. Design of robust congestion controllers for ATM network. INFOCOM'97.1997:302-309.
    [198]Zhang H, Cong J, Yang O. Rate control over RED with data loss and varying delays. Proceeding of Globecom 2003.2003,6:3035-3040.
    [199]karandikar S, Kalyanaraman S and Bagal P. TCP rate control. Computer Communication Review.2000,30(1):89-93.
    [200]Aweya J, Ouellette M, Montuno D Y, et al. Improving network service quality with explicit TCP window control. International Journal of Network Management. 2001,11(3):169-188.
    [201]Su C F, Veciana G and Walrand J. Explicit rate flow control for ABR services in ATM networks. IEEE/ACM Trasactions on Networking.2000,8(3):350-361.
    [202]Hassibi B, Sayed A H, Kailath T. Linear estimation in krein space—Part Ⅱ: applications. IEEE Transactions on Automatic Control,1996,41(1):34-49.
    [203]Blefari N, Detti A, Habib I. TCP fairness issues in IEEE 802.11 network:problem analysis and solutions based on rate control. IEEE Transactions on Wireless Communications.2007,6(4):1346-1354.
    [204]Corson S, Macker J. Mobile Ad hoc networking (MANET):routing protocol performance issues and evaluation considerations. Network Working Group, RFC2501.1999, http://www.rfc.net/rfc2501.html.
    [205]李姗姗,廖湘科,朱培栋等.传感器网络中一种拥塞避免、检测与缓解策略.计算机研究与发展.2007,44(8):1348-1356.
    [206]Sridharan A, Krishnamachari B. Maximizing network utilization with max-min fairness in wireless sensor networks. Wireless Networks.2009:585-600.
    [207]孙利明,李建中,陈渝等.无线传感器网络[M].北京:清华大学出版社.2005.
    [208]李凌,周兴社,李士宁等.基于无线传感器网络的拥塞控制算法的研究与比较.计算机应用研究.2007,16(3):11-13.
    [209]Hong Y G, Hu J P and Gao L X. Tracking control for multi-agent consensus with an active leader and variable toology. Automatica.2006,42(7):1177-1182.
    [210]Ying O Y, Chuang L, Ren F Y, et al. Design and analysis of a backpressure congestion control algorithm in wireless sensor network. Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies.2007:413-420.
    [211]Chan S H, Leung M F and Au O. Cosmos:peer-to-peer collaborative streaming among mobiles. Proc. IEEE International Conference on Multimedia and Expo (ICME'06).2006:865-868.
    [212]Gungor V C, Pace P and Natalizio E. AR-TP:an adaptive and responsive transport protocol for wireless mesh networks. Proc. IEEE International Conference on Communications (ICC'07). June 2007:3740-3745.
    [213]Mishra P P, Kanakia H. A hop-by-hop rate based congestion control scheme. ACM SIGCOMM Computer Communication Review.1992,22(4):112-123.
    [214]Sarkar S, Tassiulas L. Back pressure based multicast scheduling for fair bandwidth allocation. IEEE Transactions on Neural Networks.2005,16(5): 1279-1290.
    [215]Yi Y, Shakkottai S. Hop-by-hop congestion control over a wireless multi-hop network. IEEE/ACM Transactions on Networking.2007,15(1):133-144.
    [216]Eirakabawy S M, Klemm A, Lindemann C. TCP with adaptive pacing for multihop wireless networks.Proc of ACM Mobihoc.2005:288-299.
    [217]Nahm K, Helmy A, Kuo C C J. TCP over multihop 802.11 networks:issues and performance enhancement. Proc of ACM Mobihoc.2005:277-287.
    [218]黄婷,王武,杨富文.一阶纯滞后系统的H∞PI控制器研究.杭州电子科技大学学报.2005,25(6):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700