用户名: 密码: 验证码:
溶致液晶模板法制备TiO_2纳米材料及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是近几年最受关注的研究领域之一,其颗粒形状、孔道结构、表面形态对材料性能影响很大。本文利用由不同的表面活性剂体系构建的溶致液晶为软模板,对合成材料的形貌及孔道结构进行控制和调节,并探讨溶致液晶相结构与最终合成材料结构和性能之间的关系,以达到对产品性能进行调控的目的。
     本文以TiOSO_4为无机钛源,以CO(NH_2)_2或NH_3·H_2O为沉淀剂,采用均匀沉淀法或直接沉淀法结合由SDS/CTAB/C_5H_(11)OH/H_2O四元体系、TritonX-100/ C_(10)H_(21)OH/H_2O三元体系或TritonX-100/H_2O二元体系构建的溶致液晶模板制备锐钛矿型纳米TiO_2。利用偏光显微镜(POM)、低角度X射线衍射(Low-angle XRD)技术和傅立叶变换红外光谱仪(FT-IR)深入考察了不同组成和溶液浓度对溶致液晶模板结构的影响,分析发现随表面活性剂浓度的增大,溶致液晶由六角状向层状液晶转变,一定范围内改变溶液浓度影响了层状液晶的有序性,但未改变层状液晶的结构。体系中的表面活性剂、醇类和水以一定方式缔合,疏水作用导致体系无序-有序相转变。利用傅立叶变换红外光谱(FT-IR)、热重-差热联用仪(TG-DTA)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对所制备的样品进行形貌和结构表征。分析结果表明单纯的洗涤并不能完全除掉样品中的有机物,450?C下焙烧能完全去除有机物且使样品由无定形转变成锐钛矿型。样品较好地复制了溶致液晶的微观结构,利用溶致液晶制备出了具有六角状和立方状纳米孔结构的TiO_2以及片层状纳米TiO_2。
Nanometer materials have been one of hot-spot study fields for the last few years. The morphology, pore structure as well as surface state have been defined as very important factors for materials performance. Lyotropic liquid crystal phases, which were formed by different surfactant system, were used as soft template to synthesize nanomaterials with desired morphologies and structures. The relationship between the structure of the lyotropic liquid crystal phases and the formed samples were studied in order to control the performance of the products.
     In this paper, antase TiO_2 nanoparticles were prepared using TiOSO4 as inorganic titanium source, CO(NH_2)_2 or NH_3·H_2O as precipitator by homogeneous precipitation method or direct precipitation method combined with lyotropic liquid crystal as soft template, which was formed by SDS/CTAB/C_5H_(11)OH/H_2O quaternary system, TritonX-100/C_(10)H_(21)OH/H_2O termary system or TritonX-100/H_2O binary system. Polarized optical microscopy (POM), Low angle X-ray Diffraction (Low-angle XRD) and Fourier Transform Infrared Spectra (FT-IR) were applied to investigate the effects of different composition and aqueous concentration on the templete structure of lyotropic liquid crystal. It was found that lyotropic liquid crystal would transform from hexagonal to lamellar as the increase of surfactant concentration. Changing aqueous concentration within a certain range affected the order of lamellar liquid crystal but didn’t change the structure. Surfactant, alcohol and water in system associated by some method and hydrophobic interaction leads to the system phase transition from disorder to order. The prepared samples were characterized by different method such as Fourier Transform Infrared Spectra (FT-IR), Thermogravimetry-Differential Thermal Analysis (TG-DTA), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The results showed that washing alone could not completely remove organics. when calcined at 450°C, the organic could be removed completely and the sample could transform from amorphous into anatase. TiO_2 sample had cast the structure of the LLC phases. TiO_2 with nanohole structure such as hexagonal-shaped, cubic-shaped and lamellar nano-TiO_2 had been synthesized by lyotropic liquid crystal as soft template.
引文
[1]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社, 2001,476
    [2]白春礼,纳米科技及其发展前景,华北工学院学报(社科版),2001,(增刊), 25-29:94
    [3]张立德,纳米材料的研究现状和发展趋势,现代科学仪器, 1998,1-2:27-29
    [4] Hamley I. W. Nanotechnology with Soft Materials. Angew. Chem. Int. Ed,2003, 42: 1692-1712
    [5] Niemeyer, C. M. Nanoparticles, Proteins, Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem. Int. Ed ,2001,40:4128-4158
    [6] Elana M. Pendular,. Funicular and Capillary Bridges. Results for Two Dimensions. J. Colloid Interf. Sci, 1999, 220: 42-56
    [7] Klimov V.I. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science, 2000, 290: 314-317
    [8]宓一鸣,纳米科技研究现状及发展趋势,上海工程技术大学学报,2002, 16(3):172-185
    [9]徐国财,张立德,纳米复合材料,北京:化学工业出版社,2002:32-35
    [10]宋胜梅,纳米TiO_2的特性及应用,化工纵横,2001,5 (3):50-56
    [11] Kubo R., Kawabata A., Kobayashi S. Electronc properties of small particles. Annual Review of Materials Science,1984,14: 49-66
    [12]张立德,牟季美,物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域—纳米微粒与纳米固体,物理,1992,21:167-173
    [13]都有为,倪刚,磁性纳米材料的新进展,物理,1998,27:524-529
    [14] Cavicchi R. E., Silsbee R. H. Coulomb suppression of tunneling rate from small metal particles. Physical Review Letters,1984,52(16):1453-1456
    [15] Leggett A. J., Chakravarty S., Dorsey A. T., Fisher, Matthew P. A., Garg Anupam., Zwerger W. Dynamics of the dissipative two-state system. Reviews of Modern Physics,1987,59(1):1-85
    [16] Nalwa H. S. Handbook of Nanostructured Materials and Nanotechnology. Academic Press, 2000
    [17] Feldheim D.L., Keating C. D. Self-assembly of single electron transistors and related devices. Chemical Society Reviews ,1998,27(1):1-12
    [18]邓婕,吴立峰,钛白粉应用手册,化学工业出版社,2005
    [19]高濂,郑珊,张青红,纳米氧化钛光催化剂应用,北京:化学工业出版社,2002
    [20]段波,赵兴中,李兴国等,超微粉制备技术的现状与展望,材料工程,1994, 6:5-8
    [21]杨宗志,超微细二氧化钛—一种前景广阔的新型化工材料,现代化工,1994,1:38-39
    [22] Shi L. Y., Li C. Z., Chen A. P et al. Morphology and structure of nanosized TiO_2 particles synthesized by gas-phase reaction. Mater. Chem. Phys, 2000, 66:51-57
    [23]王广厚,韩民,纳米微晶材料的结构和性质,物理学进展,1990,10 (3):248-289
    [24] Gleiter H.. Nanocrystalline materials. Progress in Materials Science,1989,33(4): 223-315
    [25] Lu K., Wei W. D., Wang J. T. Microhardness and fracture properties of nanocrystalline nickel-phosphorus alloy. Scripta Metallurgica et Materialia,1990, 24(12): 2319-23
    [26] Hahn H., Averback R. S. The production of nanocrystalline powders by magnetron sputtering. Journal of Applied Physics ,1990,67(2):1113-1116
    [27]苏品书,超微粒子材料技术,台北:复汉出版社,1989
    [28]林元华,张中太,黄淑兰等,纳米金红石型TiO_2粉体的制备及其表征,无机材料学报,1999,14 (6):853-860
    [29]赵敬哲,王子枕,王莉玮等,超细多孔TiO_2的制备及机理研究,高等学校化工学报,1999,20 (1):115-118
    [30]张春光,邵磊,沈志刚等,中和水解法制备纳米TiO_2的研究,化工进展,2003, 22(1):53-55
    [31]姜勇,张平,刘祖武等, TiO_2纳米晶体的制备,材料科学与工程学报, 2003, 21 (3):398-401
    [32]雷闫盈,俞行,均匀沉淀法制备纳米二氧化钛工艺条件研究,无机盐工业, 2001,33 (2):3-5
    [33]高桂兰,段学臣,纳米金红石型二氧化钛粉末的制备及表征,硅酸盐通报, 2004,(1):88-90
    [34]胡晓力,尹红,胡晓洪,用均匀沉淀法制备纳米TiO_2粉末,中国陶瓷,1997, 33 (4):5-34
    [35] Hirobumi S., Hisashi M., Tatsuya M et al. Preparation and Formation Mechanism of Mesoporous Titania Particles Having Crystalline Wall. Chem. Mater,2006,18: 2256-2260
    [36] Peng T. Y., Zhao D., Dai K et al. Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity. J. Phys. Chem. B ,2005,109:4947-4952
    [37] Yury V. Kolen’ko., Kirill A. Kovnir., Anton I. Gavrilov et al. Hydrothermal Synthesis and Characterization of Nanorods of Various Titanates and Titanium Dioxide. J. Phys. Chem. B,2006,110:4030-4038
    [38]张立德,牟季美,纳米结构自组装和分子自组装体系,物理,1999,28(1):22-26
    [39] Whitesides G. M., Graybowski B. Self-Assembly at All Scales. Science,2002, 295 (5564): 2418-2421
    [40] Pileni M. P. Nanocrystal self-assemblies: fabrication and collective properties. J. Phys. Chem. B,2001,105 (17):3358-3371
    [41] Hulteen J. C., Martin C. R. A General Template-based Method for the Prepartion of Nanomaterials. J. Mater. Chem,1997,7(7):1075-1087
    [42] Huczko A. Template-based Synthesis of Nanomaterials. Appl. Phys. A,2000,70: 365-376
    [43] Antonietti M. Surfactants for Novel Templating Applications. Curr. Opin. Colloid Interface Sci,2001,6:244-248
    [44] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58
    [45] Thompson G. E., Furneaux R. C., Wood G. C et al. Nucleation and growth of porous anodic films on aluminum. Nature,1978,272(5652):433-435
    [46] Huber C. A., Huber T. E., Sadoqi M et al. Nanowire array composites. Science, 1994,283:800-802
    [47] Wang Y., Herron N. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites. Journal of Physical Chemistry,1988,92(17): 4988-4994
    [48] Bigham S. R., Coffer J. L. The Influence of Adenine Content on the Properties of Q-CdS Clusters Stablized by Polynucleotides. Colloids Surf. A,1995,95:211-219
    [49] Braun E., Eichen Y., Sivan U et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature,1998,391:775-778
    [50] Shenton W., Douglas T., Young M et al. Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus. Adv. Mater, 1999,11(3): 253-256
    [51] Shenton W., Pum D., Sleytr U. B et al. Synthesis of Cadmium Sulfide superlattices using self-assembled bacterial S-layers. Nature (London),1997,389 (6651):585- 587
    [52] Klaus T., Joerger R., Olsson E et al. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(24):13611-13614
    [53] Yang D., Qi L. M., Ma J. M. Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO_2 tubes. Advanced Materials, 2002,14(21):1543-1546
    [54] Kruyt H. R. Colloid Science. Elsevier, Amsterdam, Netherlands,1952
    [55]伯洁,表面活性剂分子有序组合体中纳米材料的制备与表征:[硕士学位论文],扬州;扬州大学,2004
    [56]霍磊,表面活性剂辅助的无机盐纳米材料的合成:[硕士学位论文],长春;东北师范大学,2006
    [57]李中春,表面活性剂分子有序组合体的催化性能研究:[硕士学位论文],扬州;扬州大学,2004
    [58] Prince, L. M., Microemulsions. Academic Press, London,1977
    [59] Iana, R.(Ed.), Surfactant Solutions: New Methods of Investigation, Surfactant Science Series, Vol.22, Marcel Decker, New York, 1987
    [60] Zulauf M., Eicke H. F. J. Inverted micelles and microemulsions in the ternary system water/aerosol-OT/isooctane as studied by photon correlation spectroscopy. Journal of Physical Chemistry, 1979, 83(4): 480-486
    [61]李丽丽,表面活性剂对无机纳米材料形貌的调控:[硕士学位论文],长春;东北师范大学,2002
    [62] Wang C. Q., Chen D. R., Jiao X. L. Lyotropic liquid crystal directed synthesis of nanostructured materials. Science and Technology of Advanced Materials,2009, 10(2),1-11
    [63]王良御,廖松生.液晶化学.北京:科学出版社, 1988: 138-149
    [64]邰子厚,梁映秋.有序分子膜.大学化学, 1997,12(3):1-6
    [65]田晓红,蒋青,谢明贵.溶致液晶的结构及应用研究进展.化学研究与应用,2002,4(2):119-122
    [66] Evans D. F., Wennerstorm H. The Colliodal Domain, VCH Publishers, New York,1979
    [67]李彦,张庆敏,黄福志等.表面活性剂溶致液晶体系研究进展.大学化学,2000, 15(1),5-9
    [68] Wang L.Y., Liao S.S. Liquid Crystal Chemistry, Scientific Press,1998.132
    [69] Gulik-Krzywicki T., Dedieu J. C., Roux D et al. Freeze-Fractrue Electron Microscopy of Sheared Lamellar Phase. Langmuir,1996, 12(20):4668-4671
    [70] Lin Z., Davis H. T., Scriven L. E. Cryogenic Electron Microscopy of Micelles and Lyotropic Liquid Crystals in Some Polar Solvents. Langmuir,1996,12(22): 5489-5493
    [71]赵丹丹,液晶模板法制备有序介孔薄膜材料及性能研究:[博士学位论文],兰州;兰州大学,2007
    [72]彼得J.柯林斯,液晶—自然界中的奇妙物相(阮丽真译),上海科技教育出版社,2002, 62-81:217-223
    [73]王新久,液晶的结构、缺陷与织构,液晶与显示,1996,11(1):1-15
    [74]董炎明,高分子向列液晶态织构研究的发展,湘潭大学自然科学学报,1993, 15(2): 67-76
    [75]郭睿劼,张宝泉,孙远等.溶致液晶及其在纳米结构材料合成中的应用.化学进展, 2007,19(11),1695-1702
    [76] Kresge C.T., Leonowicz M. E., Roth W. J et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359 (6397):710-712
    [77] Attard G. S., Glyde J. C., Goltner C. G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica.Nature,1995,378(6555):366-368
    [78] Attard G. S., Edgar M., Goltner C. G. Inorganic nanostructures from lyotropic liquid crystal phases. Acta Materialia,1998,46(3):751-758
    [79] Coleman N. R. B., Attard G. S. Ordered mesoporous silicas prepared from both micellar solutions and liquid crystal phases. Microporous and Mesoporous Materials,2001, 44/45:73-80
    [80] Attard G. S., Bartlett P. N., Coleman N. R. B et al. Mesoporous platinum films from lyotropic liquid crystalline phases. Science,1997, 278:838-840
    [81] Whitehead A. H., Elliott J. M., Attard G. S et al. Electrodeposition of mesoporous tin films.Chem. Commun,1999,4:331-332
    [82] Guerin S., Attard G. S. Electrochemical behaviour of electrodeposited nanostructured palladium+platinum films in 2M H2SO4 Electrochem. Commun, 2001,3(10):544-548
    [83] Attard G. S., Leclerc S. A. A., Maniguet S et al. Mesoporous Pt/Ru Alloy from the Hexagonal Lyotropic Liquid Crystalline Phase of a Nanionic Surfactant. Chem. Mater,2001,13(5):1444-1446
    [84] Tohver, V., Braun, P. V., Stupp, S. I et al. Counterion Effects in Liquid Crystal Templating of Nanostructured CdS. Chemistry of Materials,1997,9(7):1495- 1498
    [85] Braun P. V., Stupp S. I. CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals. Materials research bulletin,1999,34(3):463-469
    [86] Braun P. V., Osenar Paul., Stupp S. I et al. Nanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals. Journal of the American Chemical Society,1999,121(32):7302-7309
    [87] Ding Y.H., Xu B., Guo R et al. The Preparation of Silver Sulfide Nanoparticles in Lamellar Liquid Crystal and Application to Lubrication. Mater. Res. Bull,2005, 40: 275-582
    [88] Guo R., Liu T.Q. The Synthesis of PdS Fine Particles in the TritonX-100/ C10H21OH/H2O Lamellar Liquid Crystal. Colloids﹠surf. A: Physicochem. Eng. Asp,1997,123/124:587-591
    [89] Yang H. M., Guo R., Wang H. Q. Lubrication of the mixed system of Triton X-100/n-C10H21OH/H2O lamellar liquid crystal and ZnS nanoparticles. Colloids and Surfaces. A: Physicochemical and Engineering Aspects,2001,180:243-251
    [90] Ding Y.H., Xu B., Guo R. Synthesis of Ethylenediaminetetraacetic Acid Disodium Salt Nanoparticles in the Lamellar Liquid Crystal and Application to Lubrication. Mater. Chem. Phys,2006,98:425-429
    [91] Khiew P. S., Radiman S., Huang N. M., Ahamd M.S. Synthesis and Characterization of Copper Sulfide Nanoparticles in Hexagonal Phase Lyotropic Liquid Crystal. J. Crys. Grow,2004,268:227-237
    [92] Li Y., Wan, J., Gu Z. The formation of cadmium sulfide nanowires in different liquid crystal systems. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing,2000,A 286(1):106-109
    [93] Jiang X. C., Xie Y., Lu J et al. Simultaneous in Situ Formation of ZnS Nanowires in a liquid Crystal Template byγIrradiation. Chem. Mater,2001,13(4):1213- 1218
    [94] Huang L. M., Wang H., Yan Y. S et al. Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase. Chem. Mater,2002,14 (2):876- 880.
    [95] Huang L. M., Wang H., Yan Y. S et al. Nanowire arrays electrodeposited from liquid crystalline phases. Adv. Mater,2002,14(1):61-64
    [96] Huang L. M., Wang Z. B., Yan Y. S et al. Polyaniline Nanowires by Electro- polymerization from Liquid Crystalline Phases. J. Mater. Chem,2002,12(2):388- 391
    [97] Kijima T., Yoshimura T., Uota M et al. Noble -metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates. Angewandte Chemie,2004,43 (2):228-232
    [98] Kijima T., Nagatomo Y., Takemoto H et al. Synthesis of nanohole-structured single-crystalline platinum nanosheets using surfactant-liquid-crystals and their electrochemical characterization. Advanced functional materials,2009,19:545- 553
    [99] Wen C., Liu Y., Guo Y et al. Synthesis of the rare earth compound nanosheets induced by lamellar liquid crystal. Solid State Sciences,2009,11:1985-1991
    [100]王军,杨许召,表面活性剂新应用,北京:化学工业出版社,2009:4-12
    [101]王彤,尹宝霖,魏西莲, SDS/正戊醇/水体系的液晶研究,精细石油化工,2003,5: 20-22
    [102] Song G. P., Han J., Guo R et al. Synthesis of polyaniline nanostructures in different lamellar liquid crystals and application to lubrication. J Mater Sci,2002, 44:715-720
    [103]魏绍东,袁良正,王玉倩,以偏钛酸为原料制备纳米TiO_2的方法与工业生产,应用化工,2006,35(2):89-91
    [104]李宗任,陈小泉,刘焕彬等,用硫酸氧钛制备纳米二氧化钛的研究进展,涂料工业,2009,39(2):64-67
    [105]王文波,刘玉芬,申书昌,表面活性剂实用仪器分析,北京:化学工业出版社, 2003:75-88
    [106] Ahir S. V., Petrov P. G., Terentjev E. M. Rheology at the Phase Transition Boundary: 2. Hexagonal Phase of TritonX-100 Surfactant Solution. Langmuir, 2002,18,9140-9148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700