用户名: 密码: 验证码:
湿地松优良家系高产的生理基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对天然林的减少,全球森林资源总量和质量下降的格局,世界各国均在迅速发展工业人工林。湿地松(Pinus elliottii)是我国从美国引进的一种速生纸浆原料树种,目前在我国亚热带和热带地区广为种植。利用田间试验和模拟试验方法,采用野外与室内仪器测定相结合的方法,以定量分析为主,综合运用林木遗传育种学、植物生理学、森林培育学、生态学、动态经济学、生物统计学、多元统计分析的方法,以实现工业人工林的集约经营和定向培育为目标,开展了湿地松优良家系高产的生理基础研究,为湿地松优良家系遗传改良和人工林高产栽培措施的调控提供理论依据。
     本项研究的主要结论如下:
     1、利用约束和无约束选择指数,根据纸浆材的要求,进行生长、形质和材性联合选择,选出了0-1027、0-464、Ⅱ-101、2-46、0-609、0-508、0-1077等7个最佳纸浆材家系。
     2、湿地松优良家系的抗旱性与其体内保护酶系统对活性氧有较强的清除能力相关。在水分胁迫条件下SOD、CAT、AsA、MDA、O_2~-产生速率在品种之间没有明显的规律性,但其产生具有同步性,一方面湿地松各家系在受到过氧化产物MDA和O_2~-的毒害的同时,另一方面所有家系的SOD、CAT、AsA活性被激活并得到加强,以维持其植株的正常生理活动。
     3、水分胁迫下湿地松优良家系具有较高的还原性糖和可溶性糖含量;在水分胁迫下家系464、1027的Chl、Chla、Chlb、Chla/Chlb、Caro值显著高于对照、高于家系的平均水平;在水分胁迫下,湿地松优良家系1027、464的光合特征值Pn、Cond、Tr、CE、Φ显著高于对照,优于其它家系。可用水分胁迫下湿地松针叶中的还原性糖、可溶性糖、总叶绿素含量和净光合速率值的大小作为湿地松优良家系选择的生理指标。
     4、湿地松优良家系在3~8月典型天气的Pn日变化模式为‘双峰’型,一年中其余各月即1、2、9、10、11、12月的Pn日变化模式为‘单峰’型;湿地松各家系1龄针叶、2龄针叶净光合速率的季节变异规律呈‘双峰’型;各家系1龄针叶、2龄针叶最大净光合速率的季节变异规律呈‘双峰’型,这种季节变异规律分别受表观量子效率和羧化效率较强控制。
     5、各家系1龄针叶的Pn值显著高于2龄针叶的Pn值,全天以傍晚时的Pn值为最低。且湿地松优良家系的Pn值与湿地松的生长量呈正相关;湿地松优良家系1龄针叶的Pn值明显低于其Amax值,仅为Amax的64.41%,各家系2龄针叶的Pn值明显低于其Amax值,仅为Amax的54.44%。
     6、湿地松优良家系1龄针叶、2龄针叶的表观量子效率、羧化效率、光饱和点、CO_2饱和点等光合特征参数均明显高于普通品种。湿地松优良家系家系2龄针叶光补偿点、1龄针叶、2龄针叶的CO_2补偿点要低于普通种,表明湿地松优良家系在弱光和低CO_2浓度条件下仍具有较强的光合能力,在较高光合有效辐射和CO_2浓度条件下也能继续进行光合同化,其光合效率高;适宜的水分和CO_2浓度,是湿地松优良家系高产的主要生境因子。可用湿地松表观量子效率和羧化效率的大小作为湿地松优良家系选择的生理指标。
Many countries of the world develop industry forest fast in face of decrease crude forest and fall the gross andquality of forest resource. Slash pine has been planted in tropic and semi-tropical region widely as a fastgrowing pulpwood which introduced from American. Research on physiological roles with high yield of slashpine's half-sib with method of field test and and simulate and utilization instrument mensuration in field andlaboratory.and integration mobilization genetic and breeding of forest and physiology of plant and silvicultureof forest and ecology and dynamic economics and biology statistic and multianalysis in order to realizeintensive management and directional cultivation to industry industry plantation. Quantitative analysis ismain.
     The result can provide theory and technology for genetic improvement adjusting and controlling high yieldcultivation measurement on choiceness families of slash pine's plantation.
     This result is concluded below:
     The 7 choiceness families such as 0-1027,0-464, II -101,2-46,0-609,0-508, 0-1077 of slash pine's pulpwood isselected by index of restriction and nonrestraint consider of growth and form and timber character.
     The drought resistance of Pinus elliottii well-bred genealogy Related thatprotective enzyme systemin have strong scavenging capacity to active oxygen. Under the conditions of waterstress in the SOD, It's no apparent regularity that between varieties on production rate of CAT ,AsA, MDA,and O2-, but have a synchronous. On the one hand , Pinus elliottii genealogy are poisoned by the MDA andO2- as all the families's SOD, CAT, AsA activity are activated and strengthened so that maintain their normalphysiological activities of the plant.
     Pinus elliottii well-bred genealogy content high sugar and the reduction of soluble sugar wetlands under waterstress; The Chl, Chla, Chlb, Chla / Chlb, Caro of familmly 464,1027 significantly higher than that thecontrol's and the average's under the water stress; The photosynthetic characteristics of Pn, Cond, Tr, CE,Φof family 1027,464significantly higher than that of control and the other family, in the conifer under waterstress as Pinus elliottii well-bred genealogy family-choice physiological indicators. We can use the reductionof sugar, soluble sugar, total chlorophyll content and net photosynthetic rate as the physiological index ofPinus elliottii well-bred genealogy selection.
     Pinus elliottii well-bred genealogy's Pn typical with weather patterns is changeed in the 'double' type in theMarch to August, the rest of the year that is January, February, September, October, November and Decemberthe Pn variation on the model is 'single '; each of the age of Pinus elliottii genealogy of one-year old coniferand two-year old conifer changed in Season is 'double' type. The net photosynthesis rate of one-year oldconifer and two-year old conifer changed in Season is 'double' type too. The seasonal variation of the rules wasControled by superfacial quantum efficiency and carboxylation efficiency.
     The Pn of genealogy one-year old conifer is notably higher than that of two-year old ones,and the pn of the dask is the lowest in day. The pn of Pinus elliottii well-bred genealogy has a direct relation with its growth. The pn of one-year old conifer of Pinus elliottii well-bred genealogy distinctively lower than its Amax,and only account for 64.41% of amax. The Pn of two-year old conifer of Slash pine genealogy distinctively lower than its Amax, and only account for54.44%.
     The photosynthesis parameter of one and two-year old conifer of Pinus elliottii well-bred genealogy,such as superfacial quanta efficiency, carboxylic efficiency, light saturation point,co2 saturation point and so on,are obviously higher than common genus. In Pinus elliottii well-bred genealogy,the light compensate point of two-year old conifer, co2 compensate point of one and two-year old conifer, are lower than that of common genus.it indicates that Pinus elliottii well-bred genealogy has a much better photosynthesis ability even when it is in the condition of weak light and low co2 concentration, it also can get high photosynthesis assimilation when it is in the condition of strong light and high co2 concentration. Feasible moisture and co2 concentration are the main living genes of high yield Slash pine well-bred genealogy. We can use superfacial quanta efficiency and carboxylic efficiency as the physiological index of Pinus elliottii well-bred genealogy selection.
引文
[1] 艾克拜尔,伊垃洪,周抑强,华天懋.土壤水分对不同品种棉花叶绿素含量及光合速率的影响[J].中国棉花,2000,(2):56~60
    [2] 白仲奎等.板栗幼树光合特性研究[J].河北果树,1994,(3):23~25.
    [3] 曹福亮.南方型杨树栽培原理与实践[M].哈尔滨:东北林业大学出版社,1999:56~67
    [4] 曹福亮.中国银杏[M].南京:江苏科技出版社,2003:78~83
    [5] 曹福亮.银杏培育机理及综合开发利用[M].北京:中国林业出版社,2000:34~45
    [6] 陈瑗生,盛志谦.通用选择指数原理[J].遗传学报,1998,15:185~190
    [7] 陈洪等.杉木幼林若干光合特性的研究[J].福建林业科技,1995,22(3):69~72
    [8] 陈炳浩.森林资源保护与农业可持续发展[M].北京:北京出版社,2001,46~61
    [9] 陈楚莹.杉木人工林生态学[M].北京:科学出版社,2000,65~82
    [10] 陈鉴朝等.广东湛江热带松南亚松湿地松和短叶松材性的初步研究[J].木材工业,1988,2(2):34~37
    [11] 陈立松,刘星辉.水分胁迫对荔枝叶片糖代谢的影响及其与抗旱性的关系[J].热带作物学报,1999,20(2):31~36
    [12] 陈天华.马尾松生长气候区域与育种区划分的探讨[J].北京:学术书刊出版社1990.90~112
    [13] 陈志辉,张良诚,吴光林等.水分胁迫对柑桔光合作用的影响[J].浙江农业大学学报,1992,19(2):60~66
    [14] 陈阳,曾福礼.水分脸迫下黄瓜叶片光系统Ⅱ电子传递及其含铁组分变化[J].中国农业大学学报,2001,1:38~42
    [15] 陈美高等.高海拔山区湿地松人工林生长及其经营密度[J].福建林学院学报,1998,4:14~19
    [26] 程来亮,罗新书.短期土壤干旱对苹果叶片光合速率日变化的影响[J].果树科学,1990,7(4):193~200.
    [27] 陈志辉,张良诚.柑桔光合作用对环境温度的适应[J].浙江农业大学学报,1994,20(4):389~392.
    [28] 柴成林,李绍华.水分胁迫期间及胁迫解除后桃树叶片中的碳水化合物代谢[J].植物生理学通讯,2001,6:34~37
    [19] 丁贵杰,周政贤.马尾松不同造林密度和不同利用方式经济效果分析[J].南京林业大大学学报,1996(20):2~7
    [20] 丁强,瞿建森,胡俊.壮龄湿地松叶束育苗造林试验初报[J].林业科技通讯,2001,14(3):20~22
    [21] 董建文,涂育合.湿地松纸浆采脂两用林适宜经营密度及培育模式[J].浙江林学院学报,1999,3:32~36
    [22] 董晓颖、李培环等.水分胁迫对不同生长类型桃叶片水分利用效率和羧化效率的影响[J].灌溉排水学报,2005,24:67~69
    [23] 方升佐.人工林长期立地生产力研究的现状和前景[J].世界林业研究,1999,12(3):18~23
    [24] 裴保华等.I-69杨和毛白杨光合性能的研究[J].林业科学,1992,28(4):297~301
    [25] 甘月红,何纪星等.马尾松光合生态特性的初步研究[J].贵州农学院丛刊,1991,18:76~79
    [26] 高俊凤.植物生理学实验技术[M].世界出版社,1999.
    [27] 葛滢,常杰,陈增鸿.青冈净光合作用与环境因子的关系[J].生态学报,1995,19(5):683~688
    [28] 郭继善等.利用~(14)CO_2研究杉木的光合特性[J].南京林业大学学,1992,16(4):86~89
    [29] 郭志华,张宏达.银杏(Ginkgo biloba)光合特性的研究[J].生态科学,1997,16(1):30~33
    [30] 郭志华等.鹅掌揪苗期光合生态特性的研究[J].生态学报,1999,19(2):164~169
    [31] 郭连生等.不同地理种源的挪威云杉的气体交换特性研究[J].内蒙古林学院学报,1987(1):7~14
    [32] 龚伟,宫渊波等.湿地松幼树冠层光合作用日变化及其影响因素[J].浙江林学院学报2006.23(1):29~34
    [33] 韩蕊莲,李丽霞,梁宗锁,薛智德,杜正科.干旱胁迫下沙棘膜脂过氧化保护体系研究[J].西北林学院学报,2002,17(4):1~5
    [34] 冯建灿.喜树光合速率日变化及其影响因子的研究[J].林业科学.2002,38(4):34~39
    [35] 冯玉龙,张亚杰,朱春全.根系渗透胁迫时杨树光合作用光抑制与活性氧的关系[J].应用生态学报,2003,14(8):1213~1217
    [36] 何纪星.赵执夫.几种松树光合蒸腾的比较研究[J].林业科技通讯,1991,(5):9~13
    [37] 黄启民.杨迪蝶等.毛竹光合作用的研究[J].林业科学,1989,25(4):366~369
    [38] 侯学煜著.中国植被地理及优势植物化学成分[M].北京:科学出版社,1981,123~167
    [39] 胡景江,顾振瑜,文建雷等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报,1999,14(2):7~11.
    [40] 胡新生,刘建伟,王世绩.四个杨树无性系在不同温度和相对湿度条件下净光合速率的比较研究[J].林业科学,1997,32(2):107~116
    [41] 霍仕平,晏庆九,宋光英等.玉米抗旱鉴定的形态和生理生化指标研究进展[J].干早地区农业研究,1995,13(3):67~73
    [42] 吉艳芝,陈立新,冯万忠.施肥对落叶松人工林的生长量和光合特性的影响[J].河北农业大学学报,2004,27(3):45~48
    [43] 蒋高明等.当前植物生理生态学研究的几个热点问题[J].植物生态学报,2001,25(5):514~19
    [44] 蒋明义,杨文英.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,4:14~18
    [45] 姜景民,虞木奎等.湿地松火炬松工业用材林间伐制度研究[J].林业科学研究,2000,13(2):167~176
    [46] 姜征.世界人工林木材开发利用研究现状及发展[J].木材工业,1990(4):57~61
    [47] 柯世省,陈模舜.紫荆光合日变化及其与环境因子的关系[J].天津师范大学学报(自然科学版),2004,24(3):30~33
    [48] 柯世省,金则新,陈贤田.浙江天台山七子花等6种阔叶树光合生态特性[J].植物生态学报,2002,26(3):363~371
    [49] 蓝斌.马尾松幼龄人工林竞争与生长的研究[J].福建林学院学报,1995,15(1):32~36
    [50] 雷裼禄主编.中国速生丰产林建设的发展战略与对策[M].北京:中国林业出版社,1992,45~58
    [51] 冷石林,韩仕峰.中国北方旱地作物节水增产理论与技术[M].北京:中国农业科技出版社,1996
    [52] 李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503~507
    [53] 李妮亚,曹翠玲,高俊凤.干旱对小麦幼苗诱导蛋白表达与某些生理特性的初步探讨[J].西北植物学报,1997,17(2):210~216
    [54] 李妮亚,高俊凤,汪沛洪.小麦幼芽水分胁迫诱导的蛋白质的特征[J].植物生理学报,1998,24(1):65~71
    [55] 李忠正等.国内外制浆造纸工业现状和发展趋势[J].北方造纸,1995,(2):21~24
    [56] 李周.国内外发展速生丰产林的比较研究[J].林业经济,1992,(2):38~41
    [57] 李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003
    [58] 李延,刘星辉,庄卫民.植物Mg素生理的研究进展[J].福建农业大学学报,2000,29(1):74~80.
    [59] 李建华,罗国光.巨峰葡萄叶片生长动态与光合特性的研究[J].园艺学报,1996,23(3):213~217.
    [60] 廖镜思,刘殊,陈清思等.龙眼光合特性及其影响因子的研究[J].园艺学报,1996,23(1):1~7.
    [61] 路丙社,白志英,董源等.阿月浑子光合特性及其影响因子的研究[J].园艺学报,1999,26(5):287~290.
    [62] 罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126~130
    [63] 刘殊,廖镜思,陈清西等.龙眼光合作用对环境温度的响应[J].福建农业大学学报,1997,26(4):407~410.
    [64] 来端.火炬松、湿地松和马尾松扦插育苗技术[J].福建林学院学报,2001,13(3):34~38
    [65] 刘欲晓.不同造林技术措施对湿地松幼林生长影响的研究[J].湖南林业科技,1999,3:33~37
    [66] 蹇洪英,邹寿青.棉花叶子的光合特性研究[J].广西植物,2003,23(2):181~184
    [67] 刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对小麦光合的限制[J].植物生理通讯,1990,(4):24~27
    [68] 刘宇锋,萧浪涛,童建华,李晓波.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,2005,21(8):76~79
    [69] 刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集)[C].北京:北京农业出版社,1993:168~183.
    [70] 刘友良著.植究[J].林业科技通讯,1995,(8):8~12
    [73] 卢俊培.海南岛尖峰岭热带林凋落叶分解过程的研物水分逆境生理[M],农业出版社,1992,56~61
    [71] 刘光正,蒋小林.江西低丘红壤岗地国外松初植密度研究[J].江西林业科技,1999,2:26~30
    [72] 龙应忠,任炎华.湖南省湿地松火炬松丰产栽培技术的研究[J].林业科学研究,1989,2(1):24~32
    [74] 卢从明,高煜珠,张其德.水分胁迫对叶绿体能量转换的影响[J].植物学报,1993,35:639~697
    [75] 卢从明,张其德,匡延云.水分胁迫对光合作用影响的研究进展[J].植物学通报,1994,11(1):9~11
    [76] 卢从明,张其德,匡延云.水分胁迫对小麦光合系统的影响[J].植物学报,1994,36(1):93~98
    [77] 林启龙,火炬松、湿地松和马尾松生长特点分析[J].福建林学院学报,2002,2:37~40
    [78] 廖瑜,熊建华.湿地松,火炬松生长对比试验研究[J].南昌水专学报,2000,1:35~38
    [79] 林能庆,滕华卿.湿地松加勒比松杂交种造林试验初报[J].林业勘察设计,2002,2:23~27
    [80] 鲁小珍.马尾松、栓皮栎生长盛期树干液流的研究[J].安徽农业大学学报,2001,28(4):401~404
    [81] 鲁剑巍,陈防,王运华等.氮磷钾肥对红壤地区幼龄柑橘生长发育和果实产量及品质的影响[J].植物营养与肥料学报,2004,10(4):413~418
    [82] 栾以玲,叶镜中.城市近郊火炬松林重金属元素的分布及季节变化[J].南京林业大学学报(自然科学版),2002,26(6):37~40
    [83] 陆佩玲等.冬小麦光合作用的光合响应曲线拟合[J].中国农业气象,2001,22(2):12~14
    [84] 吕家驹.火炬松苗期截根试验[J].林业科技开发,1993,(1):6~7
    [85] 吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化与脱酯化[J].中国科学C辑,1996,1:28~30
    [86] 罗花建、刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126~130
    [87] 罗汝英著.森林土壤学(问题与方法)[M].北京:科学出版社,1983,32~56
    [88] 蔺殿龙,周孝明.火炬松水土保持林综合效益试验研究[J].中国水土保持,1991,(1):22~25
    [89] 马钦彦.一块油松林夏日的净光合速率[J].北京林学院学报,1984,(1):40~47
    [90] 牟云官,李宪立.几种落叶果树光合特性的探索[J].园艺学报,1986,13(3):157~162.
    [91] 孟庆伟.银杏光合特性的研究[J].林业科学,1992,,31(1)32~35
    [92] 潘辉,朱伟.福建省火炬松生长与环境因子的典型相关分析[J].植物资源与环境学报,2001,10(1):35~37
    [93] 潘文,谭崇德.湿地松人工林间伐效应分析[J].广东林业科技,1998,1:20~23
    [94] 鲍甫成.世界木材科学研究现状与我国的发展战略[J],世界林业研究,1992,4:63~66
    [95] 沈波,李云萌.渗透胁迫和脱落酸对冬小麦叶片蛋白质的影响[J].作物学报,1996,22(3):288~294
    [96] 沈永宝,高捍东,IDX法快速测定火炬松种子生活力的研究[J].林业科学研究.1997,10(6):651~654
    [97] 沈允钢,施教耐,许大全著.动态光合作用[M].科学出版社,1998:14~15
    [98] 孙国荣,彭永臻,阎秀峰.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响[J].林业科学,2003,39(1):165~167
    [99] 谭芳林,薛建辉,张水松等.不同混交模式防护林中湿地松的光合特性[J].南京林业大学学报(自然科学版),2003,27(4):35~38
    [100] 唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.304~311.
    [110] 童方平.湿地松火炬松纸浆建筑材林定向集约经营经济分析[J].湖南林业科技,2002,1:31~33
    [111] 涂育合,董建文.闽中山地湿地松不同立地条件和不同密度的经营效果研究[J].福建林业科技,2002,4(3):18~21
    [112] 汤景明.湖北湿地松纸浆林的定向培育技术[J].林业科技开发[J],2001,1:6~9
    [113] 汤景明,江光宏.湿地松纸浆林密度试验初报[J].湖北林业科技,2000,4:21~24
    [114] 谭方河,李茂根.四川松树截根菌根化育苗造林效应[J].四川林业科技,2001,1:3~6
    [115] 唐代生,成子纯.我国湿地松人工林种植范围的立地气候分区研究[J].中南林学院学 报,1998,3:26~31
    [116] 王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(6):55~57
    [117] 王爱民,祖元刚.白桦不同方向功能叶片对微环境因子的光合响应[J].沈阳农业大学学报,2004,35(3):220~222
    [118] 王邦锡,何军贤,黄久常.水分胁迫导致小麦叶片光合作用下降的非气孔因素[J].植物生理学报,1992,18(1):77~79
    [119] 王迪生.华北落叶松人工林密度最优控制的研究[J].北京林业大学学报,1995,17(2):47~50
    [120] 王恩玲.我国速生丰产用材林建设现状与对策[J].中华纸业,2000,9:12~15
    [121] 王淼.高CO_2浓度对温带三种针叶树光合光响应特性的影响[J]应用生态学报,2002,13(6):646~650
    [122] 王文章.落叶松光合特性与初级生产力[J].东北林业大学学报,1994,22(4):15~21
    [123] 王孟本,冯彩平,李洪建.树种保护酶活性与PV曲线水分参数变化的关系[J].生态学报,2000,20(1):173~176
    [124] 王青春,李冬.江西省丘陵区湿地松多效益经营模式适宜经营密度的研究[J].应用生态学报,2001,5:58~62
    [125] 文晓鹏,罗充,樊卫国等.板栗光合生理的研究Ⅱ.板栗的光合特性[J].贵州农学院学报,1995,14(1):43~49.
    [126] 文晓鹏,罗充,樊卫国等.板栗光合生理的研究Ⅰ.板栗叶片结构与光合速率[J].贵州农学院学报,1995,14(3):49~52.
    [127] 魏良民.几种旱生植物碳水化合物和蛋白质变化的研究[J].干旱区研究,1991,8(4):38~41
    [128] 魏柏松,江香梅,林卫红,唐仕斌,谢小将,闵顺宝.湿地松纸浆材林造林密度试验研究[J].江西林业科技,2001,1:32~34
    [129] 魏书銮,于继洲,宣有林等.核桃叶片的叶绿素含量与光合速率关系的研究[J].北京农业科学,1994,12(5):31~33.
    [130] 肖文发.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38~46
    [131] 肖文发,徐德应.森林能量利用与产量形成的生理生态基础[J].中国林业出版社,1999
    [132] 谢寅峰,沈惠娟 水分胁迫下抗旱剂对南方6种林木幼苗光合作用的影响.林业科技开发,2001,15:(6):14~15
    [133] 许大全.光系统Ⅱ反应中心的失活及其生理意义[J].植物生理学通讯,1999,4:21~23
    [134] 许大全.叶片表观光合量子效率的测定[M].中科院植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999.89~91
    [135] 许业洲,全龙.湖北省湿地松人工林整体生长模型的研究[J].湖北林业科技,2001,3:11~14
    [136] 徐恒平,汪沛洪.土壤干旱对小麦根系蛋白组分变化的影响[J].西北农业学报,1992,1:33~36
    [137] 徐世昌、戴俊英等.水分胁迫对玉米光合性能及产量的影响[J].作物学报,1995,21(3):356~363
    [138] 徐有明.湿地松短周期纸浆林集约栽培技术[J].浙江林学院学报,1998,15(2):57~61
    [139] 徐有明,沈明璋,文家友,赵德华,黄体学.湿地松纸浆材材性变异的研究[J].华中农业大学学 报,1999,12(2):32~35
    [140] 徐有明,林汉,李贻铨,洪院生,华乔贵.施肥对湿地松幼林生长和木材物理力学性质的影响[J].林业科学,2002,20(4):82~85
    [141] 徐六一,虞沐奎.湿地松人工林间伐效应的研究[J].安徽农业大学学报,2001,4:47~50
    [142] 徐迎春,陈尚武.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J].果树科学,2001,1:47~51
    [143] 谢建国,李嘉瑞,赵江.猕猴桃若干光合特性研究[J].北方园艺,1999,2:26~28.
    [144] 项文化,田大伦.不同密度中幼龄湿地松人工林生长过程的经济效益分析[J].中南林学院学报,1998,3:61~65
    [145] 熊嘉武,周晓灵.中亚热带丘陵立地气候区湿地松人工林地位指数表的编制研究[J].林业科技通讯,2001,8:30~33
    [146] 阎秀峰,李晶),祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,1999,19(6):850~854
    [147] 杨方云,魏朝富,刘英.干旱胁迫下甜橙叶片保护酶体系的变化研究[J].植物营养与肥料学报,2006,12(1):119~124
    [148] 杨承栋,夏良放.江西省大岗山湿地松林土壤性质的变化[J].林业科学研究,1999,4:32~37
    [149] 杨章旗,梁杏清.湿地松人工幼林施肥效应研究[J].福建林学院学报,2000,1:56~60
    [150] 喻方圆,徐锡增,Robert D.Guy.水分和热胁迫对苗木针叶可溶性糖含量的影响[J].南京林业大学学报,2004,28(5):1~5
    [151] 杨万镒.梨不同种和品种的光合速率比较研究[J].中国果树,1991,(4):8~10
    [152] 杨建民,王中英.水分胁迫对新红星苹果幼树光合作用的影响[J].河北林学院学报,1993,8
    [153] 杨建民,张国良,张林平等.李幼树光合特性的研究[J].园艺学报,1997,24(4):381~382.(2):103~106.
    [154] 尹伟伦.不同种杨树苗木和光合性能的比较研究[J].北京林学院学报,1983(1):40~47
    [155] 于同泉,柴丽娜,刘宗萍.水分胁迫下小麦幼苗可溶性蛋白质的表现与小麦抗旱蛋白之初探[J].北京农学院学报,1995,10(1):26~30
    [156] 岳春雷,高智慧,陈顺伟.湿地松等3种树种的光合特性及其与环境因子的关系[J].浙江林学院学报,2002,19:18~22
    [157] 茹正忠,冯水.湿地松林分间伐对材种结构的影响研究[J].广东林业科技,2002,1:14~17
    [158] 俞新妥,傅瑞树.不同种源杉木光合性状的比较研究[J].福建林学院学报,1989,3:21~24
    [159] 俞新妥.不同种源杉木光合特性的比较研究[J].福建林学院学报,1989,9(3):223~227
    [160] 曾小平,赵平,彭少麟等.3种松树的生理生态学特性研究[J].应用生态学报,1999,10(3):275~278
    [161] 张莉、续九如.水分胁迫下刺槐不同无性系生理生化反应的研究[J].林业科学,2003,39(4):162~167
    [162] 张兴源,林分最佳间伐量与间伐期的确定[J].林业资源管理,1987,(1):18~22
    [163] 张小全.温度对杉木中龄林针叶光合生理生态的影响[J].林业科学,2002,38(3):27~33
    [164] 张小全,徐德应.杉木中龄林不同部分和叶龄针叶光合特性的季节变化[J].林业科学,2000,36 (3):258~262
    [165] 张永强,毛学森,孙宏勇,李文杰,于沪宁.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报,2002,10(4):13~15.
    [166] 张耀丽,徐永吉.湿地松种植密度对纸浆材主要化学成分的影响[J].[J].南京林业大学学报(自然科学版),2002,16(6):56~60
    [167] 张贵,陈彩虹.湿地松纸浆材原料林模式林分生长过程表的编制[J].中南林业调查规划,1999,2:28~33
    [168] 张连水,查印水.湿地松林分土壤变化研究[J].华东森林经理,2001,1:38~41
    [169] 张国良,王文风,杨建民等.骆驼黄杏幼树的光合特性[J].果树科学,1999,16(3):224~226.
    [170] 朱林,温秀云,李文武.中国野生种毛葡萄光合特性的研究[J].园艺学报,1994,21(1):31~34.
    [171] 周志翔,徐永荣.不同密度湿地松纸浆原料试验林早期冠幅生长模型研究[J].华中农业大学学报,1999,3:31~35
    [172] 钟世平,湿地松飞播造林试验及技术探讨[J].江西林业科技,1999,1:23~26
    [173] 郑郁善,董建文.湿地松优化立木材积表的编制[J].江西农业大学学报,1999,4:39~42
    [174] 周家容等.硼钙营养对柠檬幼苗光合生理及根系活力的影响[J].西南农业大学学报,1998,20(4):315~320
    [175] 周莉娜,曲东,邵丽丽,易维洁.干旱胁迫下硫营养对小麦光合色素及MDA含量的影响[J].西北植物学报,2005,25(8):1579~1583
    [176] 周佑勋.湿地松和火炬松苗期矿质元素含量的研究[J].中南林学院学报,1986,6(1):60~70
    [177] Alleweldt G,Eibach, RandRuhl E. Investigations on gas exchange in grapevine I. Influence of temperature, leaf age and time of day on net photosynthesis and transpiration[J].Horticultural Abstracts,1983, 53(4): 205~208
    [178] AbrahamsOn. Warren G Species response to fire OD the Florida Lake Wales Ridge[J].American Journal of Botany,1984: 71(1): 35~43
    [179] Barnett J P, Dunlap J R. Sorting loblolly pine orchard seeds by size for containefized seedling production[J]. South. J. Appl. For., 1982, 6(2): 112~115
    [180] Barnett J P, Mclemore B F.Germination speed as a prediction of nursery seedling performance[J]. South. J..Appl. For., 1984,8(3): 157~162
    [181] Barnett J P.Seedcultural practices and seedling uniformity[J]. Forestry,1989,62: 95-105
    [182] Benecke U. Photosynthesis and transpiration of Pinus radiata under natural conditions in a forest stand[J]. Oecologia, 1980,44: 192~198
    [183] Blevins R L, et all Influence of no-tillage on soil moisture[J]. Agron..,1971,41: 796~807
    [184] Benecke. Photosynthesis and transpiration of Pinus radiata under natural conditions in a forest stand[J]. Oecologia, 1980, 44, 192~198
    [185] B. Saugier. Plant growth and its limitation in crops and natural communities. In H. A. Mooney and M. Godron, eds. Comparative structural and Functional characteristics of Natural versus Human-modified ecosystems[J]. ecological studies, 1983,44:159-174
    [186]Ceulemans, R., and Impens,I. Net CO_2 exchange rate and shoot growth of young poplar (Poplus) Clones[J]. Exp. Bot., 1983,34:866-870
    [187]Cotterill P P, Jackson N.On index selection I. Methods of determining economi cweight[J]. Silvae Gentica,1985,34:56-63
    [188]Carter, M. C, Net photosynthesis in trees. In"Net Carbon Dioxide Assimilation in Higher Plants" (C. Black, ed) [M]. Plant physiol., Atlanta, Georgia,1972:55-74
    [189]Damiano R ,Rossano M. 2003. Comparison of water status indicators for young peach trees[J]. I rriga Sci ,22 :39-46
    [190]Dhindsa A S , Mutoue W. Drought tolerance in two mosses : Correlated with enzymatic defense against lipid peroxidation[J].Exp. Bot,1981(32):79-991
    [191]Daeki, T And Nomoto, N. On the seasonal change of photosynthetic activity of some deciduous and evergreen broad-leave trees[J], Bot. May, 1958,71:235—241
    [192]Dariusz Swietlik, Korcak RF, Miklos Faust.Physiological and nutritivc effects of K2pretreatment and KC1 sprays on water stressed and unstressed apple seedlings[J]. Amer. Soc. Hort.Sci., 1982,107(4):669— 672.
    [228]Dunlap J R. Barnett J P Influence of seed size on germination and early development of loblolly pine getminants[J]. Can. J. For. Res.. 1983, 13(1): 40—44
    [193]DurandLZ, GoldsteinG.Photosynthesis, photoinhibition, andnitrogenuseefficiencyinnativeandinvasivetre efernsin Hawaii[J].Oecologia,2001,126(3):345—354.
    [194]Egert M ,Tevini M. 2002. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Alli um schoenoprasum)[J]. Envi ron Exp Bot ,48 :43—49
    [195]ESCALONA J M ,F L EXAS J ,MEDRANO H. Stomatal and non-stomatal limitations of photosynthesis under water stress in field grown grapewines[J]. Australion Journal of plant physiology,1999,26(5):421 -433.
    [196]Fry, D. J and Phillips, I. D. J. Photosynthesis of conifers in relation to annual growth cycles. II. Seasonal photosynthetic capacity and mesophyll untrastructure in Abies grandis, Piece sitchensis, Tsuga heterophylla and Lairx leptolepis growing in S. W England[J]. Physiol. Plant. 1977,40:300—306
    [197]Farquhar GD., Sharkey T. D. Stomatal conductance and photosynthesis[J].Rev,plant physiol, 1982,33: 317-345
    [198]FENG Yulong, ZHANG Yajie, ZHU Chunquan. Relationship between photo-inhibition of photosynthesis and reactive oxygen species in leaves of poplars suffering root osmotic stress[J]. Chinese Journal of Applied Ecology, 2003, 14(8):1213-1217
    [199]Fife D. N. Nambiar. E. K. S. Movement of nutrient in Radiata pine needles in relation the growth of shool[J].Annual ofBotany,1984, 54: 303—314
    [200]Fernandez RJ , Reynolds J F. Potential growth and drought tolerance of eight desert grasses Lack of water[J]. Oecologia ,2000,123 :90—98
    [201]Fernandez RJ , Wang M , Reynolds J F. Do morphological changes mediate plant responses to water stress A steady2state experiment with two C4 grasses[J]. New Phytol ,2002,155 :79—88
    [202]Fornca MGC , Thi ATP, Pimentel C,et al. Differences in growth and water relations among Phaseol us v ulgaris cultivars in response to induced drought stress[J]. Environ Exp Bot ,2002,43 : 227 - 237
    [203]Fridovich I. The biology of oxygen radicals[J]. Science, 1978,201:875—880
    [204]Gaudillere J. E. Mousseau M. Short term effect of C02 enrichment on leaf development and gas exchange of young poplars[J]. Plant, 1989, 10: 95—105
    [205]Gholg H J. Fisher RE Nutrienet dynamics in, Slash pine plantation [J].Ecosystems Ecology, 1985, 66 (3): 647-659
    [206]Gaudillere and M. Mousseau. Short term effect of CO_2 enrichment on leaf development and gas exchange of young poplars[J]. Oecol. Plant, 1989,10: 95—105
    [207] Grieu, J.M. Guehl and G. Aussenae. The effects of soil and atmospheric drought on photosynthesis and stomata control of gas exchange in three coniferous species[J]. Physiol Plant, 1988,73:97—104
    [208]Ghosh R C, Singh B, Sharma K K. Effect of seed grading by size on germination and growth of pine seedling[J].Indian For., 1976, 102: 850-858
    [209]Granier A, Anfodillo t Sabatti M et al Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis[J]. Tree Physiology. 1994,14(12): 1383—1396
    [210]Grieu R, guehl J. M., Aussenae G The effects of soil and atmospheric drought on photosynthesis and stomata control of gas exchange in three coniferous species[J]. physiol Plant, 1988, 73: 97—104
    [211]Gmmbine R E. What is ecosystem management[J]. Conservation Biology, 1994, 8(1): 27—38
    [212]Griannop litis C N and R ies S K. Superoxide diasmutase I. Occurrence in h igher plants[J]. Plant Physiol,. 1977, 59:30-33
    [213]G. D. Farquhar and T D. Sharkey. Stomatal conductance and photosynthesis[J]. Plant Physiol, 1982, 33:317-345
    [214]HARR ISON R D, DAN IELL JW, CHESH IRE J R. Net photosynthesis and conductance of peach seedings and cutting in responses to changes in soilw ater potential [J]. Amer Soc Hort Sci,1989,114: 986— 990
    [215]Hipkins M.F. Photosynthesis In: Advanced plant physiology[M]. Pitman publishing,1984,87—92
    [216]Herrick J.D. Effects of CO_2 enrichment on the photosynthetic light response of sun and shade of canopy sweetgum trees. In a forest ecosystem[J]. Tree Physiology,1999,19:779—786
    [217]Helms, J. A. Apparent photosynthesis of Douglas-fir in relation to silviculture treatment[J]. For. Sci., 1964,10:432-442
    [218]H. Lambets. Does variation in photosynthetic rate explain variation in grwoth rate and yield?[J]. Neth. J.Agric Sci. , 1987, 35:505-519
    [219]Idso SB ,KimballBA. Effects of atmospheric CO_2 enrichment on photosynthesis and growth of sour orange trees[J].Plant Physiol,1992,99(1):341-343.
    [220]J. M. Hand, E. Youn& and A. C. Vasconcelos. Leaf water potential, stomatal resistance, and photosynthetic response to water stress in peach seedlings[J]. Plant physiol, 1982, 69:1051 — 1054
    [221]Jiang Y,Huang B. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation[J]. Crop Sci ,41:436—442
    [222]Jones O R , Hanser V L. No-tillage effects on infiltration,runoff and water conservation on dryland[J].American Society of Agriculture Engineers, 1994,37(2):473—479
    [223]Koxlowski T T, Kramer P J, Pallardy S G. The physiological ecology of woody plants[M].NewYork:AcademicPress,1991,275—279
    [224]Laing, W. A. Temperature and light response curves for photosynthesis in kiwifruit [J].New Zealand journal of agricultural research,1985,28:117—124.
    [225]Li B., Mckeand S. Tree improvement and sustainable foresmy-impact of two cycles of loblolly pine breeding in the U. S. A[J]. Forest Genetics, 1999,6(4): 229—234
    [226]Lim M. T. Cousens J. E The internal tranfer of nutrients in a Scol pine stand biomass components currentgrowhandtheirrnutrientcontent[J]. Forestry, 1986, 50(1):13-16
    [227]Lima ALS ,Da Matta FM ,Pinheiro HA, et al. 2002. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions[J]. Environ Exp Bot ,47(3):239—247
    [228]Ledig F.T and Peny, T O. Variation in photosynthesis and respiration among loblolly pine progenies[J]. South Conf. For. Tree. Improve, 1967:120- 128
    [229]Ledig. FT Physiological genetics, photosynthesis and growth models. In "Tree physiology and Yeld Improvement" (M. G. R. Cannell and FT Last, eds.)[M]. Academic press, London, 1976: 21-54.
    [230]Lis SWL , Pezeshki SR , Goodwin S. 2004. Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latif olia)[J] .Acta Oecol ,2001,25:17-22
    [231]L.J. Samuelson Effects of nitrogen on leaf physiology and growth of different of loblolly and slash pine[J].New Forest,2000,19:95-107
    [232]Lopez Upton J., White T. L. Species differences in early growth and rust incidence of lobiolly and slash pine[J]. Forest ecology and management, 2000, 132: 211—222
    [233]Lopez Upton J., White T. L. Taxon and family differences in survival, cold hardiness early growth and rust incidence of loblolly pine, slash pine and some pine hybrids[J]. Silvae genetica, 1999, 48(6): 303-313
    [234]Lopez Upton J., White T. L. Effects of site and intensive culture on family differences in early growth and rust incidence of loblolly and slash pine[J]. Silvae genetiea, 1999, 48(6): 284—293
    [235]Madgwick H A. Nitrogen concentration in foliage of Pinus radiata as affected by nitrogen nutrition, thinning, needle age, and position in crown New Yeal [J]. For. Sci., 1983, 13(2): 197—204
    [236]A.J.S. McDonald. Phenotypic variation in growth rate as affected by. N-Supply: Its effect on NAR, LWR and SLA, in II. Lambers, M. L. Cambrige, H. Konings, and T L. Pons, eds., Cases and consequences of variation in growth Rate and productivity of Higher plants, SPB Academic Publishing B.V The Hague[J]. The Netherlands, 1987: 35-44
    [237]Woodmorn, J. N. Variation of net photosynthesis within the crown of a large forest-grown conifer[J]. Photosynthetica,1971,5:50—54
    [238]Media BV. Regulation of gene expression during water deficit stress[J]. Plant Grow Regul, 1999.29 :23-33
    [239]Mccord JM , Fridovich J.Superoxide dismutase :An enzymic function for erythrocuprein (Herrxrcaprein)[J].Biol Chem , 1969,224 :6049-6055
    [240]Mehne Jakobs B. Seasonal development of the photosynthetic perrormance of Norway spruce under magne sium deficiency[J].Plant and Soil,1995,5:168—169.
    [241]Nowak LT., Berisford C. W. Effects of intensive management loblolly pine growth and insect infestation. Proceedings of the Society of American Foresters National Convention, 1998,48:411—413
    [242]N. U. Nelson. Woody plants are not inherently low in photosynthetic capacity[J]. Photosynthetica, 1984,18: 600-605
    [243]OquistGStressandadaptioninphotosynthesis.In:DouglasH,MoanJ(eds),Lightinbiologyandmedicine,Vol I [M].NewYork:PlenumPress,1988, 3:430-433.
    [244]O. Luukkanen and T.T. Kozlowski., Gas exchange in six populus clones[J]. Silvae Genedca. 1972,21: 22-29
    [245]Pauk K P, Thompson J E. Invitro simulation of senescence2related membrane damage by ozone2induced lipid peroxidation [J].Nature ,1980,28(3):504—5061
    [246]Pearcy , R . w . Sjorkmin M . M . Strain . Carbon gain by plant in natural environments[J]. Bioscience. 1987. 37: 21—29
    [247]Peet MM, HuberSC, PattersonDT. Acclimation to high CO_2in monoecious cucumber II. Carbon exchange rate, enzyme activity and starch and nutrient concentrations[J].Plant Physiol, 1986,80(1):63—67.
    [248]Rao A H,Karunasree B,Reddy A R. Water stress2responsive 23 kDa polypeptide from rice seedling is boiling stable and is related to the RAB16 family of protein[J].Plant Physiol,1993,142:88—93
    [249]Richardson A. D. Berlyn G. Spectral reflectance and photosynthetic properties of Betula Pabyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont,USA[J]. American Journal Botany,2002,89(1):88-94
    [250]Ritchie G A, Dunlap J R. Root growth potential: its development and expression in forest tree seedlings[J]. For. Sci., 1980,10(1): 218-248
    [251]R. O. Teskey ect Influence of climate and fertilization on photosynthesis of mature slash pine[J].Tree Physiology,14:1215-1227
    [252]Reinhart J.C., Bernard S. Photosynthesis in "physiology of trees"(A. S. Ragharendra,ed) [M] John Wiley & Sons, 1991,89-108
    [253]Robert C. Mcgarvey. Intergrating within-crown variation in net photosynthesis in loblolly and slash pine[J]. Tree Physiology,2004,24:1209-1220
    [254]Robinson JF. (?)ts measured on seedling Can be used to select for later volume of loblolly pine[J]. South Appl For., 1984, 8(1): 59-64
    [255]Rockwood DL, Dippon DR. Biological and economic potentials of Eucalyptus grandis and slash pine as biomass energy crops[J]. Biomass(London), 1998, 20(3): 155—165
    [256]Rose R. Atldnson M. Gleason J, et al. Root volume as grading criterion to improve field performance of Douglas full-seedlings[J]. New For., 1991, 5(3): 195-209
    [257]Samuelson L. J. Influence of intersive culture on lesf net photosynthesis and growth of swectgum and loblolly pine seedings[J]. Forest science, 1998, 44(2): 308—316
    [258]Samuelson L., Stokes T Production efficiency of loblolly pine and sweetgum in response to four years ofintensive management[J]. Tree Physiology,2001, 21(6): 369—376
    [259]Shoulders Eu Effect of seed size on germination, growth, and survival of slash pine[J]. For. ,1961, 59(5): 363-365
    [260] Swictlik, Korcak RF, Miklos Faust. Effect of mineral nutrient sprays on photosynthesis and stomatal opening of water stressed and unstressed apple seedlings II. Potassium sulfate sprays [J].Amer. Soc.Hort.Sci.,1982,107(4):568-572.
    [261]Smithm W. H, Nelson K. E, Switzer GL. Development of the shool system of young loblolly pine. Dry matter and nimogen accumulation[J]. Forest Sci., 1971, 7(1): 55-63
    [262]S.R.Pezeshki and T.M.Hinckley. The stomatal response of red alder and black cottonwood to changing water status[J], Can. J. For. Res. ,1982,12:761-771
    [263]Teskey R. O., Files J. A.. Samuelson L. J. Stomata and nonstomatal limitations to tact photosynthcsis in Pinus taeda L. under different environmental conditions[J]. Tree physiol, 1986. 2: 136-142
    [264]Theodore T K, Paul J. K, Stephen, GP. The physiological ecology of woody plants[M]. Academic press, Inc. 1991,6:124-128
    [265]Troeng E, Linder. Gas exchange in a 20-year-old stand of scots pine. I. Net photosynthesis of cuirent and one-year-old shoots within and between seasons[J]. PhysiOl. Plant. 1982. 54: 7-14
    [266]Troeng E, linde-Gas exchange in a 20-year-old stand of scots pine II Variation in net photosynthesis and transpiration within and between trees Physiol[J]. Plant,1982. 54: 15-23
    [267]Tuner N. Concurrent comparison of stomatal behavior ,water status ,and evaporation of maize in soil at high or low water potential [J].Plant Physiol,1975,55:932-9361
    [268]Takagi N,and Inoue J. Seasonal changes in berry growth and photosynthetic rate of leaves of Muscat of Alexan driagrapes [J] Japan. Soc Hort Sci,1982,51(3):286-292.
    [269]VanlearD. H., WaideJ. B. CukeM. J. Biomass and nutrient content of 41 years old loblolly pine plantation on a poor site in south Carolina[J].Forest sci, 1984, 30(2): 395—403
    [270]Vartanin N,Damerval C. Dominique de vienne.Drought induced changes in protein patterns of Brassica napusvaroleifera roots[J]. Plant Physiol,1987,84:989-992
    [271]Walker R. E, Mclaughlin S. B. Black polyethylene mulch improves growth of plantation, grown loblolly pine and yellow-poplar[J]. New forests, 1989, 3(3): 265—274
    [272]WINTER K, SCHROMM M J. A nalysis of stomatal and nonstomatal components in the environmental control of CO2 exchanges in leaves of w elw itsch ia m irabilis [J]. Plant Physiol,1986,82: 173-178
    [273]XuDQ,ShenYG.Diurnalvariationsinthephotosyntheticefficiencyinplants[J].Acta Phytophysiologica Sinica,1997,23(4):410-416
    [274]Zelawski. Variation in the photosynthetic capacity of Pimps sylvetris. In M.G R. Cannell and F T. Last, eds., Tree physiotogv and yield improvement[M]. London:Academic Press, 1988: 99—109
    [275]Zobel B J, Talbert J T. Applied forest tree improvement[M]. New York:wiley,1984:89—78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700