用户名: 密码: 验证码:
纳米Al_2O_3增强PET复合材料的制备及耐磨特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯(PET)具有优良的耐热性、耐化学药品性、电绝缘性和易回收利用等特点,主要应用于合成纤维和工程塑料等领域。PET的主要缺点是结晶速率慢、冲击强度低、耐磨性差。为了实现PET的高性能化,使之能应用于滑块、齿轮和滑动轴承等耐磨构件,替代部分无法回收的工程塑料和易受化学腐蚀失效的金属,需要对其进行功能改性。
     本文采用高速剪切法对纳米Al_2O_3进行分散处理,同时对其表面进行包覆处理和偶联改性,通过原位聚合法成功制备了纳米Al_2O_3/PET复合材料,并对其进行了性能测试和表征。红外光谱分析表明,经包覆处理和偶联改性的纳米Al_2O_3表面分别存在PEG和KH-560的特征基团;TEM分析表明,未处理的纳米Al_2O_3自团聚现象严重,而经改性处理的纳米Al_2O_3在乙二醇(EG)和PET基体中分散均匀,平均粒径在30~80nm之间;XRD和DSC分析表明,纳米Al_2O_3在PET结晶过程中起到了异相成核的作用,显著促进了PET的结晶。
     力学性能测试表明,经包覆处理和偶联改性的纳米Al_2O_3/PET复合材料的冲击韧性有了较大提高,同时拉伸强度基本不变;摩擦磨损测试表明,在干摩擦滑动条件下,当纳米Al_2O_3的含量为1.6%时,经PEG和KH-560表面处理的纳米Al_2O_3/PET复合材料均表现出较低的磨损率,与未处理的纳米Al_2O_3/PET复合材料相比分别降低了51%和70%,较纯PET分别降低了68%和81%;SEM分析表明,随着改性纳米Al_2O_3的加入,复合材料的冲击断面形貌出现了韧窝和撕裂带,断裂形式由脆性断裂向着韧性断裂转化;复合材料的摩擦表面犁沟逐渐变浅,且塑性变形程度降低,表面较为平整,磨损机制为轻微的粘着磨损。
Polyethylene terephthalate (PET) is mainly used in the areas of synthetic fibers, packaging materials and engineering plastics possesses because of its excellent heat resistance, chemical resistance, electrical insulation and easy recycling. The disadvantages of PET include its low crystallization rate, low impact strength and poor abrasion resistance. In order to achieve high performance and to be used as the slider, gear and sliding bearings to replace some thermosetting engineering plastics and corrosive metal materials, the functional modification of PET has been an important research topic in recent years.
     In this paper, nano-Al_2O_3 particles were dispersed in EG solvent during the process of high-speed shearing and were simultaneously chemically treated by polyethylene glycol and silane coupling agent respectively, then they were used to prepare nano-Al_2O_3/PET composites by in-situ polymerization. Finally the properties of composite materials were tested and analyzed. The IR analysis indicated that on the surface of treated nano-Al_2O_3 particles there were characteristics groups of PEG and KH-560. TEM analysis showed that the untreated nano-Al_2O_3 got agglomerated seriously, while the treated nano-Al_2O_3 were dispersed uniformly in the EG solvent and PET matrix with an average diameter of 30~80nm. XRD and DSC analysis showed that nano-Al_2O_3 played a heterogeneous nucleation role in the PET crystallization process.
     Mechanical tests showed the impact strength of treated nano-Al_2O_3/PET composites was obvioulsly improved, while there was no decrease in the tensile strength. The friction and wear tests showed that in the dry friction condition, when the weight fraction of PEG and KH-560 treated nano-Al_2O_3 was 1.6%, the composites showed a lower wear rate, which were decreased by 51% and 70% respectively, compared with the untreated nano-Al_2O_3/PET composites, and were decreased by 68% and 81% than that of the PET. SEM analysis showed that with the increasing of the weight fraction of the treated nano-Al_2O_3, some dimples and tear occurs zone appeared on the impact fracture morphology of the composite materials, indicating the characteristic of toughness fracture. There were furrow shallow and slight plastic deformation on the friction surface, which showed the mild adhesive wear behavior.
引文
[1]王承鹤.塑料摩擦学[M].北京:机械工业出版社, 1994. 25~28.
    [2] Unal H, Mimaroglu A, Kadioglu U, et al. Sliding friction and wear behaviour of PTFE and its composites under dry conditions[J]. Materials and Design, 2004, 25(3): 239~245.
    [3] Hiroki E, Etsuo M. Fundamental studies on friction and wear of engineering plastics[J]. Industrial Lubrication and Tribology, 2004, 56(5): 283~287.
    [4] Masaya K, Yoshitaka U, Tomoaki I, et al. Tribological properties of Polyoxymethylene composites against aluminum[J]. Journal of Tribology, 2003, 125(3): 661~669.
    [5] Yuji Y, Masaaki H. Friction and wear of water lubricated PEEK and PPS sliding contacts Part 2. Composites with carbon or glass fibre[J]. Wear, 2004, 257(l~2): 181~189.
    [6] Yu L G, Yang S G, Liu W M, et al. Investigation of the friction and wear behaviors of polyphenylene sulfide filled with solid lubricants[J]. Polymer Engineering and Seienee, 2000, 40(8): 1825~1832.
    [7] Keiji I, Atuyoshi M, Nagatoshi M, et al. A study of coefficient of friction of UHMWPE in various contact conditions and measurement of contact temperature[J]. Transactions of the Japan Society of Mechanical Engineer, 2003, 69(1): 121~127.
    [8] Kleim H. News in polyamid 6 extraction: High thermal treatment of polymers[J].Chemical Fibers International, 2004, 54(2): 89~91.
    [9] Jeng M C, Fung C P, Li T C. The study on the tribological properties of fiber-reinforced PBT composiets of various injection molding process parameters[J].Wear, 2002, 252(11): 934~945.
    [10] Mens J W, Gee A W. Friction and wear behvaiour of 18 Polymers in contact with steel in environment of air and wate[J]. Wear, 1991, 149(2): 255~268.
    [11] Friedrich K, Reinicke R, Zhang Z. Proceedings of the institution of mechanical Engineers[J]. Journal of Engineering Tribology, 2002, 216(6): 415~426.
    [12] Lamparth I,Szabo D V, Vollath D. Fluorescence from coated oxide nanoparticles[J]. Materials Research Society Symposium-Proeeeding, 2002, 70(3): 303~308.
    [13] Xue Q J, Wang Q H. Wear mechanisms of polyehteretherketone composites filled with various kinds of SiC[J]. Wear, 1997, 213(1): 54~58.
    [14] Wang Q H, Xue Q J, Shen W C. The friction and wear properties of nanometer SiO2 filled PEEK[J]. Tribology Intenational, 1997, 30(3): 193~197.
    [15] Wang Q H, Xu J F, Shen W C. An investigation of the friction and wear properties of nanometer Si3N4 filled PEEK[J]. Wear, 1996, 196(1): 82~86.
    [16] Wang Q H, Xu J F, Shen W C. The effect of nanometer SiC filler on the tribological behvaior of PEEK[J].Wear, 1997, 209(1): 316~321.
    [17]何春霞.不同纳米材料与石墨混合填充PTFE复合材料摩擦磨损性能[J].复合材料学报, 2002, 19(6): 111~115.
    [18]何春霞,史丽萍,沈惠平.纳米A12O3填充PTFE复合材料摩擦磨损性能的研究[J].摩擦学学报. 2000, 20(2): 153.
    [19]王家序,陈战,秦大同.纳米氧化物对PTFE性能的影响[J].机械工程材料, 2002, 26(9): 31.
    [20] Li F, Hu K A, Li L J, et al. The friction and wear characteristics of nanometer Zn O filled polytetrafluoroehtlene[J]. Wear, 2002, 249(1): 877~882.
    [21] Xue Q, Zhang Z, Liu W. Friction and wear characteristics of fiber and whisker reinforced PTFE composites under oil lubricated condition[J]. Journal of Applied Polymer Science, 1998, 69(7):1393~1402.
    [22]周坤磷,曹伟民,张勇.氮化钛超细粉PTFE基复合材料的摩擦性能[J].科学通报,1997, 42(16): 1732~1736.
    [23] He J L, Wang L D, Li W Z. Experimental observations on the mechnaical properties of nanoscale ceramic/teflon multilayers[J]. Materials Chemistry and Physics, 1998, 54(3): 334.
    [24] Vinogradov A V, Okholpkova A A. Wear resistance of dispersion-filled PTFE and criticalconcentrations of the ultradispersed filler[J]. Journal of Friction and Wear, 1995, 16(5): 85.
    [25] Wang H T, Yu L G,Yang S R, et al. Investigation of the friction and wear behvaiors of micrometer copper particle and nanometer copper particle filled POM composites[J]. Journal of Applied polymer Science, 2000, 77(11): 2404~2410.
    [26] Schardler L S, Lual K, Smith R, et al. Microstructure and mechanical properties of thermally sprayed silica/nylon nanocomposites[J]. Journal of Thermal Spray Technology, 1997, 6(4): 475.
    [27]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社, 2001. 38.
    [28] Deep K G, Loan N L, Efstathios M. Sliding wear behavior of PTFE composites[J]. Wear, 2002, 252(6): 361~369.
    [29]陈爽,刘维民.表面修饰PbS纳微粒的合成及其抗磨性[J].摩擦学学报, 1997, 17(3): 260~262.
    [30] Xue Q, Liu W, Zhang Z. Friction and wear Properties of a surface-modified TiO2 nanoparticlesas additive in liquid paraffin[J]. Wear, 1997, 213(2): 29~32
    [31] Lamparth I, Szabo D V, Vollath D. Fluorescence from coated oxide nanoparticles[J]. Materials Research Society Symposium-proceeding, 2002, 703(1): 303~308.
    [32]吴剑南.我国聚酯工业的现状和前景展望[J].当代石油化工, 2004, 12(6): 16~19.
    [33]徐兆瑜. PET及其在包装业的发展和市场前景[J].化学推进剂与高分子材料, 2001, 84(6): 21~25.
    [34]陈佩兰.我国聚酯切片的生产和市场[J].合成纤维, 2003, 47(1): 37~39.
    [35]罗文德,周华堂.中国聚酯及原料工业的发展与展望[J].合成纤维工业, 2002, 25(6): l~5
    [36] Cheng Y, Brillhart M, Cebe P, et al. X-ray scattering and thermal analysis study of the effects of molecular weight on phase structure in blends of polybutylene terephthalate with polycarbonate[J].Journal of Applied Polymer Science, 1996, 34(1): 2953~2965.
    [37] Oyama T, Yamada T. Light-absorbing wide-band AR coatings on PET films by sputtering[J]. Vacuum, 2000, 59(1): 479~483.
    [38] Wu Y G. The nano-structure and properties of Ag-implanted PET[J]. Surface and Coatings Technology, 2002, 157(1): 262~266.
    [39] Lin Y S, Chen C L. Wear resistance of low-temperature plasma-polymerized organosilica deposited on poly(ethylene terephthalate): theeffect of discharge Powers[J]. Journal of Applied Polymer Science, 2008, 110(1): 2704~2710.
    [40] Shu C H. Synthesis of organic–onorganic hybrid polymeric nanocomposites for the hard coat application[J]. Journal of Applied Polymer Science, 2007, 103(2): 3985~3993.
    [41] Kereszturi K, Toth A. Surface chemical and nanomechanical alterations in plasma immersion ion implanted PET[J]. Surface Interface Analysis, 2008, 40(1): 664~667.
    [42]黄美林,狄剑锋.磁控溅射法制备防水透湿织物[J].高分子材料科学与工程, 2003, 7(4): 188~191.
    [43] Oktema T, Tarakcioglu I, Ozdogan E. Modification of friction and wear properties of PET membrane fabrics by MEVVA ion implantation[J]. Materials Chemistry and Physics, 2008, 108 (1): 208~213.
    [44] Mark W, Sworth E, Glasl D. Recent advances in the design and synthesis of polymer inorganic nanocomposites [J] . Polymer News,1999, 24(1): 331~341.
    [45]贺江平,黎华明,王霞瑜,等. PET/SiO2纳米复合材料的力学性能与摩擦性能研究[J].湖南科学技术学报, 2008, 29(4): 47~49.
    [46] Bhimaraj P, Burris D, Sawyer W G. Tribological investigation of the effects of particle size,loading and crystallinity on poly(ethylene) terephthalate nanocomposites[J]. Wear, 2008, 264(1): 632~637.
    [47] Cai H, Yan F Y. Investigation of tribological properties of Al_2O_3-polyimide nanocomposites[J]. Polymer Test, 2003, 22(1): 875~882.
    [48] Burris D L, Sawyer W G. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles[J]. Wear, 2006, 260(1): 915~918.
    [49] Schwartz C J, Bahadur S. Studies on the tribological behavior and transfer film counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles[J]. Wear, 2000, 237(1): 261~273.
    [50] Qiao H B, Guo Q, Tian A G. A study on friction and wear characteristics of nanometer Al_2O_3/PEEK composites under the dry sliding condition[J]. Tribology International, 2007, 40(1): 105~110.
    [51] Rong M Z , Zhang M Q , L iu H , et al . Microstructure and tribological behavior of polymeric nanocomposites [J ]. Industrial Lubrication and Tribology, 2001, 53(1): 72~77.
    [52] Shi G, Zhang M Q, Rong M Z, et al. Sliding wear behavior of epoxy containing nano-Al_2O_3 particles with different pretreatments[J]. Wear, 2004, 256(1): 1072~1081.
    [53]陈俊,刘正英,黄锐,等. PET改性研究进展[J].中国塑料, 2003, 17(6): 20~25.
    [54] Frisk P, Luarent J. Nanocomposite polymer container[J]. Journal of Materials Science, 1999, 12(1): 58.
    [55] Matyaabas J C, Turner S R, Sublett B J, et al. Nanocomposite technology for enhancing the gas barrier of polyethylene terephthalate[J]. Journal of Materials Science, 1998, 29(4): 7~9.
    [56] Usuki A, Mixutami T, Fukushima Y, et al. Composite material containing alyaered silicate[J]. Journal of Materials Science, 1989, 48(8): 5.
    [57] Qi Z N, Ke Y C, Long C F. Cyrstallization, properties and Cyrstal and nanoscale morphology of PET-clay nanocomposites[J]. Journal of Applied Polymer Science, 1999, 71(1): 1139~1146.
    [58]张国耀,易国祯,吴立衡,等.聚对苯二甲酸乙二醇酯/蒙脱土纳米复合材料的制备和性能[J].高分子学报, 1999, (3): 45~50.
    [59] Beall G W, Tsipursky S, Sorokin A, et al. Intercalates, exofliates, process for manuafcture intercalates and exfoliates and composites materials containing same[J]. Journal of Materials Science, 1999, 13(1): 76.
    [60] Dilorenzo M L, Errico M E, Avella M. Thermal and morphological characterization of poly(ethyleneterephthalate)/calcium carbonate nanocomposites[J]. Journal of Materials Science,2002, 37(1): 2351~2358.
    [61]王锐,武荣瑞,张大省,等. PET/纳米SiO2复合材料的制备[J].高分子材料科学与工程,2002, 18(4): 181~184.
    [62]高翔,毛立新,李宁,等.纳米TiO2对PET结晶行为、流变和力学性能的影响[J].中国塑料, 2003, 17(6): 36~42.
    [63]李宏涛,宗晓秋,宁志刚,等.纳米粒子对PET结晶过程的效应[J].吉林工学院学报, 2002, 20(1): l~3.
    [64]徐锦龙,李伯耿,李乃祥,等. PET/有机蒙脱土纳米复合材料等温结晶动力学过程研究[J].高分子材料科学与工程, 2002, 18(6): 149~152.
    [65]王亚明,石军,曾伟丽,等. PET/粘土纳米复合材料加工条件下结晶行为的研究[J].工程塑料应用, 2003, 31(9): 50~52.
    [66]张金柱,汪信. HIPS/TiO2/TAS纳米复合材料的制备和性能[J].中国塑料, 2001, 15(1): 24~26.
    [67] Xiao Y H, Wang X. Nanometer-sized TiO2 as applied to the modification of unsaturated polyester resin[J]. Materials Chemistry and Physics, 2002, 32(9): 609.
    [68]柯扬船, Stroeve P.聚合物-无机纳米复合材料[M].北京:化学工业出版社, 2003. 21.
    [69]金国珍.工程塑料[M].北京:化学工业出版社, 2001. 26.
    [70] Menzel B, Blanchet T A. Effect of particle size and volume fraction of irradiated FEP filler on transfer wear of PTFE[J]. Lubrication Engineering, 2002, 58(9): 29~35.
    [71] Haiser H, Haas W. Friction and wear of PTFE seal materials[J]. Journal of Synthetic Lubrication, 2002, 19(1): 59~68.
    [72] Gan Y X, Aglan H, Faughnan, P, et al. Fatigue fracture mechanisms of particle and fiber filled PTFE composites[J]. Journal of Reinforced Plastics and Composites, 2001, 20(9): 766~785.
    [73] Jaydeep K, Ioan N, Efstathios M. Sliding wear behvaior of PTFE composites[J]. Wear, 2002, 252(6): 361~369.
    [74] Zhang Z Z, Liu W M, Xue Q J. Eeffcts of various kinds of fillers on the tribological behvaior of polytetrafluoroethylene composites under dry and oil-lubricated conditions[J]. Journal of Applied Polymer Scienee, 2001, 80(11): 1891~1897.
    [75] Kato H, Takama M. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide[J]. Wear, 2003, 255(6): 573~578.
    [76] Hamada H, Fuijhaia K, Haida A.The influence of sizing conditions on bending properties of continuous glassfiber reinforced polypropylene composites[J]. Composites: PartA, 2000, 31(9):979~990.
    [77]邢曦,李疏芬.纳米粒子的表面包覆技术[J].高分子材料科学与工程, 2003, 19(6):10~13.
    [78]母伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社, 2004. 60.
    [79] Admas T, Charles A. Photo-oxidation of polymerice-inorganic nanocomposites: chemical, thermal stability and retardancy investigations[J]. Polymer Degradation and Sbatility, 2001,7(4): 33.
    [80] Mitchell T D, De L C. Processing and properties of particulete composites from coated powders[J]. Journal of American Ceramic Society, 1995, 78(1): 199.
    [81] Han K R, Lim C S. Surface modification of silicon nitride powder with alumina[J]. Journal of American Ceramic Society, 1996, 79(2): 574.
    [82] Luther E P, Lange F F, Person D S. Alumina surafce modification of silicon nitride for eolloidal processing[J]. Journal of American Ceramic Society, 1995, 78(8): 2009.
    [83] Kamegawa Ki, Yoshida H. Carbon coating of silica surafce: Pyrolysis of silica gels esterified with phenols[J]. Journal of Colloid and Interface Seienee, 1995, 172(1): 94.
    [84] Erika F, Bela P, Andras O. Surface modification and characterization of particulate mineral fillers[J]. Journal of Colloid and Interface Science, 1990, 135(1): 200~208.
    [85] Wu X D, Wang D P. Preparation and characterization of stearate-capped titanium dioxide nanoparticles[J]. Journal of Colloid and Interface Science, 2000, 222(1): 37.
    [86] Li Z W, ZhuY F. Surface-modification of SiO2 nanoparticles with oleic acid[J]. Applied Surface Science, 2003, 211(1): 315.
    [87] Hayashi S, Takeuchi Y, Eguchi M, et al. Graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto silica suarfce by Michael addition[J]. Journal of Applied Polymer Science, 1999, 71(1): 1491~1497.
    [88] Rong M Z, Zhang M Q, Wetze B. Graft polymerization onto inorganic nanoparticles and its effcet on tribological performance imporvement of polymer composites[J].Tribology International, 2003, 36(1): 697.
    [89] Green M L, Rhine W E, Calvert P, et al. Preparation of poly(ethylene glycol)-gratfed alumina[J]. Journal of Materials Science Letters, 1993, 12(18): 1425~1427.
    [90] Prithwiraj M, Jiang D, Huang H T, et al. Poly(ethylene oxide) silananted nanosize fumed Silica: DSC and TGA characterization of the Surface[J]. Langmuir, 2003, 19(21): 8994~9004.
    [91] Browne T, Chaimberg M, CohenY. Graft polymerization of vinyl acetate onto silica[J]. Journal of Applied Polymer Science, 1992, 44(4): 671~677.
    [92] Espiard P, Guyot A. Poly(ethyl acrylate)latexes encapsulating nanoparticles of silica: 2. Gratfing process onto silica[J]. Polymer, 1995, 36(23): 4391~4395.
    [93] Sond I, Stubicar M, Pravdic V. Surface properties of ripidolite and beidellite clyas modified by high-energy ball milling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127(1): 141~149.
    [94] Pugh R J, Bergstrom L. Surface and colloid chemistry in advanced ceramics processing[J]. Surfactant Science Series, 1994, 51(1): 121.
    [95] Wang L W, Sigmund W, Aldinger F. Systematic approach for dispersion of silicon nitride powder in organic media[J]. Journal of the American Ceramic Society, 2000, 83(1): 691~696.
    [96] Spange S P. Silica surface modification by cationic polymeriaztion and carbenium interdiates[J]. Progress in Polymer Science(Oxford), 2000, 25(2): 781~849.
    [97] Wang L W, Sigmund W, Aldinger F. Systematic approach for dispersion of silicon nitride powder in organic media: Dispersion of the powder[J]. Journal of the American Ceramic Society, 2000, 83(1): 697~702.
    [98]高镰,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社, 2003. 145~147.
    [99]张师民.聚酯的生产与应用[M].北京:中国石化出版社, 1997. 1~5.
    [100] Ke Y C, Long C F, Qi Z N.Crystallization, properties and crystal and nanoscale morphology of PET-clay nanocomposites[J]. Journal of Applied Polymer Science, 1997, 71(2): 1139~1146.
    [101]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002. 3~4.
    [102] Jana S C, Jain S. Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids[J]. Polymer, 2001, 42(6): 897~905.
    [103]朱永群.粘度法测定PET分子量[J].合成纤维, 1998, 17(1): 50~53.
    [104] Macdonald W A. New advances in poly(ethylene terephthalate) polymerization and degradation[J]. Polymer International, 2002, 51(3): 923~930.
    [105] Daubeny R D, Bunn C W, Brown C J. The crystal structure of polyethylene terephthalate[J]. Proceedings of the Royal Society, 1954, 26(2): 531~542.
    [106] Kosuke T, Hiroaki I. Studies on the formation of poly(ethylene terethphalate)[J]. Polymer, 1975, 16(3): 185~190.
    [107]籍国宝,陈光中.摩擦磨损原理[M].北京:北京农业机械化学院, 1984. 13.
    [108] Schwartz C J, Bahadur S. Studies on the tribological behavior and transfer film-counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles[J]. Wear, 2003,237(2): 261~273.
    [109] Bahadur S, Gong D. The action of fillers in the modification of the tribological behavior of polymers[J]. Wear, 1992, 158(1): 41~59.
    [110] Sawyer W, Freudenberg K, Bhimaraj P, et al. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles[J].Wear, 2003, 254(1): 573~580.
    [111] Bhimaraj P, Burris D, Sawyer W G. Tribological investigation of the effects of particle size, loading and crystallinity on poly(ethylene) terephthalate nanocomposites[J]. Wear, 2008, 264(1): 632~637.
    [112]佟金,任露泉,陈秉聪.聚合物及其复合材料的磨料磨损.机械工程材料[J], 1991, 11(2): 24~26.
    [113] Michler G H, Starke J U. Investigations of micromechanical and failure mechanisms of toughened thermoplastics by electron microscopy[J]. Transactions of the ASME, 1985, 26(1): 1855.
    [114] Bhimaraj P, Burris D L, Action J. Effect of matrix morphology on the wear and friction behavior of alumina nanoparticle/poly(ethylene) terephthalate composites[J]. Wear, 2005, 258(1): 1437~1443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700