用户名: 密码: 验证码:
基于功能磁性微纳米材料的低丰度蛋白和肽组学富集新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十几年中,蛋白质组学虽然获得了快速的发展,但仍然处于组学研究工作的初期,因为蛋白组样品的的复杂性和蛋白丰度的极大差别远远超过目前任何分析平台的鉴定能力。对样品进行预处理以降低它的复杂性是获得良好质谱鉴定结果的有效途径,尤其是对于那些丰度很低,却可能在临床诊断上很有意义的蛋白/肽段。因此,发展新型的低丰度蛋白/肽段富集技术和内源性肽选择分离技术成为了当前蛋白组学研究的热点。另一方面,随着生物医学和生物工程相关领域研究的发展,功能化磁性微球越来越受到人们的广泛关注。探索磁性微球的功能化、智能化以及将这些微球应用于药物释放、生物大分子分离、生物传感器和固定化酶等方面是磁性微球一个重要的研究方向。
     本论文针对蛋白质组学研究中低丰度蛋白/肽段富集和内源性肽选择性分离方面的热点难点问题,开发了一系列新型功能磁性微纳米材料,并将它们与蛋白组低丰度富集研究结合,发展了以功能化磁性微纳米材料为基础的蛋白质组学低丰度富集和肽组学富集分析新技术新方法,并进行了实际生物样品的应用研究,取得了一些创新性的研究结果。本论文围绕功能化磁性微纳米材料为基础的蛋白质组学低丰度富集和肽组学富集分析这一主题,共分五章,主要内容如下:
     第一章介绍了蛋白质组学研究背景和技术的发展,蛋白/肽段的低丰度富集在这蓬勃发展的蛋白组和肽组分析领域的重要性;就目前生物样品预处理技术,以及固相微萃取富集技术的发展进行了综述,而磁性材料则因为其简便有效的操作性而在蛋白组学的应用中受到越来越多的人的关注;概述了功能化磁性微球及其在蛋白组学分析中的应用;最后提出了本论文选题的目的和意义。
     第二章探索线性疏水基作为亲和配体的磁性微纳米材料的合成,并将它们用于低丰度肽段的富集研究。
     一、通过一锅法(one-pot method)合成粒径仅约1511m的油酸修饰的磁性纳米粒子,这些粒子比表面积大,分散性好,具有超顺磁性和磁响应性,对肽段的富集容量大,被用于富集标准肽段、标准蛋白酶解液和人血清样品中的低丰度肽段。这是首次将合成如此简便的油酸修饰的纳米粒子用于低丰度蛋白或肽段的富集研究。
     二、为克服线性疏水基的材料存在的常见缺点——水中分散性差,我们合成了C8修饰的磁性聚合碳微球。该微球通过三步简单的反应合成。首先制得Fe304磁性核,然后在核外包覆聚合碳层。由于聚合碳层上含有大量易于修饰的羟基、醛基、羧基等,随后易于修饰上C8。该微球表面既含有疏水C8链,又含有大量未被修饰的亲水官能团,所以能很好地分散在水中,具有良好的生物样品相容性。用该材料富集肽段后可以不经过洗脱步骤,将富集到的肽段连同材料点到靶板上进行MALDI-TOF MS分析。最后材料还被用于实际蛋白组分析,即从胶上酶解蛋白提取液中富集肽段。
     这两种材料合成简单,磁响应性良好,富集过程简单,富集后的肽段用MALDI-TOF MS进行鉴定,结果显示富集效果良好。两种材料都在实际蛋白质组研究中得到应用,结果显示这种磁性富集方法对实际样品表现出了极好的可行性。
     第三章基于C60与肽段/蛋白之间的独特相互作用,合成了C60修饰的磁性硅球,并用于低丰度肽段/蛋白的富集研究。先在四氧化三铁磁球表面包覆硅层,然后再在磁性硅球表面键合C60。采用傅立叶变换红外光谱仪等对产物进行了表征,确认C60已被成功修饰到磁性硅球上。用C60修饰的磁性硅球富集低丰度蛋白/肽段,优化富集条件,对浓度低至1nM的肽段水溶液依然具有良好的富集效果,富集后肽段信噪比能提高10。左右。然后将这一优化之后的条件应用到未经过任何预分离处理的人尿液中,富集之后,直接进行基质辅助激光解析飞行时间质谱(MALDI-TOF MS)分析,检测出了十条左右的尿液肽段。整个分析过程快速简便。这一结果证明了磁性材料低丰度富集技术的巨大潜力,该技术大大增进了蛋白质组学的通量性,降低了检测限,预示了其在临床诊断应用上的前景。
     第四章进一步改进磁性材料表面的功能修饰物,发展了磁性聚合物富集分离蛋白/肽段的新方法,在磁性硅球表面修饰上聚甲基丙烯酸甲酯(Poly(methyl methacrylate) (PMMA))。PMMA修饰的磁性硅球合成工艺简单,比表面积大,在蛋白/肽段富集和质谱分析过程中具有许多独特的优势。首先,该材料在水体中分散性好,伸展的线性PMMA链对目标蛋白/肽段具有很好的捕获性能;其次,材料具有顺磁性,在磁体帮助下富集分离操作简便;此外,因为PMMA与极性分子作用很小,材料富集肽段/蛋白时无机盐不会被载带下来;最后,由于PMMA固定于无机核上,蛋白/肽段不能进入材料深处,在使用MALDI-TOF MS分析时便于蛋白/肽段的激发,也减少了PMMA片段的干扰峰。该磁性PMMA微球在蛋白/肽段低丰度富集中的应用论证了磁性微纳米材料在蛋白组学中的实际应用性。
     第五章基于肽组学分析中对内源性肽段选择性富集分析的需要,发展了一种用介孔层包覆的磁性微球分离分析内源性肽的新方法。该微球以Fe3O4粒子为核心,中间是紧密SiO2层,最外是介孔SiO2层。该微球经过透射电镜、氮吸附等表征,确认其结构组成。该材料被用于肽段的选择性富集并经过条件优化后,在鼠脑内源性肽的分离分析研究中得到应用并表现出了许多优越性。首先该介孔层的孔径约2nm,可以选择性允许分子量相对较小的内源性肽进入孔内并将较大的蛋白排阻在孔道之外;其次,该微球比表面积大,经过煅烧增强了表面疏水性而捕获内源性肽;在中间紧密SiO2层的保护下材料具有良好的稳定性、分散性和样品相容性;材料具有顺磁性,在磁体作用下从基体溶液中分离十分方便。富集鼠脑内源性肽后,经过溶剂洗脱和LC-MS分析,共检测出60条不同的鼠脑肽段。该磁性介孔分离分析内源性肽段的新方法简便有效,为大规模开展肽组学研究开辟了新的道路。
Proteomics is still in its infancy although great progresses have been made in proteomics during the last decade, because the extreme complexity of proteome sample and large dynamic range of protein abundance overwhelm the capability of all currently available analytical platforms. Sample pretreatment is a good approach to reduce the complexity of proteome sample and thus gain idea results from mass spectrometry-based analysis, especially for those low-abundance proteins/peptides and endogenous peptides, which may be valuable for clinical diagnosis. Therefore, new technologies for rapid enrichment of low-abundance proteins/peptides and selective separation of endogenous peptides from samples are in great demands. On the other hand, magnetic microspheres with micro-and nanometer size are gaining increasing attention due to their ease of manipulation and recovery, and functionalized magnetic microspheres have been extensively applied in cell separation, magnetically assisted drug delivery, and enzyme immobilization. In this study, we focused on preparing several kinds of novel functionalized magnetic polymer microspheres and developing a series of techniques and methods to resolve current problems in enrichment of low-abundance proteins/peptides and selective separation of endogenous peptides from samples.The whole research work in this thesis is divided into five chapters.
     In Chapter 1,the background and advances in proteomics research, current technologies and methods for sample pretreatment in efficient proteome and peptidome analysis, applications of functionalized magnetic polymer microspheres techniques in proteome research were summarized in details.The intention and meaning of this research work were explained.
     In Chapter 2, we developed oleic acid-functionalized magnetite (OA-Fe3O4) nanoparticles and C8-functionalized magnetic carbonaceous polysaccharide microspheres respectively, and applied them in enrichment of low-abundant peptides.
     First, the OA-Fe3O4 nanoparticles were synthesized by a one-pot method and the as-prepared nanoparticles are only about 15nm in size and possess high surface area, good dispersibility, excellent magnetic response and strong hydrophobic oleic acid group, which make them excellent adsorbents for biomacromolecules.The OA-Fe3O4 nanoparticles were successfully applied to the enrichment of low-concentration peptides from standard peptide solution, protein digest solutions and human serum.
     Second, biological compatible C8-functionalized magnetic carbonaceous polysaccharide (C8-F-Fe3O4@CP) microspheres with strong magnetic properties were prepared by three-step facile synthesis approach. The Fe3O4 core was firstly prepared through hydrothermal reaction, then the shell of carbonaceous polysaccharide was formed outside the Fe3O4 core. Because the shell of carbonaceous polysaccharide contain numerous hydroxyl group, carboxyl group and aldehyde group, they were then functionalized with chloro(dimethyl)octylsilane(C8), and formed C8-F-Fe3O4@CP microspheres. Thanks to the strong magnetism, many remnants hydrophilic group and surface modification with C8 groups, the process of enrichment is very simple, quick, and efficient. The resulting peptides loaded on C8-F-Fe3O4@CP microspheres can be directly analyzed by MALDI-TOF-MS without elution. The feasibility of C8-F-Fe3O4@CP microspheres was further confirmed by direct analysis of peptides in digestion products of a protein spot obtained from a 2-DE separation of human eye lens.
     The facile and low-cost synthesis as well as the convenient and efficient enrichment process of the novel OA-Fe3O4 nanoparticles and C8-F-Fe3O4@CP microspheres makes them promising candidates for isolation of low-concentration peptides even in complex biological samples.
     In Chapter 3, novel magnetic materials of C60-functionalized magnetic silica (C60-f-MS) microspheres were synthesized for the first time to enrich peptides/proteins base on the unique interaction between C60 and bio-molecules. Magnetic silica microspheres with a magnetite core and silica shell were synthesized firstly,then C60-f-MS microspheres were synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres。It has been demonstrated in the study, newly developed fullerene-derivatized magnetic silica materials are superior to those already available on the market. This may be arbitrated to the complex interaction between C60 and peptides, which may include hydrophobic interaction,π-bond conjugate, or some other enrichment factors. The facile and low-cost synthesis as well as the convenient and efficient enrichment process of the novel C60-f-MS microspheres makes it a promising candidate for isolation of low-concentration peptides and proteins even in complex biological samples such as urine.
     In Chapter 4, the functional group modified on magnetic microspheres was further improved by applying polymer of poly (methyl methacrylate)(PMMA).The sandwich structured Fe3O4@SiO2@PMMA microspheres were synthesized via combing sol-gel approach and seeded aqueous-phase radical polymerization method. PMMA polymer on the surface of the microspheres has linear hydrophobic chains, which endows Fe3O4@SiO2@PMMA microspheres good hydrophobic property, thus, Fe3O4@SiO2@PMMA microspheres could be used as hydrophobic probes toward peptide/protein. Thanks to the Fe3O4 cores in the microspheres, the enrichment process is fast without reiterative centrifugation. The co-concentration of salts can be avoided by using Fe3O4@SiO2@PMMA microspheres in the peptide absorption because of weak interaction between PMMA and hydrophilic molecular including salt. These microspheres can enrich low-concentration peptides/proteins effectively, fast and conveniently, and the resulting peptides loaded on Fe3O4@SiO2@PMMA microspheres can be directly analyzed by MALDI-TOF-MS without elution. this work can be extended to design core-shell magnetic microspheres with other polymers as shell for bioseparation applications.
     In Chapter 5, base on the need of endogenous peptides analysis, we develop a novel enrichment protocol for peptides by using the microspheres composed of Fe3O4@SiO2 Core and perpendicularly aligned mesoporous SiO2 shell (designated Fe3O4@nSiO2@mSiO2). The Fe3O4@nSiO2@mSiO2 microspheres possess useful magnetic responsivity which makes the process of enrichment fast and convenient. The highly ordered nanoscale pores (2 nm) and high-surface areas of the microspheres were demonstrated to have good size-exclusion effect for the adsorption of peptides. An increase of S/N (signal to noise) ratio over 100 times could be achieved by using the microspheres to enrich a standard peptide, and the application of the microspheres to enrich universal peptides was performed by using MYO tryptic digest solution. The enrichment efficiency of re-used Fe3O4@nSiO2@mSiO2 microspheres was also studied. Large-scale enrichment of endogenous peptides in rat brain extract was achieved by the microspheres. Automated nano-LC-ESI-MS/MS was applied to analyze the sample after enrichment, and 60 unique peptides were identified in total. The facile and low-cost synthesis as well as the convenient and efficient enrichment process of the novel Fe3O4@nSiO2@mSiO2 microspheres makes it a promising candidate for selectively isolation and enrichment of endogenous peptides from complex biological samples.
引文
[1]Wilkins, M. R.,Sanchez, J.C.,Gooley, A. A.,Appel, R. D.,Humphery-Smith, I., Hochstrasser, D.F.,Williams, K. L.,Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it [J].Biotechnol.Genet. Eng. Rev.,1996,13:19-50.
    [2]de Hoog, C.L.,Mann, M.,Proteomics [J].Annu. Rev. Genomics Hum. Genet., 2004,5:267-293.
    [3]Pandey, A.,Mann, M.,Proteomics to study genes and genomes [J].Nature,2000, 405(6788):837-846.
    [4]Rosamond, J.,Alsop, A.,Harnessing the Power of the Genome in the Search for New Antibiotics[J].Science,2000,287(5460):1973-1976.
    [5]夏其昌,曾嵘,等,蛋白质化学与蛋白质组学[M],北京:科学出版社,2004:236
    [6]Abbott A. A post-genomic challenge:learning to read patterns of protein synthesis [J].Nature,1999,402(6763):715-715
    [7]Anon. The promise of proteomics [J] Nature,1999,402 (6763):703-703.
    [8]Anderson, N. L.,Anderson, N. G,Proteome and proteomics:New technologies, new concepts, and new words [J].Electrophoresis,1998,19(11):1853-1861.
    [9]Mann, M.,Pandey, A.,Proteomics to study genes and genomes [J].Nature,2000, 405(6788):837-846.
    [10]Klose, J.,Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals [J].Humangenetik,1975,26(3):231-243.
    [11]O'Farrell, P. H.,High resolution two-dimensional electrophoresis of proteins [J]. J.Biol. Chem.,1975,250(10):4007-4021.
    [12]Gorg, A.,Weiss, W.,Dunn, M. J.,Current two-dimensional electrophoresis technology for proteomics [J].Proteomics,2004,4(12):3665-3685.
    [13]Shaw, M. M., Riederer, B.M.,Sample preparation for two-dimensional gel electrophoresis [J].Proteomics,2003,3(8):1408-1417.
    [14]Gorg, A.,Obermaier, C.,Boguth, G,et al.,The current state of two-dimensional electrophoresis with immobilized pH gradients [J].Electrophoresis,2000,21 (6): 1037-1053.
    [15]Barber, M.,Bordoli, R, S.,Sedgwick, R. D.,Tyler, A. N.,J. Chem. Soc., Chem. Commun.,1981(7):325-327.
    [16]Karas, M.,Hillenkamp, F.,Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons [J].Anal.Chem.,1988,60(20):2299-2301.
    [17]Fenn, J.B.,Mann, M.,Meng, C.K.,Wong, S.F.,Whitehouse, C.M., Electrospray ionization for mass-spectrometry of large biomolecules [J].Science, 1989,246(4926):64-71.
    [18]Yost, R. A.,Boyd, R. K.,Tandem mass spectrometry:quadrupole and hybrid instruments [J].Methods Enzymol,1990,193:154-200.
    [19]Shevchenko, A.,Loboda, A.,Shevchenko, A.,et al.,MALDI quadrupole time-of-flight mass spectrometry:a powerful tool for proteomic research [J]. Anal Chem,2000,72(9):2132-2141.
    [20]梁文平,庄乾坤,分析化学的明天,北京:科学出版社,2003:229-239.
    [21]Schrader, M.,Schulz-Knappe, P.,Peptidomics technologies for human body fluids[J].Trends Biotechnol.2001,19(10):S55-S60.
    [22]Schulz-Knappe, P.,Zucht, H.D.,Heine, C., Jurgens, M.,Hess, R.,Schrader, M., Peptidomics:the comprehensive analysis of peptides in complex biological mixtures [J].Comb. Chem. High Throughput Screen,2001,4(2):207-217.
    [23]Schulte, L.,Tammen, H.,Selle, H.,Schulz-Knappe, P.,Peptides in body fluids and tissues as markers of disease [J].Expert Rev. Mol. Diagn.2005,5 (2): 145-157.
    [24]Petricoin, E. F.,Belluco, C.,Araujo, R. P.,Liotta, L. A.,The blood peptidome: a higher dimension of information content for cancer biomarker discovery [J]. Nat. Rev. Cancer,2006,6(12):961-967.
    [25]Soloviev, M.,Finch, P.,Peptidomics:bridging the gap between proteome and metabolome[J].Proteomics,2006,6(3):744-747.
    [26]Hu, L. H.,Ye, M. L.,Zou, H.F.,Recent advances in mass spectrometry-based peptidome analysis [J].Expert Rev. Proteomics,2009,6 (4):433-447.
    [27]Zheng, X. Y,Baker, H., Hancock, W. S.,Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer [J].J. Chromatogr. A,2006,1120(1-2):173-184.
    [28]Polson, C.,Sarkar, P.,Incledon, B.,Raguvaran, V.,Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry [J].J.Chromatogr. B, 2003,785(2):263-275.
    [29]Grimm, C.H.,Boos, K. S.,Apel, C.,Selective extraction of small proteins from biological samples using a novel restricted access column with cation exchange properties [J].Chromatographia,2000,52(11-12):703-709.
    [30]Villanueva J, Philip J, Entenberg D. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry [J].Anal.Chem.2004,76 (6):1560-1570.
    [31]Jia,W.T.,Chen, X. H.,Lu, H.J.,Yang, P. Y,CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis [J].Angew. Chem. Int. Ed. 2006,45(20):3345-3349.
    [32]Westermeier, R.,Naven, T. Proteomics in Practice:A Laboratory Manual of Proteome Analysis, Wiley-VCH,Weinheim,2002:263.
    [33]Zhang, N.,Doucette, A.,Li, L.,Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate [J].Anal.Chem.2001,73(13):2968-2975.
    [34]Brockman, A. H.,Dodd, B.S.,Orlando, N.,A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers [J].Anal. Chem.1997,69(22):4716-4720.
    [35]Brockman, A. H.,Orlando, R.,Probe immobilized affinity-chromatography mass-spectrometry [J] Anal. Chem.,1995,67(24):4581-4585
    [36]Brockman, A. H.,Dodd, B.S.,Orlando, R.,A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers[J] Anal.Chem.,1997,69(22):4716-4720
    [37]Warren, M.E.,Brockman, A. H.,Orlando, R.,On-probe solid-phase extraction MALDI-MS using ion-pairing interactions for the cleanup of peptides and proteins Anal.Chem.,1998,70(18):3757-3761
    [38]Liang, X. L.,Lubman, D. M.,Rossi, D. T.,Nordblom, G.D.,Barksdale, C.M., On probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass spectrometry [J].Anal. Chem.,1998,70(3):498-503
    [39]Schuerenbeg, M.,Luebbert, C.,Eickhoff, H.,Kalkum, M.,Lehrach, H.,Nordhoff, E.,Prestructured MALDI-MS sample supports [J].Anal.Chem.,2000,72(15): 3436-3442.
    [40]Jia, W. T.,Wu, H.X.,Lu, H.J.,Li, N.,Zhang, Y.,Cai, R. F.,Yang, P. Y,Rapid and automatic on-plate desalting protocol for MALDI-MS:Using imprinted hydrophobic polymer template [J].Proteomics 2007,7(15):2497-2506
    [41]Rasmussen, H.H.,Mortz, E.,Mann, M.,Roepstorff, P.,Celis, J.E.,Identification of transformation sensitive proteins recorded in human two-dimensional gel protein databases by mass spectrometric peptide mapping alone and in combination with microsequencing[J].Electrophoresis,1994,15(1):406-416.
    [42]Clarke, N.J.,Li, F.,Tomlinson, A. J.,One step microelectroelution concentration method for efficient coupling of sodium dodecylsulfate gel electrophoresis and matrix-assisted laser desorption time-of-flight mass spectrometry for protein analysis[J].J.Am. Soc. Mass Spectrom.,1998,9(1):88-91.
    [43]Tomlinson, A. J.,Benson, L. M.,Jameson, S.,Johnson, D.H.,Naylor, S.,Utility of membrane preconcentration capillary electrophoresis mass spectrometry in overcoming limited sample loading for analysis of biologically derived drug metabolites, peptides, and proteins [J].J.Am. Soc. Mass Spectrom.,1997,8 (1):15-24.
    [44]Winston, R. L.,Fitzgerald, M. C.,Concentration and desalting of protein samples for mass spectrometry analysis [J].Anal.Biochem.,1998,262(1):83-85.
    [45]Wilm, M.,Mann, M.,Analytical properties of the nanoelectrospray ion source [J]. Anal. Chem.,1996,68(1):1-8.
    [46]Zhang, Y.,Wang, X. Y,Shan, W.,Wu, B.Y,Fan,H.Z., Yu, X. J.,Tang, Y, Yang, P. Y Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis [J].Angew. Chem. Int. Ed. 2005,44(4):615-617.
    [47]Doucette, A., Craft, D., Li, L.,Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptide mass mapping of proteins from dilute solutions [J].Anal.Chem.,2000,72(14):3355-3362.
    [48]Tian, R. J.,Ye, M. L.,Hu, L. G.,Li, X.,Zou, H. F.,Selective extraction of peptides in acidic human plasma by porous silica nanoparticles for peptidome analysis with 2-D LC-MS/MS [J].J.Sep. Sci.2007,30(14):2204-2209.
    [49]Dong, W.Y,Sun, Y J.,Lee, C. W,, Hua, W. M.,Zhao, D.Y,Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J.Am.Chem. Soc.2007,129 (45):13894-18904.
    [50]Wang, Y,Zhao, D. Y,On the controllable soft-templating approach to mesoporous silicates [J].Chem. Rev.2007,107 (7):2821-2860.
    [51]Xu, Y W.,Wu, Z. X.,Zhang, L.,Lu, H, J.,Yang, P. Y,Webley, P. A.,Zhao, D.Y, Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica [J].Anal Chem.2009,81(1):503-508.
    [52]Tian, R. J.,Ren, L. B.,Ma, H. J.,Li,X.,Hua, L., Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis [J].J. Chromatogr. A,2009,1216 (8):1270-1278.
    [53]Tian, R. J.,Zhang, H.,Ye, M.L. Jiang, X. G.,Hu, L. G.,Li, X.,Bao, X. H.,Zou, H.F.,Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis [J].Angew. Chem.Int. Ed. 2007,46(6):962-965.
    [54]Guptal,P.K.,Hung, C. T.,Lam, F.C.,Perrier, D. G.,Albumin microspheres. Ⅲ. Synthesis and characterization of microspheres containing adriamycin and magnetite [J].Int.J.Pharm.,1988,43(1-2):167-177.
    [55]Mehta, R. V.,Upadhyay, R. V.,Charles, S.W.,et al.,Direct binding of protein to magnetic particles [J].Biotechnology Techniques,1997,11 (7):493-496.
    [56]Shan, W. H.,Suh, Y. H.,Stucky, G D.,Multifunctional nanosystems at the interface of physical and life sciences [J].Nano Tody,2009,4(1):27-36.
    [57]Xu, X. Q.,Deng, C.H.,Gao, M. X.,Zhang, X. M.,Yang, P. Y,Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry [J].Adv. Mater.2006,18 (24):3289-3294.
    [58]Li, Y,Deng, C.H.,Yang, P. Y,Zhang, X. M.,et al.,Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis [J]. Proteomics,2008,8(2):238-249.
    [59]Lin, S.,Yun, D.,Qi, D.W.,et al. Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis [J].J. Proteome Res.,2008,7(3):1297-1307.
    [60]Bikova, Z.,Slovakova, M.,Minc, N.,Futterer, C.,Cecal, R.,Horak, D.,Benes, M.,Potier, L. L.,Krenkova, J.,Przybylski, M.,Viovy, J.L.,Functionalized magnetic micro-and nanoparticles:Optimization and application to μ-chip tryptic digestion [J].Electrophoresis,2006,27 (9):1811-1824.
    [61]Chen,W. Y and Chen,Y C., Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads [J].Anal. Chem.2007,79 (6): 2394-2401.
    [62]Li,Y.,Xu, X. Q.,Yu, W. J.,Deng, C.H.,Zhang, X. M.Microchip reactor packed with metal-ion chelated magnetic silica microspheres for highly efficient proteolysis[J].J.Proteome Res.,2007,6(6):2367-2375.
    [63]Li, Y,Yan, B.,Deng, C.H.,Yu, W. J.,Xu, X. Q.,Yang, P. Y,Zhang, X.M., Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres [J].Proteomics,2007,7(14):2330-2339.
    [64]Li, Y,Xu, X. Q.,Deng, C.H.,Zhang, X.M.,et al.,Immobilization of Trypsin on Superparamagnetic Nanoparticles for Rapid and Effective Proteolysis[J].J. Proteome Res.2007,6(9):3849-3855.
    [65]Li, Y.,Yan, B.,Deng, C. H.,Zhang, X. M.,et al.,On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis[J].Proteomics,2007,7 (20):3661-3671.
    [66]Lin, S.,Yao, G.P.,Qi, D. W.,Li, Y,Deng, C. H.,Yang, P.Y,and Zhang, X. M., Fast and Efficient Proteolysis by Microwave-Assisted Protein Digestion Using Trypsin-Immobilized Magnetic Silica Microspheres [J].Anal.Chem.2008,80 (10):3655-3665.
    [67]McLachlin, D.T.,Chait, B.T.,Analysis of phosphorylated proteins and peptides by mass spectrometry [J].Curr. Opin. Chem. Biol.,2001,5(5):591-602.
    [68]Mann, M.,Ong, S.E.,Gronborg, M, Steen, H.,Jensen, O. N.,Pandey, A., Analysis of protein phosphorylation using mass spectrometry:deciphering the phosphoproteome [J].Trends in Biotechnol.,2002,20(6):261-268.
    [69]Cleverley, K. E.,Betts, J.C.,Blackstock, W. P.,Gallo, J.M.,Anderton, B.H., Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry [J].Biochemistry, 1998,37(11):3917-3930.
    [70]Merrick, B.A.,Zhou, W.,Martin, K. J.,Jeyarajah, S.,Parker, C.E.,Selkirk, J.K., Tomer, K. B.,Borchers, C. H.,Site-specific phosphorylation of human p53 protein determined by mass spectrometry [J].Biochemistry,2001,40(13): 4053-4066.
    [71]Zhou, H. L.,Watts, J. D.,Aebersold, R.,A systematic approach to the analysis of protein phosphorylation [J].Nat. Biotechnol.,2001,19(4):375-378.
    [72]Wolschin, F.,Wienkoop, S.,Weckwerth, W.,Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC) [J].Proteomics,2005,5(17):4389-4397.
    [73]Li, Y,Lin, H. Q.,Deng, C. H., Zhang, X. M.,et al., Preparation of Fe3O4@ZrO2 Core-Shell Microspheres as Affinity Probes for Selective Enrichment and Direct Determination of Phosphopeptides Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry [J].J.Proteome Res.2007,6 (11):4498-4510.
    [74]Li, Y,Lin, H. Q.,Deng, C.H.,Zhang, X. M.,et al.,Rapid and Selective Enrichment of Phosphorylated Peptides Using Gallium Oxide Coated Magnetic Microspheres for Mass Spectrometric Analysis [J].Proteomics,2008,8 (2), 238-249.
    [75]Li, Y.,Liu, Y.C.,Deng, C.H.,Zhang, X. M.,et al.,Fe3O4@A12O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis [J].Journal of Chromatography A,2007,1172 (1):57-71.
    [76]Li, Y.,Qi, D.W.,Deng, C.H.,Yang, P. Y,Zhang, X. M.,Cerium Ion-Chelated Magnetic Silica Microspheres for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry [J].J. Proteome Res.2008,7 (4):1767-1777.
    [77]Zhou, W.,Yao, N.,Yao,G.P., Deng, C. H.,et al.,Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins [J].Chen. Commun.,2008, (43): 5577-5579.
    [78]Nandigala, P.,Chen, T. H.,Yang, C.,Hsu, W. H.,Heath, C.,Immunomagnetic isolation of islets from the rat pancreas [J].Biotechnol.Prog.,1997,13(6):844.
    [79]Deng, Y. H.,Deng, C. H.,Yang, D.,Wang, C. H.,Fu, S.K.,Zhang, X. M., Preparation,characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes[J].Chem.Commun.2005,(44): 5548-5550.
    [80]Gupta, P.K.,Hung, C.T.,Magnetically controlled targeted micro-carrier systems [J].Life Sciencs,1989,44(3):175-186.
    [81]Deng, Y. H.,Wang, C.C.,Shen, X. Z.,Yang, W. L.,An, L.,Gao, H.,Fu, S.K. Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells[J],Chem. Eur. J.,2005,11(20):6006-6013.
    [82]Horak, D.,Rittich, B.,Safar, J.,Spanova, A.,Lenfeld, J.,Benes, M.J.,Properties of RNase a immobilized on magnetic poly (2-hydroxyethyl methacrylate) microspheres [J].Biotechnol. Prog.,2001,17(3):447-452.
    [83]Guiseppi-Elie, A, Sheppard, N. F.,Brahim, S.,et al.,Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays [J].Biotechnol. Bioeng.2001,75(4):475-484.
    [84]Fiedler, G. M.,Baumann, S.,Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J].Clin. Chem.2007,53 (3):421-428.
    [85]Ebert, M. P. A.,Niemeyer, D.,Deininger, S.,Wex, T. et al.,Identification and confirmation of increased fibrinopeptide A serum protein levels in gastric cancer sera by magnet bead assisted MALDI-TOF mass spectrometry [J].J. Proteome Res.2006,5(9):2152-2158.
    [86]de Noo, M.E.,Tollenaar, R. A.E. M.,Bladergroen, M. R.,Eilers, P. H.C., Deelder, A. M.,Reliability of human serum protein profiles generated with C8 magnetic beads assisted MALDI-TOF mass spectrometry [J].Anal.Chem.2005, 77(22):7232-7241.
    [87]Villanueva, J.,Philip, J.,Entenberg, D.,Chaparro, C.A. et al., Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry [J].Anal.Chem.2004,76 (6):1560-1570.
    [88]Chen, H. M.,Xu, X.Q.,Yao, N.,Deng, C.H, Yang, P.Y. and Zhang, X. M., Facile synthesis of C8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALDI-TOF MS analysis [J].Proteomics 2008,8(14):2778-2784
    [1]Yao, J.,Scott, J.R.,Young, M. K.,Wilkins, C.L.,Importance of matrix:analyte ratio for buffer tolerance using 2,5-dihydroxybenzoic acid as a matrix in matrix-assisted laser desorption/ionization Fourier transform mass spectrometry and matrix-assisted laser desorption/ionization time of flight [J].J.Am.Soc. Mass Spectrom.,1998,9(8):805-813.
    [2]Keller, B.O.,Li, L.,Discerning matrix-cluster peaks in matrix-assisted laser desorption/ionization time-of-flight mass spectra of dilute peptide mixtures [J].J. Am. Soc. Mass Spectrom.2000,11(1):88-93.
    [3]Bublitz, R.,Kreusch, S.,Ditze, G.,Schulze, M.,Cumme, G. A.,Fischer, C., Winter, A.,Hoppe, H.,Rhode, H.,Robust protein quantitation in chromatographic fractions using MALDI-MS of tryptic peptides [J].Proteomics 2006,6(13):3909-3917.
    [4]Salplachta, J.,Rehulka, P.,Chmelik, J.,Identification of proteins by combination of size-exclusion chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and comparison of some desalting procedures for both intact proteins and their tryptic digests [J].J. Mass Spectrom.2004,39(12):1395-1401.
    [5]Ottens, M.,Houwing, J.,Van Hateren, S.H.,Van Baalen, T.,Van Der Wielen, L A. M, Multi-component fractionation in SMB chromatography for the purification of active fractions from protein hydrolysates [J].Food Bioprod. Process.2006,84(C1):59-71.
    [6]Moure, F.,Rendueles, M.,Diaz, M., Bovine plasma protein fractionation by ion exchange chromatography [J].Bioprocess Biosyst. Eng.2004,27(1):17-24.
    [7]Shin, J.H.,Krapfenbauer, K.,Lubec, G.,Large-scale identification of cytosolic mouse brain proteins by chromatographic prefractionation [J].Electrophoresis 2006,27(13):2799-2813.
    [8]Pepaj,M.,Wilson, S.R.,Novotna, K.,Lundanes, E.,Greibrokk, T., Two-dimensional capillary liquid chromatography:pH Gradient ion exchange and reversed phase chromatography for rapid separation of proteins [J].J. Chromatogr. A,2006,1120(1-2):132-141.
    [9]Yamakoshi, Y.,Hu, J.C.C.,Zhang, H.,Iwata, T.,Yamakoshi, F.,Simmer, J.P., Proteomic analysis of enamel matrix using a two-dimensional protein fractionation system[J].Eur. J.Oral Sci.2006,114:266-271.
    [10]Gong, Y.,Li, X.,Yang, B.,Ying, W.,Li, D.,Zhang, Y.,Dai, S.,Cai,Y.,Wang, J.,He, F.,Qian, X.,Different immunoaffinity fractionation strategies to characterize the human plasma proteome [J].J.Proteome Res.2006,5 (6): 1379-1387.
    [11]Guerrier, L.,Thulasiraman, V.,Castagna, A.,Fortis, F.;Lin, S.,Lomas, L., Righetti, P.G.,Boschetti, E.,Reducing protein concentration range of biological samples using solid-phase ligand libraries [J].J.Chromatogr.,B:Anal.Technol. Biomed. Life Sci.2006,833(1):33-40.
    [12]Paunovic,I., Schulin,R.,Nowack,B.,Evaluation of immobilized metal-ion affinity chromatography for the fractionation of natural Cu complexing ligands [J].J. Chromatogr.,A 2005,1100(2):176-184.
    [13]Bakry, R., Gjerde, D.,Bonn, G. K.,Derivatized nanoparticle coated capillaries for purification and micro-extraction of proteins and peptides [J].J. Proteome Res.2006,5(6):1321-1331.
    [14]Hynek, R.,Svensson, B.,Jensen, O. N.,Barkholt, V.,Finnie, C.,Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE, and LC-MS/MS [J].J. Proteome Res.2007,5(11):3105-3113.
    [15]de Bont, J. M.,den Boer, M. L.,Reddingius, R. E.,Jansen, J.,Passier, M.,van Schaik, R. H.N.,Kros, J.M.,Sillevis Smitt, P.A. E.,Luider, T. H.,Pieters, R., Identification of apolipoprotein A-II in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling [J].Clin. Chem.2006,52 (8): 1501-1509.
    [16]Linke, T.,Ross, A. C.,Harrison, E. H.,Proteomic analysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry [J].J.Chromatogr. A 2006,1123 (2): 160-169.
    [17]Nandigala, P.,Chen, T. H.,Yang, C.,Hsu, W. H.,Heath, C.,Immunomagnetic isolation of islets from the rat pancreas [J].Biotechnol.Prog.,1997,13(6):844.
    [18]Deng, Y.H.,Deng, C.H.,Yang, D.,Wang, C.H.,Fu, S.K.,Zhang, X. M., Preparation,characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes[J].Chem.Commun.2005,(44): 5548-5550.
    [19]Gupta, P.K.,Hung, C.T.,Magnetically controlled targeted micro-carrier systems. Life Sciencsl989,44 (3):175-186.
    [20]Deng, Y. H.,Wang, C.C.,Shen, X. Z.,Yang, W. L.,An, L.,Gao, H.,Fu, S.K. Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells[J],Chem. Eur. J.,2005,11(20),6006-6013.
    [21]Horak, D.,Rittich, B.,Safar, J.,Spanova, A.,Lenfeld, J.,Benes, M. J.,Properties of RNase a immobilized on magnetic poly (2-hydroxyethyl methacrylate) microspheres [J].Biotechnol.Prog.,2001,17(3):447-452.
    [22]Guiseppi-Elie, A, Sheppard, N. F.,Brahim, S.,et al.,Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays [J].Biotechnol. Bioeng.2001,75(4):475-484.
    [23]Chen, H.M.,Xu, X.Q.,Yao, N.,Deng, C.H, Yang, P.Y. and Zhang, X. M., Facile synthesis of C8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALDI-TOF MS analysis [J].Proteomics 2008,8(14):2778-2784
    [24]Wang, Z. F.,Guo, H.S.,Yu, Y. L., He, N. Y., Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction [J].J.Magn. Magn. Mater.2006,302 (2):397-404.
    [25]Fiedler, G.M.,Baumann, S.,Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J].Clin. Chem.2007,53 (3):421-428.
    [26]Ebert, M.P. A.,Niemeyer, D.,Deininger, S.,Wex, T. et al.,Identification and confirmation of increased fibrinopeptide A serum protein levels in gastric cancer sera by magnet bead assisted MALDI-TOF mass spectrometry [J].J.Proteome Res.2006,5(9):2152-2158.
    [27]de Noo, M. E.,Tollenaar, R. A. E.M.,Bladergroen, M.R.,Eilers, P. H.C., Deelder, A. M.,Reliability of human serum protein profiles generated with C8 magnetic beads assisted MALDI-TOF mass spectrometry [J].Anal. Chem.2005, 77(22):7232-7241.
    [28]Villanueva, J.,Philip, J.,Entenberg, D.,Chaparro, C.A. et al.,Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry [J].Anal.Chem.2004,76 (6):1560-1570.
    [29]Tian, R. J.,Zhang, H.,Ye, M.L.,Jiang, X. G.et al.,Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis [J].Angew. Chem.Int. Ed.2007,46(6):962-983.
    [30]Li, X.,Xu, S. Y.,Pan, C.S.,Zhou, H. J.,Jiang, X. G,Zhang, Y., Ye, M. L.,Zou, H.F.,Enrichment of peptides from plasma for peptidome analysis using multiwalled carbon nanotubes[J].J.Sep.Sci.2007,30(6):930-943.
    [31]Xu, X. Q.,Deng, C. H.,Gao, M. X., Yu, W. J.,Yang, P. Y.,Zhang, X. M., Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry [J].Adv. Mater.,2006,18 (24):3289-3293;
    [32]Sun, X. M.,Li, Y.D.,Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J].Angew. Chem. Int. Ed.2004,43 (5):597-601.
    [33]Zhang, N.,Doucette, A.,Li, L.,Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate [J].Anal. Chem.2001,73(13):2968-2975.
    [34]Klose, J.,Kobalz, U., Two-dimensional electrophoresis of proteins:An updated protocol and implications for a functional analysis of the genome [J]. Electrophoresis 1995,16(6):1034.
    [35]Jungblut, P. R.,Seifert, R.,Analysis of high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells [J].J. Biochem. Biophys. Methods,1990,21(1): 47-58.
    [36]Pan, S.Q.,Gu, S.,Bradbury, E. M.,Chen, X.,Single peptide-based protein identification in human proteome through MALDI-TOF MS coupled with amino acids coded mass tagging [J].Anal.Chem.2003,75(6):1316-1324.
    [1]Porath, J.,Carlsson, J.,Olsson, I.,Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation [J].Nature 1975,258 (5536):598-599.
    [2]Chin, E. T.,Papac, D. I.The use of a porous graphitic carbon column for desalting hydrophilic peptides prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J].Anal.Biochem.1999,273 (2):179-185.
    [3]Iijima, S.,Helical microtubules of graphitic carbon [J].Nature,1991,354 (6348): 56-58.
    [4]Iijima, S.,Ichihashi,T.,Single-shell carbon nanotubes of 1-nm diameter [J]. Nature,1993,363(6430):603-605.
    [5]Cai, Y. Q.,Jiang, G. B.,Liu, J.F.,Zhou, Q. X.,Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography [J].Anal. Chim. Acta,2003,494(1-2):149-156.
    [6]Li, Q.L., Yuan, D.X.,Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing [J].J.Chromatogr. A 2003,1003(1-2): 203-209.
    [7]Kwon, S.H.,Park, J.H.,Intermolecular interactions on multiwalled carbon nanotubes in reversed-phase liquid chromatography [J].J. Sep. Sci.2006,29 (7): 945-952.
    [8]Wong, N.,Kam, S.,Dai, H.,Carbon Nanotubes as Intracellular Protein Transporters:Generality and Biological Functionality [J].J. Am.Chem. Soc. 2005,127(16)6021-6026.
    [9]Li, X.,Xu, S. Y.,Pan, C. S.,Zhou, H.J.,Jiang, X. G,Zhang, Y,Ye, M. L.,Zou, H. F.,Enrichment of peptides from plasma for peptidome analysis using multiwalled carbon nanotubes[J].J. Sep.Sci.2007,30(6):930-943.
    [10]Vallant, R. M.,Szabo, Z.,Bachmann, S.,et al.,Development and application of C60-fullerene bound silica for solid-phase extraction of biomolecules [J].Anal. Chem.2007,79(21):8144-8152.
    [11]Jia, W.T.,Wu, H.X.,Lu, H.J.,Li, N.,Zhang, Y.,Cai, R. F.,Yang, P.Y.,Rapid and automatic on-plate desalting protocol for MALDI-MS:Using imprinted hydrophobic polymer template [J].Proteomics 2007,7(15):2497-2506
    [12]Xu, X. Q.,Deng, C.H.,Gao, M.X.,Zhang, X. M.,Yang, P. Y,Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry [J].Adv. Mater.2006,18 (24):3289-3294.
    [13]Zhang, N.,Doucette, A.,Li, L.,Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate [J].Anal.Chem.2001,73(13):2968-2975.
    [14]Brockman, A. H.,Dodd, B.S.,Orlando, N.,A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers [J].Anal. Chem.1997,69(22):4716-4720.
    [15]Karlsson, K.,Cairns, N.,Lubec, G.,et al.,Enrichment of human brain proteins by heparin chromatography [J].Electrophoresis,1999,20(14):2970-2976.
    [1]张祥民,现代色谱分析,上海:复旦大学出版社,2004
    [2]邹汉法,张玉奎,卢佩章,高效液相色谱法,北京:科学出版社,1998
    [3]Jia, W. T.,Chen, X. H.,Lu, H.J.,Yang, P. Y.,CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis [J].Angew. Chem. Int. Ed. 2006,45(20):3345-3349.
    [4]Shen, W. W., Xiong, H. M., Xu, Y., Cai, S. J., Lu, H. J., Yang, P. Y., ZnO-poly(methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by directly MALDI-TOF MS analysis [J].Anal. Chem.2008,80(17):6758-6763.
    [5]Xiong, H. M., Guan, X. Y, Jin, L. H., Shen, W. W.,Lu, H. J.,Xia, Y. Y, Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis [J].Angew. Chem. Int. Ed.2008,47(22):4204-4207.
    [6]Gao, X. H.,Nie, S.M.,Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity:Rapid Readout Using Flow Cytometry [J].Anal. Chem.2004,76 (8):2406.
    [7]Gaponik, N.,Radtchenko, I.,Sukhorukov, G.,Weller, H.,Rogach, A., Toward encoding combinatorial libraries:Charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR [J].Adv. Mater.2002,14(12):879-882.
    [8]Kuang, M., Wang, D.,Bao, H.,Gao, M.,Mohwald, H., Jiang, M., Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres [J].Adv. Mater.2005,17(3):267-270.
    [9]Zhang, N., Doucette, A.,Li, L., Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate [J].Anal.Chem.2001,73(13):2968-2975.
    [10]Brockman, A. H.,Dodd, B.S.,Orlando, N., A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers [J].Anal. Chem.1997,69(22):4716-4720.
    [11]Weng, M. F.,Chen, Y. C.,Using sol-gel/crown ether hybrid materials as desalting substrates for matrix-assisted laser desorption/ionization analysis of oligonucleotides [J].Rapid Commun. Mass Spectrom.2004,18(13):1421-1428.
    [12]Klose, J.,Kobalz, U.,Two-dimensional electrophoresis of proteins:An updated protocol and implications for a functional analysis of the genome [J]. Electrophoresis 1995,16(6):1034-1059.
    [13]Jungblut, P. R.,Seifert, R.,Analysis of high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells [J].J.Biochem. Biophys. Methods 1990,21(1): 47-58.
    [14]Pan, S.Q.,Gu, S.,Bradbury, E.M.,Chen, X.,Single peptide-based protein identification in human proteome through MALDI-TOF MS coupled with amino acids coded mass tagging [J].Anal.Chem.2003,75(6):1316-1324.
    [1]Kresge, C. T.,Leonowicz, M. E.,Roth, W. J.,Vartuli, J. C., Beck, J. S.Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359(6397):710-712.
    [2]Zhao, D. Y.,Feng, J.L.,Huo, Q. S.,Melosh, N.,Fredrickson, G.H.,Chmelka, B. F.,Stucky, G.D.,Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J].Science 1998,279 (5350):548-552.
    [3]Hartmann, M.,Ordered mesoporous materials for bioadsorption and biocatalysis [J].Chem. Mater.2005,17(18):4577;
    [4]Buchel, G.,Grun, M.,Unger, K. K.,Matsumoto, A.,Tsutsumi, K.,Tailored syntheses of nanostructured silicas:Control of particle morphology, particle size and pore size [J].Supramol.Sci.1998,5(3-4):253.
    [5]Han, Y. J., Stucky,G.D., Butler, A.,Mesoporous silicate sequestration and release of proteins [J].J.Am. Chem. Soc.1999,121 (42):9897-9898.
    [6]Yiu, H. H.P.,Botting, C.H.,Botting, N.P.,Wright, P. A.,Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J].Phys. Chem. Chem. Phys.2001,3(15):2983-2985.
    [7]Tian, R. J.,Zhang, H.,Ye, M.L.,Jiang, X.G.et al.,Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis [J].Angew. Chem. Int. Ed.2007,46 (6):962-983.
    [8]Tian, R. J.,Ren, L. B.,Ma, H.J.,Li, X. et al.,Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis [J]. J. Chromatogr. A 2009,1216 (8):1270-1278.
    [9]Tammen, H.,Schulte, I.,Hess, R.,Menzel, C.et al.,Peptidomic analysis of human blood specimens:comparison between plasma specimens and serum by differential peptide display [J].Proteomics 2005,5(13):3414-3422.
    [10]Villanueva, J.,Philip, J.,Entenberg, D.,Chaparro, C.A.,Tanwar, M. K.,Holland, E. C.,Tempst, P.,Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry[J].Anal. Chem.2004,76(6):1560-1570.
    [11]Fiedler, G.M.,Baumann, S.,Leichtle, A.,Oltmann, A.,Kase, J.,Thiery, J., Ceglarek, U.,Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J].Clin. Chem.2007,53 (3):421-428.
    [12]Che, F. Y.,Zhang, X.,Berezniuk, I.,Callaway, M.,Lim, J.,Flicker, L. D. Optimization of neuropeptide extraction from the mouse hypothalamus [J].J. Proteome Res.2007,6(12):4667-4676.
    [13]Dowell, J. A.,Heyden, W. V.,Li, L. Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS:enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC[J].J.Proteome Res.2006,5(12):3368-3375.
    [14]Svensson, M.,Skold, K.,Svenningsson, P.,Andren, P. E. Peptidomics-based discovery of novel neuropeptides [J].J.Proteome Res.2003,2(2):213-219.
    [15]Theodorsson, E.,Stenfors, C.,Mathe, A. A. Microwave irradiation increases recovery of neuropeptides from brain tissues [J].Peptides 1990,11 (6): 1191-1197.
    [16]Romanova, E. V.,Rubakhin, S.S.,Sweedler, J.V. One-step sampling, extraction, and storage protocol for peptidomics using dihydroxybenzoic acid [J].Anal. Chem.2008,80(9):3379-3386.
    [17]Bora, A.,Annangudi, S.P.,Millet, L. J.,Rubakhin, S.S.,Forbes, A. J.,Kelleher, N.L.,Gillette, M. U.,Sweedler, J.V.,Neuropeptidomics of the Supraoptic Rat Nucleus[J].J.Proteome Res.,2008,7(11):4992-5003.
    [18]Hokfelt, T.,Broberger, C.,Xu, Z. Q.,Sergeyev, V.,Ubink, R.,Diez, M. Neuropeptides-an overview [J].Neuropharmacology,2000,39 (8):1337-1356.
    [19]Villanueva, J.,Shaffer, D. R.,Philip, J.,Chaparro,C. A.,Erdjument-Bromage, H., Olshen, A. B., Fleisher, M.,Lilja, H.,Brogi, E.,Boyd, J.,Sanchez-Carbayo,M., Holland, E. C.,Cordon-Cardo, C.,Scher, H.I.,Tempst, P.,Differential exoprotease activities confer tumor-specific serum peptidome patterns [J].J.Clin. Invest 2006,116(1):271-284.
    [20]Koomen, J.M.,Li, D.H.,Xiao, L. C.,Liu, T. C.,Coombes, K. R.,Abbruzzese, J., Kobayashi, R.,Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery [J].J.Proteome Res.2005, 4(3):972-981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700