用户名: 密码: 验证码:
过渡金属—羧酸基配合材料的表证及其发光与磁学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分析科学与化学的其它分支学科,以及与材料、生命、能源环境等学科的交叉、融合,现代分析测试技术的表证功能备受研究者关注,并已应用到化学与材料研究的诸多领域。金属有机配合材料(MOFs)不仅兼有无机材料和有机材料的优点,而且具有可调控性与多孔性等特点,赋予其迥别于纯无机或有机固体的优势和发展空间,是目前化学、材料、医药等学科研究的交叉前沿之一。如何在分子水平探索分子间相互作用的本质,进而实现对其结构乃至物性的调控,对于深入研究结构与物性的关联,并最终实现“设计”合成和工业应用具有重要的意义。本论文选用三种不同类型的配体与过渡金属离子反应合成了12例具有新颖结构的MOFs材料,即:
     1.以柔性的长链V型配体为结构基块,不同的过渡金属离子为中心,合成了4例MOFs (1-4)。[Co(Hoba)_2(H_2O)_2] (1),[Co(oba)(bip)] (2),{[Ni(oba)(btp)]·(H_2O)_(0.5)}_ n (3),{[Cu(oba)(btp)]·(H_2O)_(0.5)}_n (4)(其中H_2oba = 4,4'-氧双二苯甲酸);
     2.在溶剂热条件下,选用合理的有机配体和d10金属离子,辅以不同的N-给体共配,合成了3例超分子网络(5-7)。{[Cd(pid)(H_2O)]·H_2O}_n (5),[Zn(pid)(bpp)(H_2O)]_n (6),{[Zn(pid)(2,2’-bipy)(H_2O)]·2H_2O}_n (7)(其中H_2pid = N-苯基亚胺二乙酸);
     3.采用多功能建筑块和d10金属离子,合成了5例MOFs材料(8-12)。[NaCd(2-EtIMDC)]n (8) , [Cd(2-EtIMDC)_2(bix)_(0.5)(H_2O)]_n (9) ,[Cd_2(2-EtIMDC)_2(dpe)(H_2O)]_n (10) , [Cd(2-EtIMDC)(bpp)]_n (11) ,{[Zn(2-EtIMDC)(bpp)_(0.5)(H_2O)]·H_2O}_n (12)(其中2-EtIMDC = 2-乙基-4,5-咪唑二羧酸)。
     以这些晶态材料为研究对象,运用X-射线单晶衍射分析、元素分析、红外光谱、热重分析、荧光光谱、磁性测试等现代分析表征技术,对其结构、拓扑类型和荧光与磁学性能进行了表证研究,在此基础上总结了上述材料的合成规律,归纳了所属网络的拓扑类型,分析了分子间作用力、配体的几何构型、辅助配体等因素对这些晶态材料结构与性能的影响规律,探索了拓扑类型、结构与性能间的内在关系,获得了一些规律结论。
With the promoting intersection and merging of analytical chemistry with subdiscipline of Chemistry, materials science, biological science and energy and environmental science, available modern testing means particularly important to the analysis of functional materials. In this respect, one of current hot spots is Metal–Organic Frameworks (MOFs). It offers a unique platform for the development of solidstate materials as they have a degree of structural predicatability and the possibility of permanent porosity, which leads to features not observed for traditional inorganic or organic complexes.
     How to explore the intermolemolecular interactions and its nature at the molecular level, further achieve controllable probing into the relationship between the structure and functions and ultimately realize the“design”synthesis and industrial applications. In this contribution, firstly, aborative design and select the organic tectons, and mainly investigate the regularity of assembly and mechanism of the coordination materials, synthesize 12 MOFs. The study on synthetic conditions and rules for these novels MOFs, topological analyses, and the exploration of relationships between structures and properties for these new compounds are also carried out.
     Twelve new MOFs have been synthesized on the basis of hydrothermal technique and solvent synthesis methods, and these materials were characterized through X-ray single crystal diffraction analysis, elemental analysis, fourier transform infrared spectra technology, thermal analysis technology. The Furthermore, we focus on the analysis and study of structural features、thermal stabilities、magnetic properties and fluorescent activity of aforementioned materials also have been studied.
     1. Introducing the principle of structural block-oriented, different metal ions as the center, 4 MOFs (1-4) were synthesized, including two 2-D layered structures and two 3-fold interpenetrated CdSO_4 net.
     2. Three 3-D supramolecular lattices (5-7) with hetero-chiral helical chain have been solvothermally synthesized. Compound 5 presents 2-D network with (4·8~2) topology based on 4-connected nodes.
     3. Using the heterocyclic carboxylic acids as building blocks, 5 MOFs (8-12)were synthesized, and systemically investigated the assembly regularities of entanglement networks using in situ square-MBBs (molecular building blocks) as the molecular tectons. Compound 9 exhibits the twofold (2D→2D) entangled features with interlaced in a highly rare parallel fashion. Compound 10 represents a new 3,4-connected self-penetrating network topology, in which each 2-D sheet passes through an inclined one at angle of 78.94?. 8, 11 and 12 take different 1-D helical chains structure.
引文
[1]高鸿.分析化学已发展到分析科学阶段[J].大学化学. 1999, 4(14): 4-7.
    [2]江寅,李飞.分析化学的发展[J].江西化工. 2008, 1, 30-32.
    [3] Alexander U. Czaja, Natalia Trukhan and Ulrich Müller. Industrical applications of metal–organic framework [J]. Chem. Soc. Rev., 2009, 38: 1284-1293.
    [4] M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. T. Houk. Luminescent metal–organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1330-1352.
    [5] Mohamedally Kurmoo. Magnetic metal–organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1353-1379.
    [6] Jian Rong Li, Ryan J. Kupple and Hong Cai Zhou. Selective gas adsorption and separation in metal–organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1477-1504.
    [7] Gérard Férey and Christian Serre. Large breahing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences [J]. Chem. Soc. Rev., 2009, 38: 1380-1399.
    [8] Li Qing Ma, Carter Abney and Wen Bin Lin. Enantioselective catalysis with homochiral metal–organic frameworks [J]. Chem. Soc. Rev., 2009, 38, 1248-1256.
    [9] Tina Düren, Youn-Sang Bae and Randall Q. Snurr. Using molecular simulation to characterize metal–organic frameworks for adsorption applications [J]. Chem. Soc. Rev., 2009, 38: 1237-1247.
    [10] Leslie J. Murray, Mircea Dinc? and Jeffrey R. Long. Hydrogen storage in metal–organic frameworks [J]. Chem. Soc. Rev., 2009, 38, 1294-1314.
    [11] Jeong Yong Lee, Omar K. Farha, John Roberts, Karl A. Scheidt. Metal–organic framework materials as catalysts [J]. Chem. Soc. Rev., 2009, 38: 1450-1459.
    [12] Janiak Christoph. Engineering Coordination Polymers towards Applications [J]. Dalton Trans., 2003, 2781-2804.
    [13] Maspoch Daniel, Ruiz-Molina Daniel and Veciana Jaume. Old Materials with new Tricks: Multifunctional open-framework materials [J]. Chem. Soc. Rev., 2007, 36: 770-818.
    [14] Myunghyun Paik Suh, Young Eun Cheon and Eun Young Lee. Syntheses and Functional of porous metallosupramolecular networks [J]. Coord. Chem. Rev., 2008, 252: 1007-1026.
    [15] Christopher L. Cahill, Daniel T. de Lill and Mark Frisch. Homo- and heterometallic coordinationpolymers from the f elements [J]. CrystEngComm, 2007, 9: 15-26.
    [16] Wei Chen, Jia Yu Wang, Cheng Chen, Qi Yue, Hong Ming Yuan, Jie Sheng Chen and Su Ning Wang. Photoluminescent metal-organic polymer constructed from trimetallic cluster and mixed carboxylates [J]. Inorg. Chem., 2003, 42: 944-946.
    [17] Takashi Tachikawa, Jun Rye Choi, Mamoru Fujitsuka and Tetsuro Majima. Photoinduced charge-transfer processes on MOF-5 nanoparticles: elucidating differences between metal-organic frameworks and semiconductor metal oxides [J]. J. Phys. Chem. C., 2008, 112: 14090-14101.
    [18] F. P. Doty, C. A. Bauer, A. J. Skulan, P. G. Grant and M. D. Allendorf. Scintillating Metal-Organic Frameworks: A New Class of Radiation Detection Materials [J]. Adv. Mater., 2009, 21: 95-101.
    [19] J. R. Lakowicz, Principles of Fluorescence Spectroscopy [M]. New York, Springer, 2006, 3rd edn.
    [20] P. W. Atkins, Physical Chemistry [M], San Francisco, Freeman, 1982, 2nd edn
    [21] P. Day and A. E. Underhill. Metal–organic and organic molecular magnets [M]. Cambridge, UK, Spec. Publ.–R Soc. Chem, ed. P. Day and A. E. Underhill, 2000, vol. 252.
    [22] C N R Rao, A K Cheetham and A Thirumurugan. Hybrid inorganic-organic material: a new family in condensed matter physics [J]. J. Pys,: Condens. Matter., 2008, 20: 083202.
    [23] S J Blundell and F L Pratt. Organic and molecular magnets [J]. J. Phys.: Condens. Matter, 2004, 16: R771-R828.
    [24] K. Itoh and M. Kinoshita. Molecular Magnetism, New Magnetic Materials [M]. Tokyo, Gordon Breach-Kodansha, 2000.
    [25] S. J. Blundell. Magnetism in Condensed Matter [M]. Oxford Universtiy Press, 2001.
    [26] Omar M. Yagihi, Hailian Li, Charles Davis, David Richardson, and Thoms L. Groy. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids [J]. Acc. Chem. Res., 1998, 31: 474-484.
    [27] Stuart. R. Batten and Richard. Robson. Interpenetrating nets: ordered, periodic entanglement [J]. Angew. Chem.Int. Ed., 1998, 37: 1460-1494.
    [28] Nathan W. Ockwig, Olaf Delgado-Friedrichs, Michael O'Keeffe, and Omar M. Yaghi. Reticular chemistry: Occurrence and Taxonomy of Nets and Grammar for the design of frameworks [J].Acc. Chem. Res., 2005, 38: 176-182.
    [29] Mohamed Eddaoudi, David B. Moler, Hilian Li, Banglin Chen, Theresa M. Reineke, Michael O'Keeffe, and Omar M. Yaghi. Modular chemistry: secondary builing units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks [J]. Acc. Chem. Res., 2001, 34: 319-330.
    [30] David. J. Tranchemontagne, Zheng. Ni, Michael. O'Keeffe and Omar. M. Yaghi. Reticular chemistry of metal–organic polyhedra [J]. Angew. Chem., Int Ed., 2008, 47: 5136-5147.
    [31] M. J. Rosseinsky. Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility [J]. Microporous Mesoporous Mater., 2004, 73: 15-30.
    [32] Richard Richard. A net-based approach to coordination polymers [J]. Dalton Trans., 2000, 3735-3744.
    [33] Susumu Kitagawa, Ryo Kitaura, and Shin-ichiro Noro. Functional porous coordination polymers [J]. Angew. Chem. Int. Ed., 2004, 43: 2334-2375.
    [34] M. M. Schieber. Selected topics in solid state physics experimental magnetochemistry, ed. E. P. Wohlfarth, North-Holland, Amsterdam, 1967, vol. VIII.
    [35] H. Aoki, Y. Syono and R. J. Hemley. Physics meets mineralogy [M]. CUP, Cambridge, 2000.
    [36] O. Kahn, Kluwer. Magnetism: a supramolecular function [M]. Academic, 1996.
    [37] Mohamedally Kurmoo and Cameron J. Kepert. Hard magnets based on transiton metal complexes with the dicyanamide anion, {N(CN2)}– [J]. New J. Chem., 1998, 1515-1524.
    [38] Stuart. R. Batten and Keith. S. Murray. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide [J]. Coord. Chem. Rev., 2003, 246: 103-130.
    [39] J. S. Griffith. The Theory of Transition-Metal Ions [M]. Camabridge University Press, 1964.
    [40] Long. Pan, Nancy Ching, Xiao Ying Huang and Jing Li. Reactions and reactivity of Co-bpdc coordination polymers (bpbc = 4,4'-biphenyldicarboxylate) [J]. Inorg. Chem., 2000, 39: 5333-5340.
    [41] Yen Hsiang Liu and Miao Tzu Ding. Poly[[tetraaqua (μ6-benzene-1,2,4,5- tetraboxylato) dicobalt(II) dihydrate] [J]. Acta Crystallogr., Sect. E., 2007, 63: m1828-m1829.
    [42] Oscar Fabelo, Jorge Pasán, Laura Ca?adillas-Delgado, Fernando S. Delgado, Francesc Lloret,Miguel Julve, and Catalina Ruiz-Pérez. Crystal Structure and magnetic properties of two isomeric three-dimensional pyromellitate-containing cobalt(II) complexes [J]. Inorg. Chem., 2008, 47: 8053-8061.
    [43] Mohamedally. Kurmoo, Claude. Estoures, Yoshimi. Oka, Hitoshi. Kumagai and Katsuya. Inoue. Knotted network consisting of 3-threads and a zwitterionic one-dimensional polymorphs of trans-3-(3-pyridyl)acrylate of Cobalt and Nickel, MII(C8H6NO2)2(H2O)2 [J]. Inorg. Chem., 2005, 44: 217-224.
    [44] C. S. Cundy and P. A. Cox. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time [J]. Chem. Rev., 2003, 103: 663-702..
    [45] K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology, Technology for Crystal Growth and Material Processing [M]. New York, USA, William Andrew Publishing, 2001.
    [46] R. M. Barrer, Hydrothermal Chemistry of Zeolites [M], London, Academic Press, 1982.
    [47] Arunachalam Ramanan and M. Stanley Whittingham. How molecules turn into solids: the case of self-assembled metal–organic frameworks [J]. Cryst. Growth Des., 2006, 6, 2419-2421.
    [48] Paul. M. Forster, Norbert. Stock and Anthony. K. Cheetham, A high-throughput investigation of the role of pH, temperature concentration, and time on the synthesis of hybrid inorganic–organic matericals [J]. Angew. Chem., Int. Ed., 2005, 44: 7608-7611.
    [49] Partha. Mahata, Manikanda. Prabu and Srinivasan. Natarajan. Role of temperatue and time in the formation of infinite–M–O–M– linkages and isolated clusters in MOFs: a few illustrative examples [J]. Inorg. Chem., 2008, 47: 8451-8463.
    [50] F. E. Mabbs and D. J. Machin, Magnetism and Transition Metal Complexes [M]. London,Chapman and Hall, 1973.
    [51] Oscar Fabelo, Jorge Pasán, Francesc Lloret, Miguel Julve and Catalina Ruiz-Pérez. Structural versatility in cobalt(II) complexes with 1,2,4,5-benzene-tetracarboxylic acid (H4bta) and 4,4'-bipyridine-N,N'-dioxide (dpo) [J]. CrystEngCom., 2007, 9: 815-827.
    [52] Yue-Qing Zheng, Jiang-Li Lin, Wei Xu, Hong-Zhen Xie, Jie Sun, and Xian-Wen Wang. A family of new glutarate compounds: synthesis, crystal structures of: Co(H2O)5L (1), Na[CoL2] (2), Na2[L(H2L)4/2 (3), {[Co3(H2O)5L2](HL)2}·4H2O (4), {[Co3(H2O)6L2](HL)2}·10H2O (5), {[Co3(H2O)6L2]L2/2}·4H2O (6), Na{[Co3(H2O)2L8/2]·6H2O (7), and magnetic properties of 1 and2 with H2L = HOOC-(CH2)3-COOH [J]. Inorg. Chem., 2008, 47: 10280-10287.
    [53] Hitoshi. Kumagai, Katsuya. Inoue and Mohamedally. Kurmoo. Self-organized metallo-helicates and–ladder with 2,2'-biphenyldicarboxlate(C14H8O4)2-: sythesis, crystal structures and magnetic properties [J]. Bull. Chem. Soc. Jpn., 2002, 75: 1283-1289.
    [54] Hitoshi. Kumagai, Motoko. Akita-Tanaka, Satoshi. Kawata, Kawata. Inoue, Cameron. J. Kepert and Mohamedally. Kurmoo. Synthesis, crystal structures, and properties of molecular squares displaying hydrogen andπ–πbonded networks [J]. Cryst. Growth Des., 2009, 9: 2734-2741.
    [1] Mir Wais Hosseini. Reflexion on molecular tectonics [J]. CrystEngComm, 2004, 6: 318-322.
    [2] Dario Braga, Lee Brammer and Neil R. Champness. New trends in crystal engineering [J]. CrystEngComm, 2005, 7: 1-19.
    [3] Mir Wais Hosseini. Molecular tectonic: from simple tectons to complex molecular networks [J]. Acc. Chem. Res., 2005, 38: 313-323.
    [4] Xin Long Wang, Chao Qin, En Bo Wang, Lin Xu, Zhong Min Su, and Chang Wen Hu. Interlocked and interdigitated architectures from self-assembly of long flexible ligands and cadmium salts [J]. Angew. Chem. 2004, 116: 5146-5150.
    [5] Xin Long Wang, Chao Qin, En Bo Wang, and Lin Xu. An Unusual 3D Interdigitated architecture self-assembled from sidearm-containing 2D bilayer motifs with a cuboidal framework [J]. Eur. J. Inorg. Chem., 2005, 3418-3421.
    [6] Xin Long Wang, Chao Qin, En Bo Wang, and Zhong Min Su. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes [J]. Chem. Eur. J. 2006, 12: 2680-2691.
    [7] Xin Long Wang, Chao Qin, En Bo Wang, Yang Guang Li, Zhong Min Su, and Lucia Carlucci. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting [J]. Angew. Chem. 2005, 44: 5824-5827.
    [8] Xin Long Wang, Chao Qin, En Bo Wang, Yang Guang Li and Zhong Min Su. An unprecedented fivefold interpenetrated lvt network containing the exceptional racemic motifs originated from nine interwoven helices [J]. Chem. Comm. 2005, 5450-5452.
    [9] Long Tang, Dong Sheng Li, Feng Fu, Ya Pan Wu, Yao Yu Wang, Huai Ming Hu and En Bo Wang. The structure and magnetic properties of a 3D pillared-layer polymer and two helical chains constructed from flexible ligands [J]. J. Mol. Struct., 2008, 888, 344-353.
    [10]梅光泉,曾锦萍,刘万云,黄可龙。4,4'-联苯二乙酰酮桥联双核镍(II)配合物的合成及磁性研究[J]。化学试剂, 2010, 32 (1): 23-26.
    [11] Chang Yan Sun, Xiang Jun Zheng, Song Gao, Li Cun Li and Lin Pei Jin. Multiple regulated assembly, crystal structures and magnetic properties of porous coordination polymers with flexible ligands [J]. Eur. J. Inorg. Chem., 2005, 4150-4159.
    [1] Alicia M. Beatty. Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes [J]. Coord. Chem. Rev., 2003, 246: 131-143.
    [2] Maria D. Stephenson and Michaele J. Hardie. Extended structures of transition metal complexes of 6,7-dicyanodipyridoquinoxaline:π-stacking, weak hydrogen bonding, and CN···πinteractions [J]. Cryst. Growth Des., 2006, 6: 423-432.
    [3] Soohaeng Yoo, Mikhail V. Kirov and Sotiris S. Low-energy networks of the T-cage (H2O)24 cluster and their use in constructing periodic unit cells of the structure l (sl) hydrate lattice [J]. J. Am. Chem. Soc., 2009, 131(22): 7564-7566.
    [4] Ya Qian Lan, Shun Li Li, Jun Sheng Oin, Dong Ying Du, Xin Long Wang, Zhong Min Su and Qiang Fu. Self-assembly of 2D→2D interpenetrating coordination polymers showing polyrotaxane- and polycatenane-like motifs: influence of various ligands on topological structural diversity [J]. Inorg. Chem., 2008, 47: 10600-10610.
    [5] Qing Xia Yao, Zhan Feng Ju, Xu Hui Jin and Jie Zhang. Novel polythreaded coordination polymer: from an armed-polyrotaxane sheet to a 3D polypseudorotaxane array, photo- and thermochromic behaviors [J]. Inorg. Chem., 2009, 48: 1266-1268.
    [6] Xin Yi Cao, Yuan Gen Yao, Stuart R. Batten, En Ma, Ye Yan Qin, Jian Zhang, Rui Bo Zhang and Jian Kai Cheng. Unusual parallel entanglement of metal–organic 2D frameworks with coexistence of polyrotaxane, polycatenane and interdigitation [J]. CrystEngComm, 2009, 11: 1030-1036.
    [7] Zhi Feng Hao, Yao Fang Zhang, Yao Wen Chen, Jian Yu and Lin Yu. Synthesis and structure of 2D nickel(II) coordination compound with phenl-iminodiacetic acid [J]. Chin. J. Inorg. Chem., 2005, 21: 573-577.
    [8]郝志峰,余坚,张耀方,陈耀文,余林。N-苯基二乙酸桥联的双核铜配合物的合成、表征与晶体结构[J]。无机化学学报,2007, 23(8): 1315-1321.
    [9] Ramadan Abuhmaiera, Yan Hua Lan, Ayuk M. Ako, George E. Kostakis, Andreas Mavrandonskis, Wim Klopper, Rodolphe Clérac, Christopher E. Anson and Annie K. Powell. One-dimensional Cu(II) coordination polymers: tuning the structure by modulating the“carboxylate arm”lengthsof polycarboxylate ligands [J]. CrystEngComm., 2009, 11, 1089-1096.
    [10] Feng Li, Xing Li, Tao Hai Li, Wei Su and Rong Cao. Design and syntheses of 1D and 2D coordination polymers resulting from flexible building blocks [J]. J. Mol. Stru., 2006, 782: 116-121.
    [11] Guo Ping Yong, Shu Qiao, Zhi Yong Wang and Yong Cui. Five-, seven-, and eight-coordinate Cd(II) coordination polymers built by anthranilic acid derivatives: synthesis, structures and photoluminescence [J]. Inorg. Chim. Acta., 2005, 358: 3905-3913.
    [12] Feng Li, Tao Hai Li and Rong Cao. The effects of metal ions and secondary ligands on the formation of structures resulted from flexible building blocks [J]. Chin. J. Stru. Chem., 2005, 12: 1462-1467.
    [1] Gregory J. MeManus, Zhen Qiang Wang, Derdk A. Beauchamp and Michael J. Zaworotko. A novel metal–organic ternary topology constructed from triangular square and tetrahedral molecular building blocks. [J]. Chem. Commun., 2007, 5212-5213.
    [2] Jacilynn A. Brant, Yun Ling Liu, Dorina F. Sava, Derek Beauchamp, Mohamed Eddaoudi. Single-metal-ion-based molecular building blocks (MBBs) approach to the design and synthesis of metal–organic assemblies [J]. J. Mol. Struct., 2006, 796: 160-164.
    [3] Makoto Fujita, Masahide Tominaga, Akiko Hori and Bruno Therrien. Coordination assemblies from a Pd(II)-cornered square complex [J]. Acc. Chem. Res., 2005, 38: 371-380.
    [4] Chuan Feng Wang, En Qing Gao, Zheng He and Chun Hua Yan. A novel mixed-valence complex containing CoII2CoIII3 molecular squares with 4,5-imidazoledicarboxylate bridges [J]. Chem. Commun., 2004, 720-721.
    [5] Fu Wei Zhang, Zi Feng Li, Tie Zhu Ge, Hong Chang Yao, Gang Li, Hui Jie Lu, and Yan Yan Zhu. Four novel frameworks built by imidazole-based dicarboxylate ligands: hydro(solvo)thermal synthesis, crystal structures, and properties [J]. Inorg. Chem., 2010, 49: 3776-3788.
    [6] Yun Ling Liu, Victor Kravtsov, Rosa D. Walsh, Pankaj Poddar, Hariharan Srikanth and Mohamed Eddaoudi. Directed assembly of metal–organic cubes from deliberately predesigned molecular building blocks [J]. Chem. Commun., 2004, 2806-2807.
    [7] Yun Ling Liu, Victor Kravtsov, Randy Larsen and Mohamed Eddaoudi. Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks (ZMOFs) with extra-large cavities [J]. Chem. Commun., 2006, 1488-1490.
    [8] Shuang Wang, Li Rong Zhang, Guang Hua Li, Qi Sheng Huo and Yun Ling Liu. Assembly of two 3-D metal–organic frameworks from Cd(II) and 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazoledicarboxylic acid [J]. CrystEngComm, 2008, 10: 1662-1666.
    [9] Xia Li, Ben Lai Wu, Cao Yuan Niu and Hong Yun Zhang. Syntheses of Metal–2-(pyridine-4-yl)-1H-imidazole-4,5-dicarboxylate networks with topological diversity: gas adsorption, thermal stability and fluorsent emission properties [J]. Cryst.Growth Des., 2009 9: 3423-3431.
    [10] Xun Feng, Jian She Zhao, Bin Liu, Li Ya Wang, Seikweng Ng, Gai Zhang, Jiang Ge Wang, Xin Ge She, and Yong Yong Liu. A series of lanthanide–organic frameworks based on 2-propyl-1H-imidazole-4,5-dicarboxylate and oxalate: syntheses, structures, luminescence, and magnetic properties [J]. Cryst. Growth Des., 2010, 10: 1399-1408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700