用户名: 密码: 验证码:
高压扭转成形过程数值模拟及试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大塑性变形法(severe plastic deformation, SPD)是一种制备块体超细晶(ultra-fine grained, UFG)材料的新型塑性加工方法。作为大塑性变形法的典型代表,高压扭转法(high-pressure torsion, HPT)能显著细化晶粒,提高材料的力学性能,已成为材料科学与工程领域内的研究热点。
     高压扭转过程中,试样内部的微观组织结构与变形量、温度等宏观场量参数存在密切的联系,因此获得试样在变形过程中材料的流动信息和相关场量参数的大小及分布状况,对于选择合理的工艺参数、优化模具结构以及实现对变形过程的主动控制都是十分重要。本文针对无约束高压扭转的特点,使用三维造型软件UG建立了三维几何模型,并将模型导入3D有限元模拟软件DEFORM-3D中,从而建立了用于HPT工艺分析的有限元模型。通过对HPT过程的有限元分析,获得了材料在HPT过程中流动信息、变形行为、温度分布等场量信息。数值模拟结果表明,高压扭转可以使材料获得大的塑性变形量,试样的温度分布特征与等效应变分布特征较为一致,坯料与模具之间存在着较大的相对滑动,因此坯料的实际扭转角度与下模的旋转角度差别很大。
     在上述研究的基础上,对不同工艺参数条件下的HPT过程进行了全面的数值模拟,对坯料的应变、相对扭转角度、下模的扭矩等信息进行了获取和分析。模拟结果表明,摩擦因子影响着坯料径向的等效应变分布,其中当摩擦系数为1时,坯料径向的等效应变呈“M”型分布;摩擦因子、扭转圈数、压力和温度的增加有助于增大坯料的等效应变及相对扭转角度,但变形温度应避开钢的脆性转变区;高径比对坯料相对扭转角度的影响不大,但高径比的减小可以提高坯料轴向的变形均匀性。
     本文在有限元模拟分析的基础上,设计了试验模具,利用实验室现有2000KN压扭液压机,对退火态的20CrMnTi坯料进行了高压扭转试验,研究了不同扭转圈数和压力对材料显微组织和显微硬度的影响。试验结果表明,高压扭转后,试样子午面上距中心5mm处的显微组织最为细小、显微硬度值最高,显微硬度沿试样径向也呈“M”型分布,这与有限元模拟中坯料径向的等效应变分布的趋势较为一致,可以认为本文所建立的有限元模型是可靠的;随着压力的升高和扭转圈数的增加,试样子午面和端面的组织趋于细小均匀,珠光体沿试样径向呈针状或细带状分布在铁素体基体上,显微硬度显著升高;高压扭转过程中在较低压力下扭转较多圈数与在较高压力下扭转较少圈数所获得的组织十分相似,说明增大压力和增加扭转圈数对增大试样的变形程度、促使晶粒细化都是十分重要的。
     目前,高压扭转法较多的应用在制备超细晶材料方面,也有望应用于航空航天及医学领域。本文以纯铝粉末材料为研究对象,将高压扭转法应用于粉末烧结体锥形件的制备。有限元模拟表明HPT工艺可以有效地提高锥形件的致密度。在模拟的基础上进行了试验,成功制备出铝粉烧结体锥形件,并对锥形件进行了金相观察、显微硬度测量及相对密度测量。模拟和试验结果表明,锥形件整体的致密度达到0.98以上。HPT过程中试样顶部和边缘处的变形量不同,顶部的变形量小,该处致密度在变形后有所提高,加工硬化效果不明显,显微硬度仅为41.6kg/mm2;边缘处的变形量大,组织方向性更强,内部孔隙的平均尺寸仅2μm,致密度显著提高,加工硬化效果显著,显微硬度达到61.12kg/mm2。
Severe plastic deformation (SPD) is a new method of plastic working to obtain ultra-fine grained (UFG) materials. As a typical representative of severe plastic deformation method, high-pressure torsion (HPT) could significantly refine the grain and improve the mechanical properties of materials, it has become an attractive research field of materials science and engineering.
     In the process of HPT, the microstructure of the specimen has intimate relationship with field parameters, such as strain and temperature etc. Therefore, it is important to get the flowage information of the metal and the distribution of relative field parameters, that we can choose reasonable technical parameter, optimize die structure and realize initiative control the whole deformation processing. Based on the characters of nonrestrictive HPT, this paper used three-dimensional modeling software UG to establish three-dimensional geometric models and imported the models into DEFORM-3D which is a 3D finite element simulation software, then established a process finite element model to analyze the HPT process. Through analyzing the HPT process, the information of material flowage, deformation behavior and temperature distribution in the HPT process was obtained. The simulation result shows that HPT can severely deform the material. Temperature distribution characteristics and equivalent strain distribution characteristics in the specimen are consistent. Because of the existence of large relative sliding between the specimen and die, the actual torsion angle of specimen is distinctly different from the torsion angle of the bottom die.
     Based on the research, comprehensive numerical simulation of HPT was done under different conditions. Strain, relative torsion angle and torque was obtained and analyzed. The simulation result shows that the friction factor affects the equivalent strain distribution along radius of specimen. When the friction factor is 1, the equivalent strain along radius of specimen shows the distribution of "M"-type; equivalent strain and relative torsion angle increase significantly with the increasing of friction factor, torsion turns, pressure and temperature; aspect ratio has little effect on the relative torsion angle while deformation uniformity along axial direction of specimen is improved if aspect ratio is decreased.
     Based on FEM analysis, this paper designed die for experiment. 20CrMnTi specimen which had been annealed was processed by HPT utilizing 2000KN hydraulic press in laboratory. Microstructure and microhardness of specimen which were processed in different press and turns were researched. The experimental result shows that microstructure was severely refined in the place which is 5mm from the center along radius of specimen, while microhardness reach to peak value in the same place and shows the distribution of "M"-type too. The distribution of microhardness and equivalent strain has the same trend, so the FEM model is credible in the paper. As pressure and torsion turns are increased, the microstructure of meridian plane and end face turn to fine gained, pearlite turns to acerate or striate in the basal body of ferrite and microhardness is elevated evidently; Both low pressure many torsion turns and high pressure few torsion turns can obtain the similar microstructure after HPT. It shows that both increasing pressure and increasing torsion turns are very important for increasing the deformation of specimen and refining gain.
     Presently HPT was used in making ultra-fine grained and it was also expected be used in aerospace and medicine. With pure aluminum powder as the research object, this paper made use of HPT for making cone-shaped part prepared by pure Al powder sintered material. FEM simulation shows that HPT can effectively improve relative density of cone-shaped part; Based on simulation,cone-shaped part prepared by pure Al powder sintered material was made by experiment. metallographic observation, microhardness measurement and relative density measurement were carried on subsequently. Simulation and experiment show that the relative density of cone-shaped part reachs more than 0.98. The deformation of top part in cone-shaped part is different from that of edge in cone-shaped part. In top part, the deformation of top part is not severe, the relative density is improved somewhat after HPT, microhardness reach only to 41.6kg/mm2 because work hardening is inapparent. In edge, the deformation is severe, so microstructure has strong directional, the size inner pore is about 2μm, relative density is improved markedly, and microhardness reach to 61.12kg/mm2 because work hardening is distinct.
引文
[1]杜予晅,张新明.强变形制备超细晶金属材料的方法[J].材料导报,2006,20卷专辑Ⅶ:241-244
    [2]陈彬,林栋棵,曾小勤,卢晨.深度塑性变形法的研究现状和前景[J].材料导报, 2006, 20(9):73-76
    [3] Valiev. R. Z, Islamgaliev. R. K, Alexandrov. I. V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45:103-189
    [4] Valiev. R. Z, Langdon. T. G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51(7):881-981
    [5] Sauvage. X, Jessner. P, Vurpillot, F, Pippan. R. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation[J]. Scripta Materialia, 2008, 58(12):1125-1128
    [6]毕见强,孙康宁,等.等径角挤压2Al2铝合金超细晶组织结构研究[J].特种铸造及有色合金, 2006, 26(1):1-4
    [7]吴炬,向国权,程先华.模具外接圆弧对纯铝ECAE影响的有限元分析[J].上海交通大学学报, 2005, 39(7):1063-1065
    [8] Hebesberger I, Pippan R, Suwe H P. Effect of pressure on the final grain size after high pressure torsion. Ultrafine Grained MaterialsⅡ, 2002, 635-642.
    [9] Lee. Z, Zhou. F, Valiev. R. Z, Lavernia. E. J, Nutt. S. R. Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion[J]. Scripta Materialia, 2004, 51(3):209-214
    [10] Shpak. A. P, Varyukhin. V. N, Tkatch. V. I, et al. Nanostructured Al86Gd6Ni6Co2 bulk alloy produced by twist extrusion of amorphous melt-spun ribbons[J]. Materials Science and Engineering, 2006, A425:172–177
    [11] Pirgazi. H, Akbarzadeh. A, Petrov. R, Sidor. J, Kestens L. Texure evolution of AA3003 aluminum alloy sheet produced by accumulative roll bonding[J]. Materials Science and Engineering, 2008, A495:110-117
    [12] Huang. J. Y, Zhu. Y. T, Jiang. H, Lowe. T. C. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J]. Acta Materialia, 2001, 49(9):1497-1505
    [13]薛克敏,吕炎,安海婷等.扭-压复合加载变形基础得研究.金属成形工艺, 1994, 12(5):229~231.
    [14]薛克敏,王真,吕炎.扭压变形的准三维刚塑性有限元分析.塑性工程学报,1997,4(1):9~13.
    [15]薛克敏,章争荣,吕炎.扭压变形数值分析中的有限元法[J].锻压技术, 1997, 2:44~46.
    [16]聂蕾. TC4合金的热模锻过程设计与质量控制[D].西北工业大学硕士学位论文, 2002
    [17] Alexander. P. Zhilyaev, Terence. G. Langdon. Using high-pressure torsion for metal prossing fundamentals and applications[J]. Progress in Materials Science, 2008, 53:893–979
    [18]杜随更,傅莉,王忠平.纯铜表面的连续摩擦压扭处理[J].材料研究学报, 2002, 16(6):615-618
    [19]薛克敏,吕炎,安海婷等.扭-压复合加载变形基础的研究[J].金属成型工艺, 1994, 12(5):229-231
    [20] A. P. Zhilyaev, G.V. Nurislamova, B. K. Kim, M. D. Baro′, J.A. Szpunar, T.G. Langdon. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion[J]. Acta Materialia, 2003, 51:753–765
    [21] Nikolay. A. Krasilnikov,A. Sharafutdiniv. High strength and ductility of nanostructured Al-based alloy prepared by high-pressure technique[J]. Materials Science and Engineering A, 2007, 463:74–77
    [22] A. P. Zhilyaev, T. R. McNelley, T. G. Langdon. Evolution of microstructure and microtexture in fcc metals during high-pressure torsion[J]. J Mater Sci, 2007, 42:1517–1528
    [23] A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev and T. G. Langdon. Microhardness and microstructural evolution in pure nickel during high-pressure torsion[J]. Scripta mater, 2001, 44:2753–2758
    [24] F. Wetscher, A. Vorhauer, R. Stock, R. Pippan. Structural refinement of low alloyed steels during severe plastic deformation[J]. Materials Science and Engineering A, 2004, 387–389:809–816
    [25] A. Vorhauer, S. Kleber, R. Pippan. Influence of processing temperature on microstructural and mechanical properties of high-alloyed single-phase steels subjected to severe plastic deformation[J]. Materials Science and Engineering A, 2005, 410–411:281–284
    [26] A. Vorhauer, R. Pippan. On the onset of a steady state in body-centered cubic iron during severe plastic deformation at low homologous temperatures[J].Metallurgical and Materials Transactions A 2008, 39A:417–429
    [27] Genki Sakai, Katsuaki Nakamura, Zenji Horita, Terence G. Langdon. Developing high-pressure torsion for use with bulk samples[J]. Materials Science and Engineering A, 2005, 406:268–273
    [28] Seung Chae Yoona, Zenji Horita, Hyoung Seop Kim. Finite element analysis of plastic deformation behavior during high pressure torsion processing[J]. Journal of Materials Processing Technology, 2008, 201:32-36
    [29] R.Z.Valiev, Yu.V.Ivanisenko, E.F.Rauc, B.Baudelet. Structure and deformation behaviour of Armco iron subjected to sever plastic deformation[J]. Acta mater, 1996, Vol. 44(No. 12):4705-4712,
    [30]章争荣,肖小亭,刘易凡等.圆柱体扭压成形过程热力耦合的温度分析[J].广东工业大学学报, 1998, 15(2):28~33.
    [31]章争荣,肖小亭,刘易凡等.轴对称体扭压成形过程的热力耦合有限元分析[J].金属成形工艺, 1998, 16(3):37~40.
    [32]刘祖沿,梁国宪,王尔德.压扭应变分析及计算[J].塑性工程学报,1997, 4(2):47~51.
    [33]许树勤,付渊,郭会光.圆柱体压扭锻造德有限元分析与模拟实验研究[J].材料科学与工艺, 1996, 4(1):82~87.
    [34]盛志刚,王华昌,陈永波等.附加扭矩优化圆柱体镦粗成形的有限元模拟[J].锻压装备与制造技术, 2006, 2:84~85.
    [35]上官丰收,谢季佳,洪友士.高压扭转致纯铜晶粒细化及与应变的关系[J].材料研究导报, 2007, 21:72-76
    [36]谢子令,武晓雷,谢季佳,洪友士.高压扭转铜试样的微观组织与压缩性能[J].金属学报, 2008, 7:803~809
    [37] Hyoung Seop Kim. Finite element analysis of high pressure torsion processing[J]. Journal of materials processing technology 2001, 113:617-621
    [38]薛克敏.压扭成形过程的数值模拟及实验研究[D].哈尔滨工业大学博士论文, 1991
    [39] F. Wetscher, R. Pippan, S. Sturm, et al. investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion[J]. Metallurgigal and materials transactions, 2006, 37A:1963-1968
    [40] Dmitry. Orlov, Yoshikazu. Todaka, Minoru. Umemoto, et al. Role of strain reversal in grain refinement by severe plastic deformation[J]. Materials Science and Engineering A, 2009, 499:427–433
    [41] Megumi. Kawasaki, Terence. G. Langdon. The significance of strain reversals during processing by high-pressure torsion[J]. Materials Scienceand Engineering A, 2008, 498:341–348
    [42] Nikolay. A. Krasilnikov, A. Sharafutdiniv. High strength and ductility of nanostructured Al-based alloy prepared by high-pressure technique[J]. Materials Science and Engineering A, 2007, 463:74–77
    [43] N. A. Mara, A.V. Sergueev, T. D. Mara, S. X. McFadden, et al. Superplasticity and cooperative grain boundary sliding in nanocrystalline Ni3Al. Materials Science and Engineering A, 2007, 463:238–244
    [44] A. P. Zhilyaev, S. Lee, G. V. Nurislamova. Microhardness and microstructural evolution in pure nickel during high-pressure torsion[J]. Scripta mater, 2001, 44:2753–2758
    [45] A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon, T. R. McNelley. Microstructural evolution in commercial purity aluminum during high-pressure torsion[J]. Materials Science and Engineering A, 2005, 410–411:277–280
    [46] M. Hafok, R. Pippan. Post-shear deformation of high pressure torsion-deformed nickel under hydrostatic pressure[J]. Scripta Materialia, 2007, 56:757–760
    [47] A. P. Zhilyaev, A. A. Gimazov, G.I. Raab, T. G. Langdon. Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Materials Science and Engineering A, 2008, 486:123–126
    [48] Sergey. V. Dobatkina, Elena. N. Bastarache, Genki Sakai, et al. Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Materials Science and Engineering A, 408(2005):141–146
    [49] R. K. Islamgaliev, V. U. Kazyhanov, L. O. Shestakova, et al. Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion[J]. Materials Science and Engineering A 2008, 493:190–194
    [50]周朝辉,曹海桥,吉卫等. DEFORM有限元分析系统软件及其应用[J].热加工工艺, 2003, 4:51~52.
    [51]李春胜,黄德彬等.金属材料手册[M].化学工业出版社, 2005
    [52]张清萍,尚勇,赵国群等.直齿圆柱齿轮精锻成形过程数值模拟及参数分析.中国机械工程, 2004, 15(17):1546-1548
    [53]韩欢庆,姜伟,张鹏等.金属粉末在药型罩中的应用[J].粉末冶金工业, 2004, 3:1-4
    [54]王毅,姜炜,刘宏英等.粉末药型罩材料及其工艺技术的研究进展[J].含能材料, 2007, 5:555-559
    [55]周明智,李萍,薛克敏.粉末烧结体镦粗成形过程热力耦合有限元分析[J].塑性工程学报, 2005, 12(6):11-16
    [56] Doraivelu S M, Gegel H L. A new yield function for compressible P/M material[J]. International Journal of Mechanical Science, 1984, 26(9/10):527~535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700