用户名: 密码: 验证码:
多主元高熵合金的组织结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高熵合金的研究已成为材料研究的热点之一,它突破了以一种或两种元素为主元的合金设计,发展出一种新的合金设计理念。高熵合金是采用至少五种元素按照等摩尔比或近等摩尔比进行混合形成的合金。多主元的混合产生高熵效应,使得高熵合金具有简单的微结构。高熵合金在各个方面表现出良好的性能,引起科学界的广泛关注和积极探索。
     本文选用常见的Al、Fe、Cu、Co、Ni、Cr、Ti、V八种合金元素,采用真空电弧炉成功制备出AlFeCuCoCr、CuCoCrNiFe、AlFeCuCoNiCr、AlFeCuCoNiCrTi0.5、AlFeCoCrNi、AlFeCuNiCrV及AlFeCuCoNiCrTiV七种高熵合金样品。采用OM、SEM、XRD及TEM实验方法对高熵合金的显微组织、表面形貌、相结构及形成机理进行分析。并对合金的硬度、抗高温退火软化性能、热稳定性及耐腐蚀性能进行测试。得出结论如下:
     (1)本文所制备的高熵合金都形成了FCC、BCC或FCC+BCC固溶体,有少数有序固溶相的生成。
     (2)Al元素在合金中促进BCC结构相形成,提高合金的硬度和强度。本实验中不含Al元素的CuCoCrNiFe合金硬度较低,其它含Al元素的高熵合金都具有较高的硬度,其硬度值在700-1200HV之间。
     (3)Cu元素在枝晶间偏聚,对高熵合金的韧塑性起主要作用。在实际应用方面,可以通过Cu元素的增减来设计不同韧塑性需求的高熵合金。
     (4)高熵合金具有较好的抗800℃高温退火软化性能。其中CuCoCrNiFe、AlFeCuCoNiCr、AlFeCoCrNi、AlFeCuCoNiCrTiV高熵合金退火后硬度提高,具有析出硬化特性。
     (5)高熵合金具有良好的热稳定性能。
     (6)高熵合金具有优良的耐酸腐蚀性能,本实验中除了AlFeCuNiCrV合金,其余合金耐酸腐蚀性能都优于304不锈钢。
High entropy alloys with multi-principal elements are a novel concept for alloy design, which breaks through the traditional alloy design on the base of one or two major alloy elements, and become one of the hot research topics in materials science and engineering. High entropy alloys are composed of at least five elements which have equal mole or near equal mole ratios. High entropy effects arising from the mixture of multi-principal elements promote the formation of simple microstructures in the alloys. High entropy alloys have aroused the scholar's attention and enthusiastic exploration all over the world because of their good performances in many aspects.
     In this thesis, eight common elements Al、Fe、Cu、Co、Ni、Cr、Ti and V were selected and seven high entropy alloys AlFeCuCoCr、CuCoCrNiFe、AlFeCuCoNiCr、AlFeCuCoNiCrTi0.5、AlFeCoCrNi、AlFeCuNiCrV and AlFeCuCoNiCrTiV were prepared by vacuum arc funace. Their microstructures, surface morphologies, phase structures and formation mechanism were investigated. And their hardness, softening resistance after high temperature annealing, thermal properties and corrosion resistance were studied. The results are showing as followed:
     (1) All the seven high entropy alloys form into bcc or fcc or bcc+fcc structures, only a little ordered solid solution structures are observed.
     (2) Al element promotes the formation of bcc structure, which will increase the hardness and strength of high entropy alloys. Except CuCoCrNiFe high entropy alloy which is without Al element exhibits low hardness, all the others exhibit high hardness in the range from 700 HVto1200HV.
     (3) Cu element segregates in the interdendrite and plays a leading role in the
     (4) High entropy alloys perform good softening resistance after 800℃high temperature annealing, and CuCoCrNiFe、AlFeCuCoNiCr. AlFeCoCrNi、AlFeCuCoNiCrTiV alloys exhibit higher hardness because of their precipitation hardening properties.
     (5) High entropy alloys perform good thermostability properties.
     (6) High entropy alloys perform good corrosion resistance. Except AlFeCuNiCrV alloy, all the others have better corrosion resistance than the 304 stainless steel.
引文
1. V. Dolique, A.-L. Thomann, P. Brault, etal. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy [J], Gillon Materials Chemistry and Physics, 2009,117:142-147
    2. A.Inoue,T.nakamura,N.Nishiyama, etal. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J], Mater.Trans JIM,1992, 33:937-945
    3.叶均蔚,陈瑞凯,刘树均.高熵合金的发展概况[J],工业材料杂志,2005,224:71
    4. R.A. Swalin, E. Burke, B.Chalmers, etal. Thermodynamics of Solids [J], John Wiley& Sons, New York, NY,1991, pp.21-87.
    5.孙庆军.铁基大块非晶合金的玻璃形成能力及断裂行为[D],哈尔滨:哈尔滨工业大学工学博士学位论文.2006,3
    6.刘源,李言祥,陈祥等.多主元高熵合金研究进展[J],材料导报,2006,2(4):1-6
    7. JIEN-WEIYEH, SWE-KAI CHEN, JON-YIEW GAN, etal. Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multi-principal Metallic Elements [J], Metallurgical and Materials Transactions, A Volume 35A, AUGUST 2004:2533-2536
    8. Yu.Jui Hsu, Wen.Chi Chiang, Jiann.Kuo Wu. Corrosion Behavior of FeCoNiCrCux High-Entropy Alloys in 3.5%Sodium Chloride Solution [J], Mater Chemi and Phys,2005, 92:112-117.
    9. B.Cantor, I.T.H.Chang, P.Knight, etal. Microstructural Development in Equiatomic Multi-component Alloys [J], Mater Sci and Eng A.2004,375-377:213-218.
    10. K.B.Kim, P.J.Warren, B.Cantor. Glass Forming Ability of Novel Multi-component (Ti33Zr33Hf33)-(Ni50Cu50)-Al Alloys Developed by Equiatomic Substitution [J], Mater Sci and Eng A.2004,375-377:317-321.
    11. K.B.Kim, P.J.Warren, B.Cantor. Metallic Glass Formation in Multi-component (Ti,Zr,Hf,Nb)-(Ni,Cu,Ag)-Al Alloys. Journal of Non-Crystalline Solids.2003,317:17-22.
    12.Ta-KunChen, Ming-showWong, Tao-Tsung Shun, etal. Nanostruetured nitride films of multi-elements high-entropy alloys by reactive DC sputtering. Surf Coat Techn,2005, 200(5-6):1361-1365
    13. Lin C H, Duh JG, Yeh JW. Multicomponent nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter. Surf Coat Techn,2007,201(4):6304
    14. Chen TK, ShunT T, Yeh J W, etal. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Techn,2004(188-189):193-195
    15. MIN-RUI CHEN, SU-JIEN LIN, JIEN-WEI YEH, etal. Effect of Vanadium Addition on the Microstructure, Hardness, and Wear Resistance of Al0.5CoCrCuFeNi High-Entropy Alloy. METALLURGICAL AND MATERIALS TRANSACTIONS VOLUME 37A, MAY (2006)
    16. Ping-Kang Huang, Jien-Wei Yeh, Tao-Tsung Shun, etal. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating [J], Adv Eng Mater.2004,6(1-2):74-78
    17. Chin-You Hsu, Jien-Wel Yeh, Swe-Kal Chen, etal. Wear Resistance and High-Temperature Compression Strength of FCC CuCoNiCrAl0.5Fe Alloy with Boron Addition [J], Metallurgical and Materials Transactions A.2004,35A:1465-1469
    18. Zhou Yun Jun, Zhang Yong, Wang Yan Li. Microstructure and compressive properties of multi-component Alx(TiVCrMnFeCoNiCu)100-x high entropy alloys [J], Mater. Sci. Eng. A,2007, A454-455:260-265
    19.叶均蔚,陈瑞凯.高熵合金[J],科学发展,2004,5,(377):16-21
    20. Y.Y. Chen, T.Duval, U.D.Hung, etal. Microstructure and Electrochemical Properties of High Entropy Alloys—A Comparison with Type 304 Stainless Steel. Corrosion Science.2005, (47):2257-2279
    21. T.K.Chen, T.T.Yeh, J.W.Yeh, etal. Nanostructured Nitride Films of Multi-Element High-Entropy Alloys by Reactive DC Sputtering. [J], Surface and Coatings Technology. 2004,188-189:193-200
    22. Y.Zhou, Y.Zhang, Y.L.Wang, etal.Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties[J], Applied Physics Letters.2007,90: 181904-1-181904-2.
    23. Jien-Min Wu, Su-Jien Lin, Jien-Wei Yeh, etal. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content [J], Wear,2006, 261(5-6):513
    24.高家诚,李锐.高熵合金研究的新进展[J].功能材料,2008,18(7):1059-1061
    25. De Bore F R, Boom R, Mattens W C M, et al. Cohesion in Metals:Transition Metal Alloys [M]. [S.I.]:North-Holland Physics Publishing,1988:133-138
    26. Vodopivec F, Breskvar B. Influence of spinodal decomposition on magnetic properties of Fe28Cr16Co[J]. J of Magnetism and Magnetic Materials,1996,152:213-218
    27. Read H G, Murakami H. Microstructural influences on the decomposition of an Al-containing ferritic stainless steel [J].Applied Surface Science,1996,94-95:334-342
    28. Hyde J M, Milier M K, Hetherington M G, etal. Spinodal decomposition in Fe-Cr alloys[J]. Acta Mater.1995,43:3403—3413
    29. Qi Zhengfeng. The Diffusion and Phase Transformation in Metals [M]. Beijing:China Machine Press,1998:356-357
    30.刘源,陈敏,李言祥,等AlxCoCrCuFeNi多主元高熵合金的微观结构和力学性能
    [J],稀有金属材料与工程Vol.38,No.9.2009:1602—1607
    31.任晓兵,王笑天,唯木次男等.有序化与调幅分解共存现象的理论研究[J],中国科学,26.3.1996:193-201
    32.童重缙.Cu2Co2Ni2Cr2A12Fe高熵合金变形结构与高温特性之研究[D].台湾:清华大学,2002
    33. Chung-Chin Tung, Jien-Wei Yeh, Tao-tsung Shun, etal. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system [J], Materials Letters 61 (2007) 1-5
    34.陈岳锋.CoCrFeNiTi高乱度合金块材与薄膜性质之研究[D].台湾:中国文化学,2004.
    35.李安敏,张喜燕.Al对Al-Cr-Cu-Fe-Ni高熵合金的组织与硬度的影响[J].材料热处理技术,2008(2):26-28
    36. HERMAS A, OGURA K, ADACHIT. Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperatures[J]. Electro-chemical Acta,1999,40 (7):837-844
    37. ITZHA K D. PEL EDP. The effect of Cu addition on the corrosion behavior of sintered stainless steel in H2SO4 environment [J]. Corrosion Sci,1986,26 (1):49-54
    38.李伟.刘贵仲.郭景杰.AlFeCuCoNiCrTix高熵合金的组织结构及电化学性能[J],特种铸造及有色合金,200929(10):941-945
    39.文九巴,张金民,张伟,等.钢表面热浸渗铝层组织中的调幅分解及初期波长[J],材料热处理学报.2007 28(2):122-125
    40.郝新江,刘慧卿,郝士明,等.具有失稳分解强化的Hall-Petch关系[J],东北大学学报,200223(2):137-140
    41.胡赓祥,蔡荀,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006:54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700