用户名: 密码: 验证码:
单层配体保护的金纳米粒子合成及识别作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:简要介绍了纳米材料的分类、特性及制备,并对金属纳米粒子尤其是金纳米粒子的光学性质及其分析应用进行了综述。
     第二章:合成了β-环糊精衍生物全碘代β-环糊精和全巯基β-环糊精,以全巯基β-环糊精为稳定剂,用NaBH4还原HAuCl4·3H2O合成了全巯基β-环糊精单层保护的金纳米粒子(Per-thiol-β-CD-Au NPs),表面的全巯基β-环糊精既作为配体将金纳米保护起来,防止其聚集,使其粒径变小,确保其稳定性,又通过其外腔亲水使金纳米粒子易溶于水。结合紫外可见吸收光谱、FTIR,核磁共振氢谱、透射电子显微镜、质谱及热重分析对金纳米粒子进行了表征,由实验结果得知该金纳米的粒径大小约为2.7±0.8 nm,并估算出β-环糊精修饰的金纳米粒子中所含的平均金原子数和配体数分别为147和10个。
     第三章:采用荧光光谱法研究了水溶性β-环糊精修饰的金纳米(多个结合位点超分子主体化合物)对L-酪氨酸的识别作用。L-酪氨酸本身在305nm处有一特征荧光发射峰,与β-环糊精修饰的金纳米作用后其荧光发生明显的猝灭。研究结果发现,在β-环糊精修饰的金纳米存在下,L-酪氨酸荧光强度的减小和其浓度呈线性关系。因此,基于此建立了一种用于测定L-酪氨酸的灵敏的荧光法,线性范围为0.02-1.5μM,检测限为1.6 nM, RSD为0.3%;并考察了温度的影响,以便更好的理解该体系猝灭原理和相应的结合作用力。研究结果表明该猝灭为静态猝灭且相应结合作用力以范德华力和疏水作用力为主。该方法已成功应用于实际样品复合氨基酸注射液中L-酪氨酸的定量测定,回收率在98.6~103.1%之间,取得了较满意的结果。
     第四章:以N-乙酰基-L-半胱氨酸(NAC)为配体,用NaBH4还原,制备了Au/NAC摩尔比为1:3的NAC修饰的金纳米粒子,合成的金纳米粒子易溶于水,且溶液颜色呈棕色。应用红外光谱和紫外吸收光谱对其进行了表征,考察了金纳米粒子的荧光光谱特性。实验结果表明金纳米粒子的紫外吸收光谱范围宽,荧光最大发射为730 nm,处于近红外区;而且金纳米粒子的荧光光谱受pH的影响较小。我们利用荧光光谱法和紫外吸收光谱法研究了重金属离子(铜离子、银离子、汞离子和铅离子)对稳定的N-乙酰基-L-半胱氨酸修饰的水溶性金纳米粒子(NAC-Au NPs)荧光光谱的影响,研究结果表明重金属离子使NAC-Au NPs的近红外荧光发生了不同程度的猝灭;在此基础上进一步研究了pH对NAC-Au NPs荧光猝灭的影响。结合荧光光谱和紫外吸收光谱以及荧光寿命测量,我们提出了重金属离子对NAC修饰的金纳米粒子的可能猝灭机理。另研究发现在最佳条件下,加入EDTA可对共存金属离子进行掩蔽,但对汞离子掩蔽作用较小,会产生干扰。基于此,考虑可用于检测无汞离子的样品测定中,因此,建立了一种检测银离子的方法,线性范围为0-25μM,检测限为30nM,RSD为O.7%,采用标准加入法将其应用于矿泉水和自来水中银离子的测定,回收率在98~105%之间。这为水质检测领域提供了一定的理论依据。
Chapter 1:The classification, characteristics and synthesis of nanomaterials are depicted in brief. The optical properties and analytical application of noble metal nanoparticles, particularly gold nanoparticles, are reviewed in detail.
     Chapter 2:Firstly, per-iodo- and per-thiol-β-cyclodextrin, that is, derivatives ofβ-cyclodextrin, were synthesized. Then, gold nanoparticles monolayer protected with per-thiol-β-cyclodextrin as a ligand or stable substrate was prepared, in which HAuCl4-3H2O was reduced by sodium triacetoxyborohydride. The nanoparticles were characterized by means of UV-visible absorption, FTIR, HNMR, Transmission Electron Microscope, Mass Spectroscopy and Thermogravimetric Analysis. Results indicated that the average size of P-cyclodextrin-modified gold nanoparticles is ca.2.7±0.8 run and numbers of gold atom and ligand were calculated to be 147 and 10, respectively.
     Chapter 3:The interaction of water-solubleβ-cyclodextrin functionalized gold nanoparticles (β-CD-Au NPs) with L-tyrosine was studied by fluorescence spectroscopy. P-CD-Au NPs as an effective supramolecular host molecule in aqueous solution was found to remarkably quench fluorescence of L-tyrosine at the emission of 305 nm. Owing to the formation of the L-tyrosine-β-CD-Au NPs complex, static quenching involved resulted in the fluorescence quenching. Apparent binding constants and corresponding thermodynamic parameters at different temperatures were calculated by Stern-volmer equation and thermodynamic formula, respectively. Results indicated that hydrophobic interaction and Vader waals forces could be in dominant position in the formation of the complex. Under the optimum conditions, the concentration of L-tyrosine is proportional to decrease of the fluorescence intensity in the range from 0.02 to 1.5μM with the corresponding detection limit (S/N=3) of 1.6 nM and relative standard deviation is 0.3%. The developed method has been successfully employed to the quantitative determination of L-tyrosine in compound amino acid injection, and recovery ranges from 98.6 to 103.1%.
     Chapter 4:N-Acetyl-L-Cysteine modified gold nanoaprticles with mole ratio from Au/NAC at 1:3 was synthesized, in which HAuCl4·3H2O was reduced by sodium triacetoxyborohydride. The as-prepared gold nanoparticles were soluble and the aqueous solution showed brown. They were chacterized by FTIR and UV-Vis spectroscopy. The fluorescence spectra of gold nanoparticles were also investigated. Experimental results indicated that UV-visible absorption spectra of NAC-Au NPs ranged from ultraviolet to visible regions, fluorescence maximum emission at 730 nm existed in the near IR region and the effect of pH on fluorescence spectra was little. In addition, interaction of water soluble NAC-Au NPs with metal ions containing copper ion, silver ion, mecury ion and lead ion was studied by fluorescence and UV-Vis spectroscopy. The presence of metal ions caused queching to different extent of NIR fluorescence of NAC-Au NPs and effect of pH was investigated, In combination of fluorescence and UV-Vis as well as time-resolved fluorescence measurement, the probably quenching mechanisms from different metal ions were proposed. The experimental results indicated that other coexistent metal ions apart from mercury ion were concealed in the presence of EDTA. Considering the application in the detection of real samples without mercury ions, the detection method of silver ion was developed. The linear range was 0-25μM, and detection limit was 30 nM. The method has been employed to the quantitative determination of silver ion in mianeral water and tap water with recovery in the range from 98 to 105%.
引文
[1]赵光贤.纳米氧化锌及其在橡胶中的应用.中国橡胶,18(8):18-21.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京科学出版社,2001,6.
    [3]白春礼.纳米科技及其发展前景[J].中国工程咨询,2000,(4):38-41.
    [4]张阳德.纳米生物分析化学与分子生物学[M].北京化学工业出版社,2005,191-195.
    [5]CHAN W.C., NIE S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281:2016-2018.
    [6]LIU Z., CAI W., HE L., et al. Single-walled carbon nnotubes exhibit strong antimicrobial activity. Nat. Nanotechnol.,2007,2:47-52.
    [7]CANULESCU S., LIPPERT T., WOKAUN A., et al. The effect of the fluence on the properties of La-Ca-Mn-O thin films prepared by pulsed laser deposition. Applied Surface Science,2007,253:8174-8178.
    [8]HUANG M.F., KUO Y.C., HUANG C.C., et al. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis. Anal. Chem.,2004,76: 192-196.
    [9]ANDRIEVSKI R.A., GLEZER A.M. Size effects in properties of nanomaterials. Scripta Mater.,2001,44:1621-1624.
    [10]董树荣,涂江平,王春生等.纳米管制备的研究[J].材料科学与工艺,1998,6(1):31-34.
    [11]夏和生,王琪.纳米技术进展[J].高分子材料科学与工程,2001,17(4):1-6.
    [12]孟宪伟.纳米颗粒增强的葡萄糖生物传感器[D].四川大学博士学位论文,2001.
    [13]AMSCHALOM D.D., MECORD M.A., GRINSTEIN G. Observation of macroscopic spin phenomena in nanometer-scale magnets. Phys. Rev. Lett.,1990, 65:783-786.
    [14]BENNER L S et al. Precious Metals Science and Technology [M], IPMI,1991.
    [15]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:140-144.
    [16]LING Y., GUO L., ZHANG L., AI X.C., FU R.N., LI Q.S., ZHU H.S. Research on PbS nanoparticles coated with 2,6-O-Diallyl-β-CD. Chin. Chem. Lett.,1997, 8(3):263-266.
    [17]酒金婷,葛钥,张涑戎等.无团聚纳米氧化锆的制备及应用[J].无机材料学报,2001,16(5):867.
    [18]GULGUN M.A., NGUYEN M.H., KRIVEN W. M. Polymenzed organic-inorganic synthesis of mixed oxides cream [J]. J. Am. Chem. Soc.,1999,82:556-560.
    [19]NGUYEN M.H, LAN S.J, KIVEN W.M. Synthesis of oxide powders by way of a polymeric steric entrapment precursor route. J. Mater. Res.,1999,14 (8):3417-3426.
    [20]酒金婷,李立平,葛钥等,高分子修饰的纳米MgO的合成[J].无机化学学报,2001,17(3):361.
    [21]OHNO T. Growth of copper-gold and copper-alnminium particles by gas-evaporation technique. J. Crystal Growth,1983,64(8):345-352.
    [22]朱副鼎,朱静,胨利民.超微颗粒吸收与散射截面.电子学报.1996,(6):82-86.
    [23]胡瑞省,刘善堂,朱涛,等.金纳米粒子通过形成Au-S键的组装.物理化学学报,1999,15(11):961-964.
    [24]BRUST M, WALKER M, BETHELL D, SCHIFFRIN D J, WHYMAN R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc. Chem. Commun.,1994, (7):801-802.
    [25]TSHIKHUDO T. R., DEMURU D., WANG Z.X., BRUST M., SECCH A., ARDUINI A., POCHINI A. Molecular recognition by calix[4]arene-modified gold nanoparticles in aqueous solution. Angewandte Chemie, International Edition,2005, 44(19):2913-2916.
    [26]CHAI F., WANG C.G., WANG T.T., MA Z.F. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology,2010,21:1-6.
    [27]GUAN J., JIANG L., LI J., YANG W.S. pH-dependent aggregation of histidine-functionalized Au nanoparticles induced by Fe3+ ions. J. Phys. Chem. C, 2008,112,3267-3271.
    [28]HUANG C. C., YANG Z.S., LEE K.H., CHANG H.T. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. Int. Ed. Communications,2007,46,6824-6828.
    [29]张惠聪等.纳米金溶胶制备研究.有色金属,2002,54:61-63
    [30]BRUST M, WALKER M, BETHELL D, SCHIFFRIN D J, WHYMAN R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc. Chem. Commun.,1994, (7):801-802.
    [31]DANIEL M C, ASTRUC D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews,2004,104(1):293-346.
    [32]CHEN S H, KIMURA K. Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir,1999,15:1075-1082.
    [33]HIRAMATSU H, OSTERLOH FE. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Matter,2004,16:2509-2511.
    [34]HUSSAIN I, GRAHAM S, WANG ZX, TAN B, SHERRINGTON DC, RANNARD SP, COOPER AI, BRUST M. Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers. J Am. Chem. Soc., 2005,127:16398-16399.
    [35]JANA NR, GEARHEART L, MURPHY CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Matter,2001,13:1389-1393.
    [36]LEFF DV, BRANDT L, HEATH JR. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir,1996,12:4723-4730.
    [37]TURKEVITCH J. Nucleation and growth process in the systhesis of colloidal gold. Discuss Faraday Soc.,1951,11:55-75.
    [38]MIE G Beitra "ge zur Optik tru ber Medien speziell kolloidaler Goldlo sungen (contributions to the optics of diffuse media, especially colloidal metal solutions). Ann Phys,1908,25:377-445.
    [39]ALVAREZ MM, KHOURY JT, SCHAAFF TG, SHAFIGULLIN MN, VEZMAR I, WHETTEN RL. Optical absorption spectra of nanocrystal gold molecules. J. Phys Chem B,1997,101:3706-3712.
    [40]EL-SAYED MA. Small is different:shape- size- and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res,2004, 37:326-333.
    [41]HICKS EM, ZOU SL, SCHATZ GC, SPEARS KG, VAN DUYNE RP, GUNNARSSON L, RINDZEVICIUS T, KASEMO B, KALL M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett,2005, 5:1065-1070.
    [42]HU M, CHEN JY, LI ZY, AU L, HARTLAND GV, LI XD, MARQUEZ M, XIA YN. Gold nanostructures:engineering their plasmonic properties for biomedical applications. Chem Soc Rev,2006,35:1084-1094.
    [43]SHERRY LJ, CHANG SH, SCHATZ GC, VAN DUYNE RP, WILEY BJ, XIA YN. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett.,2005,5:2034-2038.
    [44]LINK S, EL-SAYED MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem,2003,54:331-366.
    [45]HORNYAK G L, PATRISSI C J, MARTIN C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites:the nonscattering maxwell-garnett limit [J]. The Journal of Physical Chemistry B, 1997,101(9):1548-1555.
    [46]朱梓华,朱涛,刘忠范.大粒径单分散金纳米粒子的水相合成[J].物理化学学报,1999,15(11):966-969.
    [47]VAN DER HULST H C. Light scattering by small metal particles [M]. New York: John Wiley & Sons,1957.
    [48]LOGUNOV S L, AHMADI T S, EI-SAYED M A, KHOURY J T, WHETTEN R L. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy[J]. J. Phys. Chem. B,1997,101:3713-3719.
    [49]KERKER M. The Scattering of light and other electromagnetic radiation [M]. Academic Press, New York,1969.
    [50]BOHERN C F, HUFFMAN D R. Absorption and scattering of light by small particles [M]. Wiley, New York,1983.
    [51]BLATCHFORD C G, CAMPBELL J R, CREIGHTON J A. Plasma resonance-enhanced raman scattering by absorbates on gold colloids:the effects of aggregation [J]. Surf. Sci.,1982,120:435-455.
    [52]LINK S, EL-SAYED M A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals [J]. Int. Rev. Phys. Chem.,2000, 19:409-453.
    [53]ZHANG F X, HAN L, ISRAEL L B, DARAS J G, MAYE M M, LY N K, ZHONG C-J. Colorimetric detection of thiol-containing amino acids using gold nanoparticles [J]. Analyst,2002,127:462-465.
    [54]周思凯,方少明,张伟.金纳米粒子的最新研究进展.中国材料科技与设备,2007,5:1-5.
    [55]CHOI M M F, DOUGLAS A D, MURRAY R W. Ion-pair chromatographic separation of water-soluble gold monolayer-protected clusters [J]. Anal. Chem., 2006,78:2779-2785.
    [56]FRENS G.. Controlled nucleation for the regulation of the particle monodisperse gold suspensions [J]. Nature:Phys. Sci.,1973,241:20-22.
    [57]LINK S, EL-SAYED MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B,1999,103:4212-4217.
    [58]LINK S, EL-SAYED MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B,1999,103:8410-8426.
    [59]KELLY KL, CORONADO E, ZHAO LL, SCHATZ GC. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. J Phys Chem B,2003,107:668-677.
    [60]JAIN PK, LEE K-S, EL-SAYED IH, EL-SAYED MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in Biological imaging and biomedicine. J. Phys. Chem. B,2006, 110:7238-7248.
    [61]PAPAVASSILIOU GC. Optical properties of small inorganic and organic metal particles. Prog Solid State Chem,1980,12:185-271.
    [62]MURPHY CJ, SAU TK, GOLE AM, ORENDORFF CJ, GAO J, GOU L, HUNYADI SE, LI T. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications. J Phys Chem B,2005,109:13857-13870.
    [63]LINK S, MOHAMED MB, EL-SAYED MA. Simulation of the optical absorption spectra of gold nanorods as function of their aspect ratio and effect of the medium dielectric constant. J Phys Chem B,1999,103:3073-3077.
    [64]LINK S, EL-SAYED MA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. JPhys Chem B [Erratum],2005,109:10531-10532.
    [65]MURPHY CJ, JANA NR. Controlling the aspect ratio of inorganic nanorods and nanowires.Adv Mater,2002,14:80-82.
    [66]NIKOOBAKHT B, EL-SAYED MA. Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem Mater,2003, 15:1957-1962.
    [67]HUANG X, EL-SAYED IH, QIAN W, EL-SAYED MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc,2006,128:2115-2120.
    [68]ITOH T, ASAHI T, MASUHARA H. Direct demonstration of environment-sensitive surface plasmon resonance band in single gold nanoparticles. Jpn JAppl Phys,2002, 41:L76-L78.
    [69]RINDZEVICIUS T, ALAVERDYAN Y, KALL M, MURRAY WA, BARNES WL. Long-range refractive index sensing using plasmonic nanostructures. J Phys Chem C,2007,111:11806-11810.
    [70]THOMAS K G, KAMAT P V. Making gold nanoparticles glow:enhanced emission from a surface-bound fluoroprobev [J]. Journal of the American Chemical Society, 2000,122(11):2655-2656.
    [71]XU P, YANAGI H. Fluorescence patterning in dye-doped sol-gel films by generation of gold nanoparticles [J]. Chemistry of Materials,1999,11(10): 2626-2628.
    [72]IPE B. I., MAHIMA S., THOMAS K G Light-induced modulation of self-assembly on spriopyran-capped gold nanoparticles:a potential system for the controlled release of amino acid derivatives. J. Am. Chem. Soc.,2003,125:7174-7175.
    [73]JAIN PK, EUSTIS S, EL-SAYED MA. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B,2006,110:18243-18253.
    [74]SU KH, WEI Q-H, ZHANG X, MOCK JJ, SMITH DR, SCHULTZ S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett,2003, 3:1087-1090.
    [75]STORHOFF JJ, LAZARIDES AA, MUCIC RC, MIRKIN CA, LETSINGER RL, SCHATZ GC. What controls the optical properties of DNA linked gold nanoparticale assemblies? [J]. J Am Chem Soc,2000,122:4640-4650.
    [76]LAZARIDES AA, SCHATZ GC. DNA-linked metal nanosphere materials: structural basis for the optical properties. J Phys Chem B,2000,104:460-467.
    [77]SONNICHSEN C, REINHARD BM, LIPHARDT J, ALIVISATOS AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol,2005,23:741-745.
    [78]ELGHANIAN R, STORHOFF JJ, MUCIC RC, LETSINGER RL, MIRKIN CA Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277:1078-1081.
    [79]STORHOFF JJ, ELGHANIAN R, MUCIC RC, MIRKIN CA, LETSINGER RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc.,1998, 120:1959-1964.
    [80]MIRKIN CA, LETSINGER RL, MUCIC RC, STORHOFF JL. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996,382:607-609.
    [81]CHOWDHURY MH, JULIAN AM, COATES CJ, COTE GL. Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. J Biomed Opt,2004,9:1347-1357.
    [82]RECHBERGER W, HOHENAU A, LEITNER A, KRENN JR, LAMPRECHT B, AUSSENEGG FR. Optical properties of two interacting gold nanoparticles. Opt Commun,2003,220:137-141.
    [83]FAULK W P, TAYLAR G M. An immunocolloidal for the electron microscope [J]. Immunochemistry,1971, (8):1081-1084.
    [84]SPIELBERG F, KABEYA C M, RYDER R W, et al. Field testing and comparative evaluation of rapid, visually read screening assays for antibody to human immunodeficiency virus[J]. Lancet,1989,1(2):580-584.
    [85]LYON L.A.; MUSICK M.D.; SMITH P.C.; REISS B.D.; PENA D.J.; NATAN M.J. Surface plasmon resonance of colloidal Au-modified gold films. Sensors and Actuators B:Chemical,1999,54:118-124.
    [86]GONZALEZ-GARCIA M B, FERNANDEZ-SANCHEZ C, COSTA-GARCIA A. Colloidal gold as an electrochemical label of streptavidin-biotin interaction[J]. Biosensors and Bioelectronics,2000,15:315-321.
    [87]REYNOLDS R. A., MIRKIN C. A., LETSINGER R. L., et al. Homogeneous nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc.,2000,122:3795-3796.
    [88]MAXWELL D, TAYLOR M J, NIE S. Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. J Am Chem Soc,2002,124: 9606-9612.
    [89]YU A, LIANG Z, CHO J, CARUSO F. Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett,2003,3:1203-1207.
    [90]EL-DEAB MS, OKAJIMA T, OHSAKA T. Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J Electrochem Soc, 2003,150:A851-A857.
    [91]EL-DEAB MS, OHSAKA T. Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochim Acta, 2002,47:4255-4261.
    [92]ZHAO J, ZHU X, LI T, LI G. Self-assembled multilayer of gold nanoparticles for amplified electrochemical detection of cytochrome c. Analyst,2008, 133:1242-1245.
    [93]MANSO J, AGUI L, YANEZ-SEDENO P, PINGARRON JM. Development and characterization of colloidal gold-cysteamine-carbon paste electrodes. Anal Lett, 2005,37:887-902.
    [94]HU G, MA Y, GUO Y, SHAO S. Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles modified glassy carbon electrode. Electrochim Acta,2008,53:6610-6615.
    [95]CARRALERO V, LUZ MENA M, GONZALEZ-CORTEZ A, YANEZ-SEDENO P, PINGARRON JM. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes. Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta.,2005,528:1-8.
    [96]SCHMID G, PFEIL R., BOSE R., BANDERMANN F., MEYERS S., G. H. CALIS M., VANDERVELDEN W. A. Au55[P(C6H5)3]12Cl6-E in goldcluster ungewnlicher Gre. Chem. Ber.,1981,114:3634-3642.
    [97]WHETTEN R. L., SHAFIGULLIN M. N., KHOURY J. T., SCHAAFF T. G., VEZMAR I., ALVAREZ M. WILKINSON M., A. Crystal structures of molecular gold nanocrystal arrays. Acc. Chem. Res.,1999,32:397-406.
    [98]TEMPLETON A. C., WUELFING W. P., MURRAY R.W. Monolayer-protected cluster molecules. Acc. Chem. Res.,2000,33:27-36.
    [99]SCHAAFF T. G, KNIGHT G, SHAFIGULLIN M. N., BORKMAN R. F., WHETTEN R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B,1998,102:10643-10646.
    [100]TEMPLETON A. C., CHEN, S., GROSS S. M., MURRAY R. W. Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir, 1999,15:66-76.
    [101]KOHLMANN O.K., STEINMETZ WE., MAO X., WUELFING W.P., TEMPLETON A.C., MURRAY R.W, JOHNSON C.S. NMR diffusion, relaxation, and spectroscopic studies of water soluble, monolayer protected gold nanoclusters. J. Phys. Chem. B,2001,105:8801-8809.
    [102]ROJAS M.T., KIINIGER R., STODDART J.F., KAIFER A. E. Supported monolayers containing preformed binding sites. synthesis and interfacial binding properties of a thiolated β-cyclodextrin derivative, J. Am. Chem. Soc.,1995,117: 336-343.
    [103]MEMISOGLU E., CHARON D., DUCHENE D., HINCAL A.A. Synthesis of per (2,3-di-O-hexanoyl)-β-cyclodextrin and characterization of amphiphilic β-cyclodextr-in nanoparticles. Meeting Date,1998,125-128.
    [104]LIU J., KAIFER A.E. One-step synthesis of β-cyclodextrin-modified gold nanoparticles. American Chemical Society,1999,22-26.
    [105]LIU J., ONG W., ROMA N E., LYNN M. J., KAIFER A.E. Cyclodextrin-modified gold nanospheres. Langmuir,2000,16:3000-3002.
    [106]ALVAREZ J., LIU J., ROM AN E., KAIFER A.E. Water-soluble platinum and palladium nanoparticles modified with thiolated b-cyclodextrin. Chem. Commun., 2000,1151-1152.
    [107]LIU J., ONG W., KAIFER A.E. A "macrocyclic effect" on the formation of capped silver nanoparticles in DMF. Langmuir 2002,18:5981-5983.
    [108]LIU Y., SONG S.H., YANG Y.W., CHEN Y. Cyclodextrin-modified gold nanoparticle aggregate formed by simple host-guest interactions with 1,10-phenanthroline. Journal of Chemical Research,2004, (2):152-153.
    [109]CAO R., VILLALONGA, R., FRAGOSO A. Towards nanomedicine with a supramolecular approach:a review. IEE Proceedings:Nanobiotechnology 2005, 152(5):159-164.
    [110]CRESPO-BIEL O., JUKOVIC A., KARLSSON M. REINHOUDT D.N., HUSKENS J. Multivalent aggregation of cyclodextrin gold nanoparticles and adamantyl-terminated guest molecules. Israel Journal of Chemistry,2005, 45(3):353-362.
    [111]WANG H., CHEN Y., LI X.Y., LIU Y. Synthesis of oligo(ethylenediamino)-b-cyclodextrins modified gold nanoparticle as a DNA concentrator. Molecular Pharmaceutics,2007,4(2):189-198.
    [112]LIU J., ALVAREZ J., ONG W., ROMAN E., KAIFER A. E. Transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions. J. Am. Chem. Soc.,2001,123 (45):11148-11154.
    [113]GADELLE A., DEFAYE J. Selective halogenation at primary positions of cyclomaltooligosaccharides and a synthesis of per-3,6-anhydro cyclomaltooligo-saccharides. Angew. Chem. Int. Ed. Engl.,1991,30:78-80.
    [114]王凯,杨光,龙华,李玉华,戴能利,陆培祥.金纳米颗粒的有序制备及其光学特性[J].物理学报,2008,57(6):3862-3867.
    [115]HOSTETLER M J, WINGATE J E, ZHONG C-Z, HARRIS J E, VACHET R W, CLARK M R, LONDONO J D, GREEN S J, STOKES J J, WIGNALL G D, GLISH G L, PORTER M D, EVAN N D, MURRAY R W. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm:core and monolayer properties as a function of core size[J]. Langmuir,1998,14(1):17-30.
    [116]GIERSIG M, MULVANEY P. Preparation of ordered colloid monolayers by electrophoretic deposition[J]. Langmuir,1993,9(12):3408-3413.
    [117]BADIA A, CUCCIA L, DEMERS L, MORIN F, LENNOX R B. Structure and dynamics in alkanethiolate monolayers self-assembled on gold nanoparticles:a DSC, FT-IR, and deuterium NMR study [J]. J. Am. Chem. Soc.,1997,119: 2682-2692.
    [118]WHETTEN R L, KHOURY J T, ALVAREZ M M, MURTHY S, VEZMAR I, WANG Z L, STEPHENS P W, CLEVELAND C L, LUEDTKE W D, LANDMAN U. Nanocrystal Gold Molecules[J]. Adv. Mater.,1996,8:428-433.
    [119]AJAYAN P.M., EBBESEN T.W., ICHIHASHI T., IIJIMA S., TANIGAKI K., HIURA H. Opening carbon nanotubes with oxygen and implications for filling. Nature,1993,362:522-525.
    [120]ZHANG Y, SHUANG S.M., DONG C., LO C. K., PAAU M. C., CHOI M. M. F. Application of HPLC and MALDI-TOF MS for studying as-synthesized ligand-protected gold nanoclusters Products. Anal. Chem.,2009,81:1676-1685.
    [121]KHITROV GA., STROUSE G F. ZnS nanomaterial characterization by MALDI-TOF mass spectrometry. J. Am. Chem. Soc.,2003,125:10465-10469.
    [122]HUANG K.J., LUO D.F., XIE W.Z., YU Y.S. Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode. Colloids Surf. B:Biointerf,2008,61:176-181.
    [123]U X.Z., MAI Z.B., XIAO Y., ZOU X.Y. Electrochemical behavior and determination of L-tyrosine at single-walled carbon nanotubes modified glassy carbon electrode. Electroanalysis,2008,20 (11):1246-1251.
    [124]JIN G.P., LIN X.Q. The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem. Commun,2004,6:454-460.
    [125]ZHAO G.H., QI Y., TIAN Y. Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis,2006,18:830-834.
    [126]LEE C.J., YANG J. a-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids. Anal. Biochem.,2006,359:124-131.
    [127]HASSAN S.S.M. New spectrophotometric methods for simultaneous determination of tryptophan and tyrosine.Anal. Chem.,1975,47:1429-1432.
    [128]AZUMA Y., MAEKAWA M., KUWABARA Y., NAKAJIMA T., TANIGUCHI K., KANNO T. Determination of branched-chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness. Clin. Chem., 1989,35:1399-1403.
    [129]ALONSO S., ZAMORA L., CALATAYUD M. Determination of tyrosine through a FIA-direct chemiluminescence procedure. Talanta,2003,60:369-376.
    [130]ORHAN H., VERMEULEN N., TUMP C., ZAPPEY H., MEERMAN J. Simultaneous determination of tyrosine, phenylalanine and deoxyguanosine oxidation products by liquid chromatography-tandem mass spectrometry as non-invasive biomarkers for oxidative damage. J. Chromatogr. B.,2004,799: 245-254.
    [131]DENG C.H., DENG Y.H., WANG B., YANG X.H. Gas chromatography-mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots. J. Chromatogr. B.,2002,780:407-413.
    [132]DEUTSCH J.C. Determination of p-hydroxyphenylpyruvate, p-hydroxyphenyllactate and tyrosine in normal human plasma by gas chromatography-mass spectrometry isotope-dilution assay. J. Chromatogr. B, Biomed. Sci. Appl.,1997,690(1-2):1-6.
    [133]HUANG Y., JIANG X.Y., WANG W., DUAN J.P., CHEN G.N. Separation and determination of L-Tyrosine and its metabolites by capillary zone electrophoresis with well-ject amperometric detection. Talanta,2006,70:1157-1163.
    [134]LETELLIER S., GARNIER J.P., SPY J., BOUSQUET B. Determination of the-DOPA/-tyrosine ratio in human plasma by high-performance liquid chromatography:usefulness as a marker in metastatic malignant melanoma. J. Chromatogr. B, Biomed. Sci. Appl.,1997,696:9-17.
    [135]ISHII Y., IIJIMA M., UMEMURA T., NISHIKAWA A., IWASAKI Y., ITO R., SAITO K., HIROSE M., NAKAZAWA H. Determination of nitrotyrosine and tyrosine by high-performance liquid chromatography with tandem mass spectrometry and immunohistochemical analysis in livers of mice administered acetaminophen. J. Pharm. Biomed. Anal.,2006,41:1325-1331.
    [136]SANCHEZ-MACHADO D.I., CHAVIRA-WILLYS B., LOPEZ-CERVANTES J. High-performance liquid chromatography with fluorescence detection for quantitation of tryptophan and tyrosine in a shrimp waste protein concentrate. Journal of Chromatography B,2008,863:88-93.
    [137]DALE Y., MACKEY V., MUSHI R., NYANDA A., MALEQUE M., IKE. J. Simultaneous measurement of phenylalanine and tyrosine in phenylketonuric plasma and dried blood by high-performance liquid chromatography. J. Chromatogr. B, Analyt Technol Biomed Life Sci,2003,788:1-8.
    [138]WU G.H., HE C.Y., CHEN R. Simultaneous determination of tryptophan and tyrosine in injection by artificial neural network and fluorescence spectrum method. Guang Pu Xue Yu Guang Pu Fen Xi,2003,23 (2):318-321.
    [139]XIAO J., REN F.L., SONG G., LIAO L., YU W.F., ZENG T. Simultaneous resolution and determination of tyrosine, tryptophan and phenylalanine by alternating penalty trilinear decomposition algorithm coupled with 3D emission-excitation matrix fluorometry. Spectroscopy and Spectral Analysis,2007, 27 (10):2088-2092.
    [140]XIANG H.Y., CHEN X.M., ZHOU D.W. Determination of tyrosine based on the fluorescence quenching by molebrum (VI). Spectroscopy and Spectral Analysis, 2002,22 (5):816-818.
    [141]F. Wang, K.Z. Wu, Y. Qing, Y.X. Ci. Anal. Lett. 1992,25:1469.
    [142]KITANO H., TAIRA Y. Inclusion of bisphenols by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir,2002,18:5835-5840.
    [143]ZAPOTOCZNY S., AULETTA T., JONG M.R., SCHONHERR H., HUSKENS J., VEGGEL F.C.J.M., REINHOUDT D.N., VANCSO.G.J. Chain length and concentration dependence of beta-cyclodextrin ferrocene host guest complex rupture forces probed by dynamic force spectroscopy. Langmuir,2002,18: 6988-6994.
    [144]DE JONG M.R., HUSKENS J., REINHOUDT.D.N. Complexation and (templated) synthesis of rhenium complexes with cyclodextrins and cyclodextrin dimers in water. Chem. Eur. J.,2001,7 (19):4164-4170.
    [145]Lahav M., Ranjit K.T., Katz E., Willner. I. Chem. Commun.,1997,3:259-260.
    [146]NELLES G., WEISSER M., BACK R., WOHLFART P., WENZ G., MITTLER. S.N. Controlled orientation of cyclodextrin derivatives immobilized on gold surfaces. J. Am. Chem. Soc.,1996,118:5039-5046.
    [147]LIU J., MENDOZA S., ROMAN E., LYNN M.J., XU R., KAIFER. A.E. Cyclodextrin-modified gold nanospheres. Host-guest interactions at work to control colloidal properties. J. Am. Chem. Soc.,1999,121:4304-4305.
    [148]ZUO F., LUO C.H., ZHENG Z.H., DING X.B., PENG.Y.X. Supramolecular assembly of β-cyclodextrin-capped gold nanoparticles on ferrocene-functionalized ITO surface for enhanced voltammetric analysis of ascorbic acid. Electroanalysis, 2008,20 (8):894-899.
    [149]Zuo F., Luo C.H., Zheng Z.H., Ding X.B., Peng.Y.X. Chemistry Letters,2008,37 (4):434.
    [150]Lakowicz. J. R. Principles of fluorescence spectroscopy, third ed., Plenum Press, New York,2006.
    [151]XIU J.G., WANG. Z.B. The methods of fluorescence analysis, third ed., Science Press, Beijing, China,2006, pp.65.
    [152]ZHANG N., LIU Y.Y., TONG L.L., XU K.H., ZHUO L. H., TANG. B. A novel assembly of Au NPs—CDs-FL for the fluorescent probing of cholesterol and its application in blood serum. Analyst,2008,133:1176-1181.
    [153]TANG B., CAO L.H., XU K.H., ZHUO L.H., GE J.H., LI Q.F., YU. L.J. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem. Eur. J.,2008,14 (12):3637-3644.
    [154]ROSS D.P., SUBRAMANIAN. S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry,1981,20:3096-3102.
    [155]LIU Y., HAN B.H., CHEN. Y.T. Molecular recognition and complexation thermodynamics of dye guest molecules by modified cyclodextrins and calixarenesulfonates. J. Phys. Chem. B,2002,106:4678-4687.
    [156]DRECHSLER U., ERDOGAN B., ROTELLO V.M. Nanoparticles:scaffolds for molecular recognition. Chem. Eur. J.,2004,10:5570-5579.
    [157]LI D., WIECKOWSKA A., WILLNER I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem., Int. Ed.,2008,47:3927-3931.
    [158]XU X. Y., HAN M. S., MIRKIN C. A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew. Chem., Int. Ed.,2007,46:3468-3470.
    [159]TSAI C. S., YU T. B., CHEN C. T. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions. Chem. Commun., 2005,4273-4275.
    [160]LIU J. W., LU Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem., Int. Ed., 2006,45:90-94.
    [161]NEGISHI Y., TSUKUDA T. Visible photoluminescence from nearly monodispersed Au12 clusters protected by meso-2,3-dimercaptosuccinic acid. Chem. Phys. Lett.,2004,383:161-165.
    [162]WANG G., HUANG T., MURRAY R. W., MENARD L., NUZZO R. G. Near-IR luminescence of monolayer-protected metal clusters. J. Am. Chem. Soc.,2005,127: 812-813.
    [163]WANG G., GUO R., KALYUZHNY G., CHOI J.-P., MURRAY R.W. NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of AU38 and Au140 quantum dots. J. Phys. Chem. B,2006, 110:20282-20289.
    [164]SCHAAFF T. G., WHETTEN R. L. Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B,2000,104: 2630-2641.
    [165]DAHAN M., LAURENCE T., PINAUD F., CHEMLA D. S., ALIVISATOS A. P., SAUER M., WEISS S. Time-gated biological imaging by use of colloidal quantum dots. Opt. Lett.,2001,26:825-827.
    [166]ALIVISATOS A. P., GU W., LARABELL C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng.,2005,7:55-76.
    [167]BAILEY R. E., SMITH A. M., NIE S. Quantum dots in biology and medicine. Phys. E,2004,25:1-12.
    [168]KIM S., LIM Y.T., SOLTESZ E.G., DE GRAND A.M., LEE J., NAKAYAMA A., PARKER J.A., MIHALJEVIC T., LAURENCE R.G., DOR D.M., COHN L.H., BAWENDI M.G., FRANGIONI J.V. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping nat. Biotechnol.,2004,22:93-97.
    [169]AHARONI A., MOKARI T., POPOV I., BANIN U. Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 structures with bright and stable near-infrared fluorescence. J. Am. Chem. Soc.,2006,128 (1):257-264.
    [170]MAXEY C.D., GOWER J.E., CAPPER P., O'KEEFE E.S., SKAULI T., ARD C.K. Zn concentration determination in CdZnTe by NIR spectroscopy. J. Cryst. Growth, 1999,197:427-434.
    [171]RURACK K, KOLLMANNSBERGER M, RESCH-GENGER U, DAUB J. Aselective and sensitive fluoroionophore for Hg2+,Ag+, and Cu2+with virtually decoupled fluorophore and receptor units. J. Am. Chem. Soc.,2009,122:968.
    [172]YANG RH, CHAN WH, LEE AWM, XIA PF, ZHANG HK, LI KA. A ratiometric fluorescent sensor for Ag+ with high selectivity and sensitivity. J. Am. Chem. Soc., 2003,125:2884.
    [173]BRUCHEZ M, MORONNE M, GIN P, WEISS S, ALIVISATOS AP. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281: 2013.
    [174]MATTOUSSI H, MANRO JM, GOLDMAN ER, ANDERSON GP, SUNDA VC, MIKULA FV, BAWENDI MG. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc.,2000, 122:12142.
    [175]LO C.K., PAAU M.C., XIAO D., CHOI M. M. F. Capillary electrophoresis, mass spectrometry, and UV-Visible absorption studies on electrolyte-induced fractionation of gold nanoclusters. Anal. Chem.,2008,80:2439-2446
    [176]AQUILA A., MURRAY R. W. Monolayer-protected clusters with fluorescent dansyl ligands. Langmuir,2000,16:5949-5954.
    [177]HUANG T., MURRAY R. W. Visible luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B,2001,105:12498-12502.
    [178]CHEN J.L., ZHU C.Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta,2005,546: 147-153.
    [179]LAKOWICZ J.R.,1983. Principles of Fluorescence Spectroscopy. Plenum Press, New York, p.258.
    [180]ZHENG J., NICOVICH P.R., DICKSON R.M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem.,2007,58:409-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700