用户名: 密码: 验证码:
甘薯蛋白乳化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯加工中产生的大量废水含有多量的甘薯蛋白,经过回收利用可减少资源的浪费和环境的污染,甘薯蛋白又是具有显著保健功能和加工特性的优质植物蛋白,因此,研究其乳化特性及机理具有重要理论意义和实践价值。
     本研究采用碱溶酸沉的工艺从甘薯块根组织中提取甘薯蛋白,主要研究了不同物化因素(蛋白浓度,油相体积分数,pH,NaCl和CaCl2)对甘薯蛋白乳化特性(乳化活性和乳化稳定性)的影响,分别测定了不同物化条件下甘薯蛋白乳化液的乳化颗粒平均粒径(d4,3)、乳化活性指数(EAI),乳化稳定性指数(ESI)、乳析指数、界面性质(界面吸附蛋白浓度及组成)和流变性质,并初步探索了不同物化因素影响甘薯蛋白乳化特性的机理。
     增加蛋白浓度能显著地降低乳化液的平均粒径,EAI和表观粘度,却显著地增加ESI和界面蛋白浓度。相比之下,增加油相体积分数能显著地增加乳化液的平均粒径,EAI和表观粘度,但却使乳化液的ESI和界面吸附蛋白的浓度降低(P < 0.05)。SDS-PAGE观察知甘薯蛋白乳化液界面吸附蛋白主要由Sporamin A, Sporamin B和一些由双硫键连接形成的高分子物质组成。
     在高pH条件下(7,8)乳化液的稳定性较好且EAI较高,随着pH的降低乳化液的稳定性逐渐降低且EAI也逐渐降低,但当pH降到等电点以下,其EAI和ESI又有所升高。由于pH=2时,蛋白分子的表面疏水性较高而造成疏水相互作用的增大引起颗粒间引力增大,故同pH=3相比,pH=2时乳化液的EAI和ESI又都有所降低。低pH环境(2,3,4)显著地改变了甘薯蛋白的结构使乳化液界面吸附蛋白浓度增大,并造成Sporamin A二聚体的形成。加入0.2 M NaCl,甘薯蛋白乳化液的EAI和ESI显著地降低,且初始剪切黏度显著地增大,这主要是因为静电屏蔽作用引起蛋白分子间相互作用力增强。SDS-PAGE显示NaCl对甘薯蛋白乳化液界面吸附蛋白的组成影响较小。
     添加0.05 mol·L-1氯化钙后甘薯蛋白乳化活性指数由未添加氯化钙的30.3 m2·g-1显著地降低至27.6 m2·g-1,d4,3从4.2μm显著地增大至4.42μm(P<0.05)。然而,随着氯化钙浓度进一步的升高(0.10-0.25 mol·L-1),d4,3显著地增大(P<0.05)而甘薯蛋白乳化活性指数变化并不显著(P>0.05)。此外,添加较高浓度的氯化钙能显著地增加乳化液的乳析指数和初始表观粘度,且界面吸附蛋白的浓度也显著提高(P<0.05)。SDS-PAGE分析发现添加氯化钙后Sporamin A不易被甘薯蛋白乳化界面吸附,且乳化界面和乳化液中均存在>66kDa的S-S键高分子聚合物。
     研究发现蛋白浓度,油相体积分数,pH,NaCl和CaCl2均能显著地影响甘薯蛋白乳化液的乳化性质。
The waste solution produced in sweet potato processing contains large amounts of sweet potato protein. Recycling sweet potato protein from waste solutions can reduce the waste of resources and the pollution to the environment. Furthermore, sweet potato protein has significant bioactive functionality and it is a high-quality plant protein with good processing characteristics. Therefore, there are important theoretical and practical value to study the emulsifying properties and its mechanism of sweet potato protein.
     Sweet potato protein (SPP) was prepared through isoelectric precipitation. The effect of physicochemical conditions (protein concentrations, oil volume fractions, pH, NaCl and CaCl2) on properties of stabilized emulsions of SPP were investigated by use of emulsifying activity index (EAI), emulsifying stability index (ESI), droplet size, rheological properties and interfacial properties in different physicochemical conditions, and initially explored the mechanism of the effect of different physicochemical factors on emulsifying properties of SPP.
     Increasing of protein concentration greatly decreased droplet size, EAI and apparent viscosity of SPP emulsions; however, there was a pronounced increase in ESI and interfacial protein concentration (P < 0.05). In contrast, increasing of oil volume fraction greatly increased droplet size, EAI and emulsion apparent viscosity of SPP emulsions, but decreased ESI and interfacial protein concentration significantly (P < 0.05). The main components of adsorbed SPP at the oil–water interface were Sporamin A, Sporamin B and some high-molecular-weight aggregates formed by disulfide linkage.
     At higher pH (7, 8), the EAI and ESI is high while with the decrease of pH (8-4) the EAI and ESI decreased. However, when pH is below pI, the EAI and ESI increased again. Compared with emulsion at pH 3, the EAI and ESI of SPP emulsions at pH 2 decreased due to the intense hydrophobic interaction. The structure of SPP changes significantly, which leads to the increase of interfacial protein concentration and the formation of dimmer of Sporamin A. Compared with SPP emulsions without NaCl, the EAI and ESI of SPP emulsions with addition of 0.2 M NaCl decreased significantly, and the initial apparent viscosity increased markedly as well, which can be attributed to reducing electrostatic repulsion between droplets through electrostatic screening. SDS-PAGE show that NaCl has little effect on the composition of interfacial adsorbed protein.
     The EAI of SPP emulsions decreased significantly from 30.3 m2·g-1 to 27.6 m2·g-1 after the addition of 0.05 mol·L-1 calcium chloride, while the d4,3 increased from 4.2μm to 4.42μm (P<0.05). Nevertheless, with the further increase in concentrations of calcium chloride (0.10-0.25 mol·L-1), the EAI had no obvious difference (P>0.05), but the d4,3 had a marked increase (P<0.05). In addition, the CI, interfacial adsorbed protein concentration and initial apparent viscosity were increased markedly by adding higher concentrations of calcium chloride (P<0.05). Furthermore, SDS-PAGE showed that with addition of calcium chloride Sporamin A was not easy to be adsorbed at oil/water interface, and that the high molecular polymers (>66kDa) formed by S-S bonding existed both in oil/water interface and continuous phase of emulsions.
     The study found that these physicochemical conditions can significantly affect the emulsifying properties of SPP.
引文
1.程龙军,郭得平,葛红娟.甘薯块根特异蛋白-Sporamin的研究进展.植物学报, 2001, 10: 672-677.
    2.崔晶,翟光喜,邹满.微乳给药系统的研究与应用.食品与药品, 2005, 7(1A): 23-26.
    3.刘艳群,刘钟栋.食品乳化液的发展趋势.食品科技, 2005, (2): 32-38.
    4.薛友林,孟宪军,孙艳丽,木泰华.四种甘薯蛋白粉品质比较.食品研究与开发, 2006, 27: 51-53.
    5.张振波,刘刚,王寒清,董银卯.植物蛋白在化妆品中的应用.北京日化, 2008, 4: 14-19.
    6.周春夏,杨晓泉,温其标.大豆11S球蛋白在空气-水界面上的吸附动力学.食品与生物技术学报, 2006, 25: 58-62.
    7. Alamanou, S., & Doxastakis, G. Effect of wet extraction methods on the emulsifying and foaming properties of lupin seed protein isolates (Lupinus albus spp. Graecus). Food Hydrocolloids, 1997, 11(4): 409–413.
    8. Al-Malah, K. I., Azzam, M. O. J. & Omari, R. M. Emulsifying properties of BSA in different vegetable oil emulsions using conductivity technique. Food Hydrocolloids, 2000, 14: 485–490.
    9. Aluko, R. E., Yada, R. Y. Structure-function relationship of cowpea (Vigna unguiculata) globulin isolates: Influence of pH and NaCl on physicochemical and functional properties. Food Chemistry, 1995, 53: 259–265.
    10. Agboola, S. O., Dalgleish, D. G. Calcium-induced destabilization of oil-in-water emulsions stabilized by caseinate or byβ-lactoglobulin. Journal of Food Science, 1995, 60: 399-403.
    11. Agyarea, K. K., Addo, K. & Xiong, Y. L. Emulsifying and foaming properties of transglutaminase-treated wheat gluten hydrolysate as influenced by pH, temperature and salt. Food Hydrocolloids, 2009, 23: 72-81.
    12. Aoki, H., Taneyama, O., Inami, M. Emulsifying properties of soy protein: Characteristics of 7S and 11S proteins. Journal of Food Science, 1980, 45: 534-546.
    13. Baumy, J. J., Brule, G. Binding of bivalent cations toα-lactalbumin andβ-lactoglobulin: effect of pH and ionic strength. Le Lait, 1988, 68: 33-48.
    14. Behrend, O., Schubert, H. Influence of hydrostatic oressure and gas content on continuous ultrasound emulsification. Ultrosonics sonochem, 2001, 8: 271-276.
    15. Benichou, A., Aserin, A., Lutz, R., & Garti, N. Formation and characterization of amphiphilic conjugates of whey protein isolate (WPI)/xanthan to improve surface activity. Food Hydrocolloids, 2007, 21: 379–391.
    16. Beverung, C. J., Radke, C. J., Blanch, H. W. Protein adsorption at the oilrwater interface: characterization of adsorption kinetics by dynamic interfacial tension measurements, 1999, 81: 59-80.
    17. Bos, M. A., Vliet, T. V. Interfacial rheological properties of adsorbed protein layers andsurfactants: a review. Advances in Colloid and Interface Science, 2001, 91: 437-471.
    18. Cameron, D. R., Weber, M. E., Idziak, E. S., Neufeld, R. J., Cooper, D. G. Determination of interfacial areas in emulsions using turbidimetric and droplet size data: correction of the formula for emulsifying activity index.J. Agric. Food Chem., 1991, 39: 655-659.
    19. Castellani, O., Belhomme, C., David-Briand, E., Guérin-Dubiar, C., Anton, M. Oil-in-water emulsion properties and interfacial characteristics of hen egg yolk phosvitin. Food Hydrocolloids, 2006, 20: 35-43.
    20. Chapleau, N., de Lamballerie-Anton, M. Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation. Food Hydrocolloids, 2003, 17: 273-280.
    21. Comas, D. I., Wagner, J. R., & Toma′s, M. C. Creaming stability of oil in water (O/W) emulsions: Influence of pH on soybean protein–lecithin interaction. Food Hydrocolloids, 2006, 20: 990–996.
    22. Dagorn-Scaviner, C., Gueguen, J., Lefebvre, J. Emulsifying properties of pea globulins as related to their adsorption behaviors. Journal of Food Science, 1987, 52: 335-341.
    23. Dérick R. Fat crystals and emulsion stability: a review. Food Research International, 2000, 33: 3-14.
    24. Dickinson, E. A model of a concentrated dispersion exhibiting bridging flocculation and depletion flocculation. Journal of Colloid and Interface Science, 1989, 132: 274-278.
    25. Dickinson, E. Introduction to food colloids, 1992, Oxford University Press, Oxford.
    26. Dickinson, E. Milk protein interfacial layers and the relationship to emulsion stability andrheology. Colloids and Surfaces, 2001, 20: 197-210.
    27. Dickinson, E. Hydrocolloids at interface and the influence on the properties of dispersed systems. Food Hydrocolloids, 2003, 17: 25-29.
    28. Dickinson, E., Galazka, V. B. Bridging flocculation induced by competitive adsorption: Implications for emulsion stability. Journal of the Chemical Society, Faraday Transactions, 1991, 87: 963-969.
    29. Dickinson, E., & Galazka, V. B. Emulsion stabilization by ionic and covalent complexes of b-lactoglobulin with polysachharides. Food Hydrocolloids, 1991, 5(3): 281–296.
    30. Dickinson, E., Goller, M. E., Wedlock, D. J. Osmotic pressure, creaming,and rheolory of emulsions containing nonionic polysaccharide. Journal of colloid and interface science, 1995, 172: 192-202.
    31. Dickinson, E., Golding, M. Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1998, 144: 167-177.
    32. Dickinson, E. Pawlowsky K. Effect ofι-carrageenan on flocculation,creaming and rheology of a protein stabilized emulsion. Journal of agricultural and food chemistry, 1997, 45: 3799-3806.
    33. Dickinson, E., Rolf, S. E., Dalgleish, D. G. Competitive adsorption of as1-casein, and b-caseinin oil-in-water emulsions. Food Hydrocolloids, 1988, 2: 397–405.
    34. Djagny, K. B., Wang, Z., Xu, S. Conformational changes and some functional characteristics of gelatin esterified with fatty acid. Journal of Agricultural and Food Chemistry, 2001, 49: 2987–2991.
    35. Drakos, A., Kiosseoglou, V. Depletion flocculation effects in egg based model salad dressing emulsions. Food Hydrocolloids, 2008, 28: 218–224.
    36. Euston, S. R., Hirst, R. L. Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. International Dairy Journal, 1999, 9: 693-701.
    37. Fang, Y., & Dalgleish, D. G. Dimensions of the adsorbed lay-ers in oil-in-water emulsions stabilized by caseins. Journal of Colloid and Interface Science, 1993, 156: 329-334.
    38. Floury, J., Desrumaux, A., & Legrand, J. Effect of high pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science and Emerging Technologies, 2000, 1: 127–164.
    39. Friberg, S. E., Larasson, K. Food emulsions, 1997, the 3rd Edition, Marcel Dekker, New York.
    40. Galazka, V. B., Dickinson, E., Ledward, D. Emulsifying properties of ovalbumin in mixtures with sulphated polysaccharides: Effects of pH, ionic strength, heat and high pressure treatment. Journal of the Science of Food and Agriculture, 2000, 80: 1219–1229.
    41. Gibrat, R., Grignon, C. Measurement of the quantum yield of 8-anilino-1-naphthalene sulphonate bond on plant microsomes. Biochimica et Biophysica Acta, 1982, 691: 233–239.
    42. Graham, D. E., & Phillips, C. M. Proteins at liquid interfaces I. Kinetics of adsorption and surface denaturation. Journal of Colloid Interface Science, 1979, 70: 403–414.
    43. Hattori, T., Nakamura, K., Yoshida, S. Structural relationship among the members of multigene family coding for the sweet potato tuberous root storage protein. Plant molecular biology, 1989, 13: 563-572.
    44. Hong, Y., McClements, D. J. Modulation of pH Sensitivity of Surface Charge and Aggregation Stability of Protein-Coated Lipid Droplets by Chitosan Addition. Food Biophysics, 2007, 2: 46-55.
    45. Horne, D. S., Leaver, J. Milk proteins on surface. Food Hydrocolloids, 1995, 9: 91-95.
    46. Hu, M., McClements, D. J., & Decker, E. A. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 2003, 51(5): 1435–1439.
    47. Huidobro, A., Montero, P., Borderias, A. Emulsifying properties of an ultrafiltered protein from minced fish wash water. Food Chemistry, 1998, 61: 339–343.
    48. Jourdaina, L., Leserb, M. E., Schmittb, C. Stability of emulsions containing sodium caseinate and dextran sulfate: Relationship to complexation in solution. Food Hydrocolloids, 2008, 22: 647–659.
    49. Kato, A., Fujishige, T., Matsudomi, N., & Kobayashi, K. Determination of emulsifyingproperties of some proteins by conductivity measurements. Journal of Food Science, 1985, 50, 56–62.
    50. Kato, A., Nakai, S. Hydrophobicity determined by fluorescence probe methods and its correlation with properties of proteins. Biochimica et Biophysica Acta, 1980, 642: 13–20.
    51. Keowmaneechai, E., McClements, D. J. Influence of EDTA and citrate on physico- chemical properties of whey protein-stabilized oil-in-water emulsions containing CaCl2. Journal of Agricultural and Food Chemistry, 2002, 50: 7145–7153.
    52. Kinsella, J. E. Functional properties of soy proteins. Journal of the American Oil Chemists’Society, 1979, 56: 242-256.
    53. Krause, J. P., Mothes, R., Schwenke, K. D. Some physicochemical and interfacial properties of native and acetylated legumin from faba bean (Vicia faba L.). Journal of Agricultural and Food Chemistry, 1996, 44: 429–437.
    54. Koupantsis, T., Kiosseoglou, V. Whey protein carboxymethylcellulose interaction in solution and in oil in water emulsion systems. Effect on emulsion stability. Food Hydrocolloids, 2009, 23: 1156-1163.
    55. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 27: 680-685.
    56. Lizarraga, M. S., Pan, L. G., A?on, M. C., Santiago, L. G. Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions-I. Whey protein concentrate. Food Hydrocolloids, 2008, 22: 868-878.
    57. Maeshima, M., Sasaki, T., Asahi, T. Characterization of major proteins in sweet potato tuberous root. Phytochemistry, 1985, 24: 1899-1902.
    58. McClements, D. J. Emulsion stability. In Food emulsions: Principles, practice, and techniques. Boca Raton, London, New York, Washington, DC, USA: CRC Press, 1999: 185–233.
    59. McClements, D. J. Protein-stabilized emulsions. Current Opinion in Colloid and interface Science, 1994, 9: 305-313.
    60. McClements, D. J. Comments on viscosity enhancement and depletion flocculation by polysaccharides. Food Hydrocolloids, 2000, 14(2): 173–177.
    61. McClements, D. J., Monahan, F. J., Kinsella, J. E. Disulfide bond formation affects stability of whey protein isolate emulsions. Journal of Food Science, 1993, 58: 1036–1039.
    62. Mu, T. H., Tan, S. S., Chen, J. W., Xue, Y. L. Effect of pH and NaCl /CaCl2 on the solubility and emulsifying properties of sweet potato protein. Journal of the Science of Food and Agriculture, 2009, 86: 337-342.
    63. Mu, T. H., Tan, S. S., Xue, Y. L. The Amino Acid Composition, Solubility and Emulsifying Properties of Sweet Potato Protein. Food Chemistry, 2009, 112: 1002-1005.
    64. Palazolo, G. G., Sorgentini, D. A., & Wagner, J. R. Coalescence and flocculation in O/W emulsions of native and denatured whey soy proteins in comparison with soy protein isolates. Food Hydrocolloids, 2005, 19: 595–604.
    65. Pan, L. G., Tomás, M. C., A?ón, M. C. Oil-in-Water emulsions formulated with sunflower lecithins: vesicle formation and stability. Journal of the American Oil Chemists’Society, 2004, 81: 241–244.
    66. Parker, A., Gunning, P. A., Ng, K., Robins, M. M. How does xanthan stabilise salad dressing? Food Hydrocolloids, 1995, 9: 333–342.
    67. Patal, M. T., Kilara, A. Studies on whey protein concentrates. 2. Foaming and emulsifying properties and their relationships with physicochemical properties. Journal of Dairy Science, 1990, 73: 2731–2740.
    68. Patton, S., Huston, G. E. Method for Isolation of Milk Fat Globules. Lipids, 1986, 21: 170-174.
    69. Pearce, K. N., Kinsella, J. E. Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 1978, 26: 716-723.
    70. Peterson, G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 1977, 83: 346-356.
    71. Petursson, S., Decker, E. A. Mcclements D J. Stability of oil-in-water emulsions by cod protein extracts. Journal of Agricultural and Food Chemistry, 2004, 52: 3996-4001.
    72. Phillips, M. C. Protein conformation at liquid interfaces and its role in stabilizing emulsions and foams. Food Technology, 1981, 35: 50-57.
    73. Pozam, S., Doxastakes, G., Kiosseoglou, V. Functionality of lupin seed protein isolate in relation to its interfacial behaviour. Food Hydrocolloids, 2002, 16: 241–247.
    74. Puppo, M. C., Speroni, F., Chapleau, N., de Lamballerie, M., A?ón, M. C., Anton, M. Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloids, 2005, 19: 289-296.
    75. Rangsansarid, J., Fukada, K. Factors affecting the stability of O/W emulsion in BSA solution: stabilization by electrically neutral protein at high ionic strength. Journal of Colloid and Interface Science, 2007, 316: 779-786.
    76. Sarkar. A., Kelvin, K. T. G., Singh. H. Colloidal stability and interactions of milk protein stabilized emulsions in an artificial saliva. Food Hydrocolloids, 2009, 23: 1270-1278.
    77. Schubert, H., & Armbruster, H. Principles of formation and stability of emulsions. International Chemical Engineering, 1992, 32 (1): 14–28.
    78. Shewry, P. R. Tuber storage proteins. Annals of botany, 2003, 91: 755-769.
    79. Stauffer, C. E. Emulsifiers, 1999, Eagen Press Handbook, St. Paul, MN.
    80. Srinivasan, M., Singh, H. & Munro, P. A. Sodium caseinate-stabilized emulsions: factors affecting coverage and composition of surface proteins. Journal of Agriculture and Food Chemistry, 1996, 44: 3807-3811.
    81. Sun, C. H., Gunasekaran, S. Effects of protein concentration and oil phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 2009, 23: 165-170.
    82. Surh, J., Decker, E. A. & McClements, D. J. Properties and stability of oil-in-water emulsionsstabilized by fish gelatin. Food Hydrocolloids, 2006, 20: 596-606.
    83. Sze-Tao, K. W. C., Sathe, S. K. Functional properties and in vitro digestibility of almond (Prunus dulcis L.) protein isolates. Food Chemistry, 2000, 69: 153-160.
    84. Tcholakova, S., Denkov, N. D., Ivanov, I. B., Campbell, B. Coalescence in beta- lactoglobulin-stabilized emulsions: Effects of protein adsorption and drop size. Langmuir, 2002, 18: 8960–8971.
    85. Velev, O. D., Nikolov, A. D., Denkov, N. D., Doxastakis, G., Kiosseoglou, V., & Stalidis, G. Investigation of the mechanisms of stabilization of food emulsions by vegetable proteins. Food Hydrocolloids, 1993, 7: 55–71.
    86. Walstra P In P Becher, Formation of emulsion. Encyclopedia of emulsion technology:Basic theory, 1983, 3: 57–127. New York: Marcel Decker.
    87. Walstra, P., Smulders, P. E. A. Emulsion formation. In modern aspects of emulsion science , Binks, B. P. ed., Royal society of chemistry, Cambridge, 1998: 56-99.
    88. Wang, B., Li, D., Wang, L. J., ?zkan, N. Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. Journal of Food Engineering, 2010, 96: 555-561.
    89. Wettstein, D. V., Chua, N. H. Plant molecular biology. Proceedings of a NATO Advanced Study Institute. In : NATO ASI Series A , Life Science. New York : Plenum Press, 1987: 140-660.
    90. Wieser, H. Chemistry of gluten proteins. Food Microbiology, 2007, 24: 115–119.
    91. Wilde, P. J. Interfaces: their role in foam and emulsion behaviour. Current Opinion in Colloid and Interface Science, 2000, 5: 176–181.
    92. Wu, V. Y. Emulsifying activity and emulsion stability of corn gluten meal. Journal of the Science of Food and Agriculture, 2001, 81: 1223–1227.
    93. Yao, P. L., Hwuang, M. J., Chen, Y. L., Yeh, K. W. Site-directed mutagenesis evidence for a negatively charged trypsin inhibitory loop in sweet potato sporamin. FEBS Letters, 2001, 496: 134-138.
    94. Zhang, T., Jiang, B., Mu, W. M. & Wang, Z. Emulsifying properties of chickpea protein isolates: Influence of pH and NaCl. Food Hydrocolloids, 2009, 23: 146-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700