用户名: 密码: 验证码:
黄芪对增生性瘢痕TGF-β1的表达及其Smad3信号途径的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以稳定有效的兔耳瘢痕为模型,通过对兔耳瘢痕的形态学、组织学、增生性瘢痕的厚度及硬度、转化生长因子β1(TGF-β1)及其Smad3信号表达的观察,探讨黄芪对兔耳创面瘢痕增生的抑制效应和初步机制,为黄芪在临床的应用提供实验和理论依据。
     方法:健康成年日本大耳白兔24只,体重1.8~2.5kg,兔耳健全,雌雄不论,用随机数字表法分为6组:其中实验组3组:A组:浓度为1000 mg/ml黄芪治疗组(高)、B组:浓度为500 mg/ml黄芪治疗组(中)、C组:浓度为250 mg/ml黄芪治疗组(低)。对照组3组:D组:相同容积的生理盐水对照组、空白对照组E组:未处理的瘢痕组、阴性对照组F组:正常兔耳皮肤,A、B、C、D、E、F各4只兔子,除外正常皮肤组,在每侧的兔耳腹侧中部做4个边长为1cm的正方形切口,创面间相距1cm,共160个创面。伤后21d局部注射黄芪液或生理盐水,注射用量为0.2 ml。在术后32d和43d,分2次切取标本,采用彩色超声诊断仪(探头超声频率为13MHz)、瘢痕硬度精密测定仪分别测定不同时间的瘢痕和正常皮肤厚度和硬度及光镜下观察苏木精-伊红染色、Masson三色法胶原染色的组织结构变化情况;采用RT-PCR、免疫组织化学法观察瘢痕和正常皮肤组织中TGF-β1、Smad3mRNA水平和蛋白表达的变化。
     结果:(1)术后8~12d创面结痂,16d创面逐渐上皮化、痂壳松动并开始脱落;21d创面全部上皮化,可见瘢痕增生明显;术后28d瘢痕增生达高峰;43d逐渐进入消退期。(2)HE、Masson染色显示:黄芪实验组真皮层变薄,成纤维细胞数量较少,胶原纤维排列规则,无胶原结节或者胶原结节不明显;生理盐水对照组及空白对照组真皮层较厚,成纤维细胞密集,胶原纤维排列紊乱或成旋涡状,形成胶原结节;阴性对照组正常皮肤组织胶原束细小,排列规则。(3)黄芪实验组兔耳瘢痕变薄、硬度降低,TGF-β1及其Smad3信号的表达降低,与对照组相比,差异均有显著性(P<0.05),实验组在伤后32d、43d时两组间差异也均有显著性(P<0.05),而生理盐水对照组和空白对照组间差异无显著性(P>0.05)。
     结论:(1)保留软骨,去除全层皮肤及软骨膜后兔耳创面可以获得明显的瘢痕并且延长瘢痕的增生期,形成有效稳定的增生性瘢痕,可以用作动态的观察药物治疗瘢痕的效果;(2)创面上皮化后局部注射黄芪可明显抑制瘢痕组织的增生,其作用机制之一是通过抑制TGF-β1及其下游信号Smad3的表达而实现的;(3)黄芪对兔耳瘢痕增生的抑制呈浓度剂量效应关系。
Objective: To establish stable and reliable animal model of rabbit ear for hypertrophic scar and to observe the effects of radix astragali on morphology、histology、thickness and hardness of scar and gene expression of TGF-β1and Smad3 in hypertrophic scar of rabbits’ear and to explore the mechanism of radix astragali in treating hypertrophic scar and to supply experimental and theoretical basis for clinical applications of Astragalus.
     Methods: Twenty four healthy adult Japanese big ear rabbits of either weighing 1.8~2.5 kg were used to establish animal model for hypertrophic scars. The rabbits were taken as experimental animal and randomized into experimental A、B、C group and normal skin、saline、blank control group (A: 1000mg/ml, B: 500mg/ml and C: 250mg/ml concentration of radix astragali treatment groups). Each group contained 4 rabbits. Except for normal skin,four wound surfaces in size of 1cm2 were created down to bare cartilage on the ventral surface of each ear. There were 160 wound surfaces with 1cm gap between each wound. They were treated with radix astragali in different concentrations or saline and blank control 21d after wound, the local injection was 0.2 ml. On postoperative 32th and 43th day thickness and hardness of scar and normal skin were measured with color ultrasound diagnostic unit and especial measurement. The changes of hypertrophic scar and normal skin were observed with HE staining and Masson staining under light microscopy;TGF-β1 mRNA and Smad3 mRNA which is TGF-β1 downstream signal were detected in hypertrophic scar and normal skin samples with RT-PCR, immunohistochemical observe the expression level of TGF-β1and Smad3.
     Results: (1) wound scab 8~12d after operation, wound epithelization and scab loose shell has begun to drop 16d after operation gradually, all wound epithelization and we can see obvious scar 21d after operation, postoperative 28d the scar reached the peak and gradually fade into the period 43d after operation. (2) HE, Masson staining showed that astragalus dermis thinning, a small number of fibroblasts and collagen fibers arranged rules, no collagen nodule or nodules of collagen is not obvious in the experimental groups; while dermal layer of thick, fibroblast density, collagen fibers were arranged into a spiral-like disorder or to form a collagen nodules in the saline groups and blank control groups; small bundles of collagen arranged in the rules in negative control group. (3)Compared with the saline group and blank control group, thickness and hardness of scar in all radix astragali-treated groups decreased(P<0.05), immunohistochemistry showed that the expression levels of TGF-β1 and Smad3 in all radix astragali -treated groups significantly reduced compared with those in saline group and blank control group, RT-PCR results showed that the expression levels of TGF-β1 and Smad3 in radix astragali -treated groups decreased compared with saline group and blank control group(P<0.05); There were significant differences between the 32d and 43d radix astragali-treated groups (P<0.05), but there were no significant differences between the 32d and 43d control groups (P>0.05).
     Conclusions: (1) Retaining cartilage, removing of full-thickness skin and perichondrium in rabbit ear, can extend access to a greater proliferative phase of scar to form a stabilizing effect on the hypertrophic scars, in favor of dynamic observation of the effect of drug treatment scar; (2) After wound epithelization, local injection of astragalus could inhibit the proliferation of scar tissue and one of its mechanisms is to inhibit the expression level of TGF-β1 and its downstream signal Smad3; (3)The inhibiting effect was in a concentration dose dependent manner.
引文
[1] Amadeu T,Braune A,Mandarim-de-Lacerda C,etal.Vascularization pattern in hypertrophic scars and keloids:a stereological analysis.Pathol Res Pract,2003,199:469-473.
    [2]杨松林,何清濂.胶原代谢的控制与病理性瘢痕的防治[J].中华整形烧伤外科杂志,1997,13(1):66-68.
    [3]赵建平,蔡景龙.瘢痕的中医药防治机制研究进展[J].中国实用美容整形外科杂志,2005,16(2):109-111.
    [4] MAJAN J I.Evaluation of a self—adherent soft silicone dressing for the treatment of hypertrophic postoperative scars[J].J Wound care,2006,15(5):193-196.
    [5] MESHKINPOUR A,GHASRI P,POPE K,eta1.Treatment of hypertrophic scars and keloids with a radiofrequency device:a study of collagen effects[J].lasers Surg Med,2005,37(5):343-349.
    [6]董湘玉,倪倩,沈阳.黄芪对病毒性心肌炎患儿血硒及免疫功能影响[J].实用儿科临床杂志,2005,20(5):448-449.
    [7]马桂凤,王莉,季万胜,等.黄芪注射液对肝纤维化大鼠模型肝细胞胶原及TGF-β1表达的影响[J].中国现代医生,2007,45(15):20-21.
    [8]周贤,戴立里,贾丽萍,等.黄芪注射液对肝纤维化抑制作用的实验研究[J].中华肝脏病杂志,2005,13(8):575-578.
    [9]刘映红,刘伏友,段绍斌.黄芪对TGF-β1致人腹膜间皮细胞分泌细胞外基质的影响.湖南医科大学学报, 2003, 28(2):141-144.
    [10]蒋春明,张苗,孙铮,等.黄芪对腹膜问皮细胞致纤维化细胞生长因子分泌与表达的影响.医学研究生学报, 2005, 18:972-974.
    [11]徐郁杰,张庆怡,陆敏,等.黄芪对糖尿病大鼠肾皮质TGF-β1表达的影响.中华内分泌代谢杂志, 1998, 14:312-314.
    [12]朱文辉,陈世益,任惠民,等.活血生肌类中药对大鼠急性钝挫伤后骨骼肌Ⅱb型MHC及I、Ⅲ型胶原蛋白表达的影响.中国运动医学杂志,2005,24(2):182-186.
    [13]沈权,侯筱魁,叶澄宇.黄芪对硬膜外疤痕影响的超微结构观察.中国中医骨伤科,2000,8(2):15-17.
    [14]张澍澄.人参汤重用生黄苠减轻烧伤修复期患者创面癜痕挛缩的作用.中国临床康复,20O3, 7:1743
    [15] Morris DE,Wu L,Zhao LL,etal.Acute and chronic animal models for excessive dermal scarring:quantitative.Plast Reconstr surg,1997,100:674-681.
    [16] Oyann A.High expression of macrophage migration inhibitory factor and its role in cellular proliferation and extracellular matrix production in keloid fibroblasts[J]. Hokkaido Igaku Zasshi,2003,78(6):529-539.
    [17] Mustoe T A.Cooter R D,Gold M H,et a1.International clinical recommendations on scar management [J].Plast Reconstr Surg,2002,110(2):560-571.
    [18] Lu F,Gao J,Ogawa R,et a1.Fas—mediated apoptotlc signal transduction in keloid and hypertrophic scar l J]. Plast Reconstr Surg,2007,119(6):1714-1721.
    [19]谢桦,吴铁,黄连芳,等.黄芪水提液对大鼠的类固醇性骨性疏松的防治作用[J].中草药,1997,28(1):25-26.
    [20]赵杰,王竞.黄芪注射液对支气管哮喘模型大鼠的免疫调节作用[J].现代预防医学,2007,34(15):2845-2846.
    [21]罗开军,邓家德.黄芪对糖尿病足溃疡处成纤维细胞透明质酸合成酶mRNA及透明质酸的影响[J].中国民族民间医药杂志,20O7,85:110-112.
    [22]李荟元,刘建波,兰海,等.建立增生性瘢痕动物模型[J].第四军医大学学报,1998,19(6):655-657.
    [23]李希军,柳大烈,王吉慧,等.兔耳增生性瘢痕模型建立方法的探讨[J].中国美容医学,2006,15(5):499-500.
    [24] Zol B Kryger.MD,Mark Sisco.MD,Nakshatra K Roy.phD,etal.Temporal expression of the Transforming Growth Factor-Beta pathway in the Rabbit Ear Model of Wound Healing and scarring.J Am Coll Surg,2007,205:78-88.
    [25]黄康,陈玉林.创面愈合评价指标进展[J].中国修复重建外科杂志,2001,15(2):126-129.
    [26] Schultze-Mosgau S,Blaese M A,Grabenbauer G,et a1.Smad-3and Smad-7expression following anti-transforming growth factor beta 1(TGF beta1)treatment in irradiated rat tissue[J].Radiother Oncol,2004,70(3):249-259.
    [27] Yu H,Bock O,Bayat A,et a1.Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring [J].J Plast Reconstr Aesthet surg,2006,59(3):221-229.
    [28] Bayat A, Bock O, Mrowietz U, et a1.Genetic susceptibility to keloid disease and transform ing growth factor beta 2 polymorphisms[J].Br J Plast Surg,2002,55(4):283-286.
    [29]吕洛,陈玉林,章庆国.增生性瘢痕转化生长因子β及其受体的分布及表达[J].中华烧伤杂志,2004,2O(1):3O-33.
    [30] Maduzia LL,Padgett RW .Drosophila MAD,a member of the Smad family,translocates to the nucleus upon stimulation of the dpp pathway.Biochem Biophys Res Commun,1997,238:595-598.
    [31] Hao J,Ju H,Zhao S,et a1.Elevation of expression of Smad2,Smad3 and Smad4,decorin and TGF-βin the chronic phase of myocardial infarct scar healing.J Mol Cell Cardiol,1999,31:667-678.
    [32] Dooley S, Delvoux B, Lahme B, et a1. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts、Hepatology,2000.3 1:1094-1 106.
    [33] Vrljicak P,Myburgh D,Ryan AK,et a1.Smad expression during kidney development.Am J Physiol Renal Physio1.2004,286:F625-F633.
    [34] Liu C,GacaMD,Swenson ES,et a1.Smads 2 and 3 are differentially activated by transforming growth factorβ(TGF-β)in quiescent and activated hepatic stellate cells .J Biol Chem,2003,278(13):11721-11728.
    [35] Flanders KC:Smad3 as a mediator of the fibrotic response.Int J Exp Pathol,2004,85(2):47-64.
    [36] Schnabl B,KweonYO,Frederick JP,et a1. The role of Smad3 in mediating mouse hepatic stellate cell activation.Hepatology,2001,34(1):89-100.
    [37]张彬彬,焦杨文,蔡卫民,等.Samds在日本血吸虫病小鼠肝纤维化形成过程中的表达.中国寄生虫学与寄生虫病杂志,2004,22(3):154-156.
    [38]李平,周元国.Smad3与创伤愈合.中华创伤杂志,2005,21(2):151-154.
    [39]邓长柏,杨作成.Smad3在TGF-β1诱导肌成纤维细胞增殖中的作用.中国现代医学杂志,2008,18(19): 2792-2794.
    [40]熊杰,夏照帆,吕开阳,等.转化生长因子β1诱导皮肤成纤维细胞向肌成纤维细胞表型转分化的机制研究.第二军医大学学报,2007,28(11):1175-1179.
    [1] Attisano L,Miller,B.Role of transforming growth factor beta and Wnt signalling pathways in colon cancer[J].Cur Opin Cell Biol,2000,12:235.
    [2] Massague J.TGF-beta signal transduction[J].Annu Rev Biochem,1998,67:753.
    [3] Kim J,Johnson K,Chen HJ,et a1.Drosophila Mad binds to DNA and directly mediates activation of vestigial by decapentaplegic[J].Nature,1997,388:304-308.
    [4] Fortuno ES,Le-Sueur JA,Graff JM.The amino terminus of Smads permits transcriptional specificity[J].Dev Biol,2001,230:110-124.
    [5] Chen YG,Massague J.Smadl recognition and activation by the ALK1 group of transforming growth factor—beta family receptors[J].J Biol Chem,1999,274:3672-3677.
    [6] Engel ME,McDonnell MA,Law BK,et a1.Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription[J].J Biol Chem,1999,274:37-43.
    [7] Ten Dijke P,Goumans MJ,Itoh F,etal.Regulation of cell proliferation by Smad proteins.J Cell Physiol,2002,191:1-16.
    [8] Monaco JL , Lawrene WT.Acute wound healing an overview.Clin Plast Surg.2003,30:1-12.
    [9] Valderrama Carvajal H,Cocolakis E,Lacerle A,et a1.Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP.Nat Cell Biol,2002,4:963-969.
    [10] Ashcroft GS,Roberts AB.Loss of Smad3 modulates wound healing.Cytokine Growth Factor Rev,2000,11:125-131.
    [11] MOUSTAKAS A,SOUCHELNYTSKYI S,HELDIN C.H.Smad regulation in TGF—beta signal transduction[J].J.Cell Sc,2001,l 14:4359—4369.
    [12] DERYNCK R,ZHANG YE.Smad-dependent and Smad independent pathways in TGF-beta family signaling[J].Nature,2003,425:577-584.
    [13] SHI Y.MASSAGUE J.Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J].Cell,2003,113:685-700.
    [14] VERRECCHIA F,MAUVIEL A.Transforming growth factor-beta signaling through the Smad pathway:role in extracellular matrix gene expression and regulation[J].J Invest Dermatol,2002,118(2):2l 1-215.
    [15] CHEN W.FU X.SHENG Z.Review of current progress in the structure and function of Smad proteins[J].Chin Med J(Eng1),2002,1 l5(3):446-450.
    [16] CHEN Y,BLOM IE,SA S,GOLDSCHMEDING R,et a1.CTGF expression in mesangial cells:involvement of SMADs, MAP kinase,and PKC[J].Kidney Int,2002,62(4):1 149-1 159.
    [17] HU B , WU Z , PHAN SH . Smad3 mediates transforming growth factor beta-induced Alpha-smooth muscle actin expression[J].Am J Respir Cell Mol Biol,2003,29(3 Pt 1):397-404.
    [18] HUA X,MILLER ZA,BENCHABANE H,et a1.Synergism between transcription factors TFE3 an d Smad3 in transforming growth factor-beta-induced transcription of the Stand7 gene[J].J Biol Chem,2000,275(43):33205-33208.
    [19]陈伟,付小兵,葛世丽,等.增生性瘢痕形成和成熟过程中TGF-β1、TGF-β3及其受体的基因表达变化[J].中华整形外科杂志,2004,7(2O):308-309.
    [20] Sumiyoshi K,Nakao A,Setoguchi Y,et a1.Smads regulate collagen gel contraction by human dermal fibroblasts. Br J Dermato1.2003.149:464-470.
    [21] Zhang K,Garner W,Cohen L et a1.Increased types I and III collagen and transforming growth factor-β1 mRNA and protein in hypertrophic burn scar.J Invest Dermatol,1995,104:750-754.
    [22] Van Gersdorff G,Susztak K,Rezvan i F,et a1.Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta.J Biol Chem,2000,275:11320-11326.
    [23] Hao J,Ju H,Zhao S,et a1.Elevation of expression of Smads 2,3,and 4,decorin and TGF-beta in the chronic phase of myocardial infarct scar healing.J Mol Cell Cardiol,1999,31:667—678.
    [24] Inagaki Y,Mamura M ,Kanamaru Y,et a1.Constitutive phosphorylation and nuclear localization of smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells.J.Cel1.Physiol,2001,187:117-123.
    [25] Dong C,Zhu S,Wang T,et a1.Deficient Smad7 expression:a putative molecular defect in scleroderma.Proc Natl Acad Sci U S A,2002,99:3908-3913.
    [26]孙燚,宋建星,汪滋民,等. TGF-βRI、Smad2、Smad3及Smad7在瘢痕疙瘩中的表达[J].中华整形外科杂志,2006,22(5):368-370.
    [27] Tamara A,Lisa C,Patricia D,et a1.TGF-β-induced repression of CBFAl by Smad3 decreases cbfal and osteocalcin expression and inhibits osteoblast differentiation [J].EMBO J,2001,9:2254-2272.
    [28] Kaji H,Naito J,Sowa H,et a1.Smad3 differently affects osteoblast differentiation depending upon its differentiation stage[J].Horm Metab Res,2006,11:740-745.
    [29] Xiao Y,Lin C,Xiao LX,et a1.TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage[J].J Cell Bio,2001,1:35-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700