用户名: 密码: 验证码:
甘薯膳食纤维物化以及功能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯膳食纤维是一种包含纤维素、半纤维素、果胶、木质素等多种成分的混合物,作为功能性食品的重要功效成分之一,在功能食品的开发中具有广阔的前景。而甘薯淀粉生产过程中产生了大量富含膳食纤维的薯渣,一直没有得到充分利用。不仅造成了资源的浪费,同时存在严重的环境污染。本文以不同规模的甘薯淀粉加工厂提取淀粉后的甘薯薯渣为原料,采用物理筛分与酶解的方法制备高纯度的甘薯膳食纤维,并比较分析了不同薯渣制备的甘薯膳食纤维的组分、形态、物化特性以及功能特性。
     甘薯膳食纤维是一种重要的功能性食品成分,但是传统工艺制备的甘薯膳食纤维粒径较大,物化功能特性较差,制约了甘薯膳食纤维相关功能性产品的开发。本研究利用不同的超微粉碎方式对甘薯膳食纤维进行改性,以及比较不同改性方式对甘薯膳食纤维组分、形态、物化以功能特性的影响。为甘薯膳食纤维的改性和相关功能性食品的研发提供理论依据。同时,本研究探讨了不同甘薯膳食纤维添加量对面包品质的影响。结果如下:
     1.安徽大型甘薯淀粉厂产生的废渣可以作为提取甘薯膳食纤维的原料,并且制备的膳食纤维TDF、SDF的含量均较高,具有较好的物化以及功能特性。
     2.超微粉碎可以使甘薯膳食纤维的IDF转化为SDF以及产生可溶性糖;超微粉碎技术只是将甘薯膳食纤维大的微晶束结构截断,使粒度变得均一,并不会破坏甘薯膳食纤维的片层状多空结构;超微粉碎可以显著地提高甘薯膳食纤维的物化以及功能特性和感官可接受性。
     3.在面包中添加2%—3%的甘薯膳食纤维会显著地提高面包的感官可接受性、理化特性以及质构特性。我们可以在面包中加入一定量甘薯膳食纤维,从而补充人体对膳食纤维的摄入量,增进肌体健康。
Dietary fiber is a complex material composed of cellulose, hemicellulose, lignin, pectin and so on. As an important component of function food, Dietary fiber has broad prospects in the development of functional food. The sweet potato starch production generated a lot of dietary fiber-rich sweet potato residues which has not been fully exploited. That problems not only cause the waste of resources but also cause the serious environment pollution. In this study, the dietary fiber which was extracted from sweet potato residues by physical screening and purified by enzymolysis method, and the sweet potato residues were from Anhui, Beijing Miyun starch processing factory and laboratory preparation. The composition, morphology, physico-chemical properties and functional properties of sweet potato dietary fiber were investigated.
     Sweet potato dietary fiber which was prepared by traditional technology has larger particle size ,poorer Physico-chemical properties and functional features. It limited the development of function food related of sweet potato dietary fiber, In this study, the sweet potato dietary fiber was modified by jet milling and high-pressure water jet milling grinding method, and then the composition, morphology, physico-chemical properties and functional properties of sweet potato dietary fiber were compared and analyzed. We also studied the breads quality which was added by different levels of sweet potato dietary fiber. The results are as follows:
     1. The sweet potato residues of Anhui was suitable for extraction of dietary fiber. The sweet potato dietary fiber of Anhui possessed the highest TDF content and SDF content. Furthermore, it has better physicochemical and functional properties.
     2. Micronization methods could transform IDF to SDF and dissoluble sugar. Moreover, it just cut off the bundle structure of sweet potato dietary fiber, could not damage the chip layered structure of sweet potato dietary fiber. So the particle size of dietary fiber was significantly diminished. Micronization methods particular high pressure water jet could significantly improve the physico-chemical properties and functional characteristics. At the same time, it can enhance the sweet sensory acceptability of dietary fiber.
     3. The breads with 2%—3% sweet potato dietary fiber had the better sensory acceptability, physical properties and texture characterisitics than the breads which were not added sweet potato dietary fiber. Therefore, we can add a certain amount of sweet potato dietary fiber in the bread in order to keep body healthy.
引文
1.陈海含.试论娄底甘薯生产产业化[J].湖南农业科学,2006,3, 122-128.
    2.孙长花,钱建亚.超微粉碎技术在食品工业中的应用及进展[J].扬州大学烹饪学报,2005.
    3.袁惠新,俞建峰.超微粉碎的理论、实践及其对食品工业发展的作用[J].包装与食品机械,2001,1,5-10.
    4.曹媛媛,木泰华.甘薯膳食纤维提取工艺的研究[J].食品工业科技,2007.
    5.陈存社,刘玉峰.超微粉碎对小麦胚芽膳食纤维物化性质的影响[J].食品科技,2004,9,88-90.
    6.程坷伟.甘薯淀粉生产废液中糖蛋白的提取及其生物活性和结构的研究[J].粉体技术,2003,3,28-31.
    7.季昌锋,徐瑛,刘根凡.超细粉碎设备在中药现代化中的应用[J].矿冶工程,2004,5,39-41.
    8.蓝海军,刘成梅,涂宗财,刘伟.大豆膳食纤维的湿法超微粉碎与干法超微粉碎比较研究[J].食品科学,2007,8.
    9.李小平,魏朝明,邓红..甘薯渣膳食纤维制备工艺的研究[J].食品与发酵工业,2007,33,9, 100-103.
    10.刘成梅,刘伟,高荫榆,Roger Ruan,林向阳,陈钢.微射流均质机的流体动力学行为分析[J].食品科学,2004,4,58-62.
    11.刘成梅,熊慧薇,刘伟,阮榕生,涂宗财.IHP处理对豆渣膳食纤维的改性研究[J].食品科学,2005,26,112-119.
    12.刘达玉,黄丹,李群兰.酶碱法提取薯渣膳食纤维及其改性研究[J].食品研发,2005,26,63-67 .
    13.刘晓婷.膳食纤维的开发和利用[J].中国食物与营养,2004,9,21-23.
    14.马代夫.世界甘薯生产现状和发展预测[J].世界农业,2001,1,17-19.
    15.聂凌鸿.甘薯资源的开发利用[J].粮油食品科技,2002,6,9-11.
    16.宁在兰.甘薯开发前景广阔[J].山东食品科技, 2004,7, 32-37.
    17.秦波涛,李和平,王晓曦.薯类综合加工和利用[J].中国轻工业出版社,1996,5,9-10
    18.秦防.膳食纤维—来源广泛,功能多样[J].山东食品发酵,19994,2,89-92
    19.盛勇,刘彩兵,涂铭族.超微粉碎技术在中药生产现代化中的应用优势及展望[J].中国轻工业出版社,2003,7,89-94
    20.孙长花,钱建亚.超微粉碎技术在食品工业中的应用及进展[J].扬州大学烹饪学报,2005,2, 57-60.
    21.孙健,朱红,张爱君,钮福祥,徐飞.酶法提取薯渣膳食纤维及制品特性研究[J].长江大学学报(自然科学版),第5卷第1期:农学.
    22.王国利.膳食纤维与人类饮食[J].江苏调味副食品,1995,3,13-17
    23.王遂,李春贵.酶法脱淀粉技术用于玉米膳食纤维制取工艺的研究[J].哈尔滨师范大学自然科学学报,1999,3,73-77.
    24.王亚伟,,张一鸣.麦麸膳食纤维在面包中的应用研究[J].粮油加工与食品机械.2001,9, 44 - 46.
    25.王璋,许时婴,汤坚.食品化学[M],中国轻工业出版社,1999.
    26.邬建国,周帅,张晓昱,王宏勋.采用药用真菌液态发酵甘薯渣获得膳食纤维的发酵工艺研究[J].食品与发酵工业,2005,3,86-91
    27.吴雨华.世界甘薯加工利用新趋势[J].食品研究与开发,2002,24,5,5-8.
    28.张广军.甘薯渣膳食纤维的制备方法.中国专利, 200610042094.4.4 2006-01-20
    29.郑建仙.低能量食品[M].中国轻工业出版社,2001.
    30.郑建仙.功能性膳食纤维[M].化学工业出版社,2005.
    31.周建勇.膳食纤维的定义[M].国外医学卫生学分册.2001,28 ,1,24-28.
    32. Anon, D. H. Dietary Fiber Guide in Cereal Food World. Food Chemistry,1987,32, 555-565.
    33. AACC. American Association of Cereal Chemists. The definition of dietary fiber. Report of the Dietary Fiber Definition Committee to the Board of Directors of the AACC. Cereal Foods World,2001, 46, 3, 112-126.
    34. AACC. Approved methods of the American association of cereal chemists (8th ed.). St. Paul, MN: American Association of Cereal Chemists (Methods 74-09), 1986.
    35. AACC. Approved methods of the American association of cereal chemists (9th ed.). St. Paul, MN: American Association of Cereal Chemists (Methods 10-09). 1995.
    36. Abdul-Hamid, A., & Luan, Y. S. Functional properties of dietary fiber prepared from defatted rice bran. Food Chemistry, 2000,68, 15-19.
    37. Alfredo, V. O., Gabriel, R. R, Luis, C. G., & David, B. A.. Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.) Lebensmittel-wissenschaft und Technogjoi, 2009,42, 168–173.
    38. American Cristal Sugar Company. To Move a Product Through the Market with Regularity, You Need the Right Kind of Fiber in Techn. Bull. MN, USA..1991.
    39. Bao, B., & Chang, K. C. Carrot pulp chemical composition, color,and water-holding capacity as affected by blanching. Journal of Food Science, 1994,59, 1159-1161.
    40. Bourquin, L. D., Titgemeyer, E. C., Garleb, K. A., & Fahey, G. C. Fermentation of various dietary fiber Sources by human bacteria.NutritionReseareh, 1996,16, 119-123.
    41. Bravo, L., Abia, R., Goni, I., & Saura-Calixto, F. Possible common properties of dietary fibre constituents and polyphenols. European Journal of Clinical Nutrition, 1995,49, 211-214.
    42. Bravo, L., & Saura, C. F. Characterization of dietary fiber and the in vitro indigestible fraction of grape pomace. American Journal of Enology and Viticulture, 1998,49, 135-141.
    43. Bravo, L., Abia, R., Goni. I., & Saura, F. Possiblecommon properties of dietary fibre constituents and polyphenols.. The American Journal of Clinic Nutrition, 1995,45, 1243-1255.
    44. Caprez, A., Arrigoni, E., Amado, R., & Zeukom, H. Influence of different types of thermal treatment on the chemical composition and physical properties of Wheat bran. Journal of Cereal Science, 1986,4, 233-239.
    45. Carcea, K., & Bencini, M. Functional properties of drum dried chickpea (Cicer arietinum L.) flour. Journal of Food Science,1986, 1, 1518-1526.
    46. Chau, C. F., Huang, Y. L., & Lee, M. H. In vitro hypoglycemic effect of different insoluble fibre– rich fractions prepared from the peel of citrus Sinensis L cv. Liucheng Journal of Agricultural Food Chemistry, 2003,51, 6623-6626.
    47. Chau, C. F., Wang, Y. T., & Wen, Y. L. Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chemistry,2007, 100, 1402-1408.
    48. Chinery, R., Goodlad, R. A &Wright, N. A. Soy Polysaccharride in an enteral dietary: effects on rat. Journal of Cereal Science. 2008,15, 151-163.
    49. Cho, S., Devries, J. W., & Prosky, L. Dietary fiber analysis and applications. Food Chemistry, 1997,27,1455-1459.
    50. Cummings, J. H., Englyst, H. N. Fermentation in the human large intestine and the available substrates.The American Journal of Clinic Nutrion, 1987,45,1243-1255.
    51. David, B. A., Gwendolyne, P. M., Yolanda, O., & Sonia, F. B. Physicochemical characterization of lima bean (Phaseolus lunatus) and jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry,2004, 84, 287-295
    52. Elleuch, M. Besbes, S., Roiseux, O., Blecker, C., Deroanne, C., Drira, N.E. Date flesh: Chemical composition and characteristics of the dietary fibre. Food &Machinery, 2008,111, 676–682
    53. Femenia, A., Lefebvre, C., Thebaudin, Y., Robertson, J., & Bourgeois, C. Physical and sensory properties of model foods supplemented with cauliflower fiber. Journal of food science, 1997,62,635-639.
    54. Gordon, D. T. Functional properties vs. physiological action of total dietary fibre. Cereal Foods World, 1989,34, 517–525.
    55. Gourgue, C. P., Champ, M. J., Lozano, Y., & Delort, J. Dietary fibre from mango byproducts: characterization and hypoglycemic effects determined by in vitro methods. Journal of Agricultural Food Chemistry, 1992,40, 1864-1868.
    56. Grigelmo-Miguel, N., & Martn-Belloso, O. Characterization of dietary fibre from orange juice extraction. Food Research International.1999, l31, 5, 355-361.
    57. Galliard. T., Blanshard. P. J., &.Galliard, T. (1992). Intestinal cell proliferation morphology and metabolic unction. Clinic Nutrition, 1992,11,5,277-283.
    58. Jimenez, A., & Eserig, B. Dietary fiber edible seaweeds: Chemical structure physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 2000,4,585-598
    59. Kuyumcu, H. Z., & Rolf L. Application of high-pressure waterjets for commminution. Miner. Process, 2004, 11,191-198.
    60. Kwade, M. Mill selection and process optimization using a physical grinding model. Miner process, 2004,7, 56-59.
    61. Liebl, B. H., Fischer, M. H., & Calcar, S. C. Dietary fiber and long-term large bowel response in enterally nourished nonambulatory profoundly retarded youth . JPEN.1990, 14 ,41-45.
    62. Noda, T. Chemical composition of cell wall material from sweet potato starch residue. Starch/st?rke. Food Chemistry,1994, 46, 232-236.
    63. Pérez-Navarrete, C. (2003). Elaboración y caracterización de complementos alimenticioscon alto contenido en fibra dietética de maracuyá(Passiflora edulis) (pp. 31-43), 2003.
    64. Tesi, D .L., & Universidad, A. Y. Properties of model foods supplemented with cauliflower fiber. Journal of Food Science, 1997, 62, 4,635-639.
    65. Raghavendra, S. N. Dietary fiber from coconut residue: effects of different treatments and particle size on the hydrationproperties. European Food Research and Technology, 2004,218, 563-567.
    66. Robertson, J. A., & Eastwood, M. A. An examination of factors which may affect the water holding capacity of dietary fibre. BritishJournal of Nutrition, 1981, 45, 83-88.
    67. Raghavendra, S. N., Ramachandra, S. R., & Swamya, N. K. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering,2006, 7, 93-101.
    68. Richard, E. A., & Leitz, D. J. Pasated balanced fiber composition. Minerals Engineering.1989, 4, 654-658.
    69. Shimura, S., Tsuzuki, W., Kobayashi, S., & Suzuki, T. Inhibitory effect on lipase activity of extracts from medicinal herbs. Bioscience Biotechnology Biochemistry, 1992,6, 1478-1479.
    70. Sowbhagya, H. B., Florencesuma, P. S., & Mahadevamma, R. N. Tharanathan spent residace ftom cumin– a potential source of dietary fiber. Food chemistry, 2007,104, 1220-1225.
    71. Spapen, H., Diltoer, M., & Malderen, C. Soluble fiber reduces the incidence of diarrhea in septic patients receiving total enteral nutrition: a prospective, double-blind, randomized, and controlled trial Clinic Nutrition, 2001, 20, 301 -305.
    72. Stenfan, G., & Jens, S. Plant concepts for ultrafine dry grinding with the agitated media mill MaxxMill. Minerals Engineering, 2007, 20, 327-333.
    73. Takamine, K., Abe, J., Iwaya, A., Maseda, S., & Hizukuri, S. A new manufacturing process for dietary fiber from sweetpotato residue and its physical characteristics. Japanese Society of Applied Glycoscience, 2000,47, 67-72.
    74. Takamine, k., Hotta, H., Degawa, Y., Morimura, S., & Kida, K. Effect of dietary fiber prepared from sweet potato pulp on cecal fermentation products and microflora in rats. Japanese Society of Applied Glycoscience, 2005, 52,1-5.
    75. Thebaudin, J. Y., Lefebvre, A. C., Harrington, M., & Bourgeois, C. M. Dietary fibres: Nutritional and technology interest. Trends in Food Science and Technology, 1997, 8, 52-57.
    76. Wang, S. J., Rose, C. M., & Barbera, C. B. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chemistry, 2002, 79, 221-226.
    77. Yoshimoto, M., Yamakawa1, O., & Tanoue, H. Potential Chemopreventive Properties and Varietal Difference of Dietary Fiber from Sweetpotato(Ipomoea batatas L.) Root. Japan Agricultural Research Quarterly, 2005, 39, 37-43.
    78. Zhou. G. Y., Shu. J., & Huang, Z. Y. Optimization of ultrasound -assisted extraction of flavonoidsfrom sesame leaves using responsesurface method. Food &Machinery, 2007, 23, 77- 81.
    79. Ubando, J., Navarro, A., & Valdivia, M. A. Mexican lime peel: Comparative study on contents of dietary fibre and associated antioxidant activity. Food Chemistry, 2005, 89, 57–61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700