用户名: 密码: 验证码:
基于表面分子开关的生物传感器新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学和技术发展最重要的挑战之一就是进一步实现对微观的控制和研究,这就意味着要利用化学手段自下而上(bottom-up)来构建分子水平上器件和机器,即从原子或分子开始建造微观结构。“自下而上”是指以原子,分子为基本单元,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的器件。同时,随着微电子技术和生物工程这两项高科技的互相渗透,分子开关实际上已为研制分子器件提供了可能。所谓分子开关泛指结构上组织化了的具有“开/关”功能的化学体系。它也是指具有双稳态的量子化体系,当外界光、电、热、磁、酸碱度等条件变化时,分子的形状、化学键的生成或断裂、振动以及旋转等性质会随之变化,通过这些几何和化学的变化,能实现信息传输的功能。
     分子水平上的开关需要一个外部刺激来引起电子和原子核的重排,3种用来开启化学体系功能的最重要的刺激是光能(光子),电能(电子或空穴)和化学能(以质子、金属离子或特殊分子形式)。最常见的光化学激发开关过程与光异构化和光诱导氧化还原反应是相关的。如果输入的是电化学激发,当然就是氧化还原反应的诱导反应,与化学激发相比,光化学和电化学激发的分子开关更容易发生且响应迅速。利用电化学能代替化学氧化还原作用,具有开、关简便快捷的优势。况且,电化学技术也是监测机器运行的有用方式,电极则是分子系统与宏观世界相连的最佳方式。电场控制的表面分子开关可以用于蛋白质的可控吸附和分离.再结合分子设计、有机合成和高分子化学,还可以给这种表面引入亲疏水功能团或抗原抗体识别对等,方便的实现亲疏水开关或者免疫开关表面。
     本论文主要创新之处是基于自组装膜技术、电化学控制技术以及温敏聚合物材料构建具有表面分子开关功能的仿生界面,从而利用这些智能化表面对生物分子及其动态相互作用过程进行实时在线控制和检测。智能化表面(smart surface)通常是指具有可操控开关功能的生物应用表面。智能化表面性质的可逆操控,是在外界激励下发生的。它可以由聚合物、有序自组装膜、纳米材料(特别是金属氧化物)等组成,激励它发生性质可逆转化的因素包括温度、光照、电场、pH值、溶剂等等。在这些外界激励下,表面分子可以发生可逆的构象转化、构型转化、氧化态的转化等等,从而在宏观上,使整个表面呈现出亲疏水性、光学性质、带电性等性质的可逆转化,即可呈现出“开/关”的性质。本论文通过构建的低密度自组装膜,在表面上形成电化学可操控的具有生物识别能力的亲疏水开关,从而实现了对抗生物素一链霉亲和素功能蛋白间微观作用过程的快速、灵敏、可控检测和表征。进一步地,利用温敏高分子材料poly(N-isopropylacrylamide)PNIPAAm与抗BSA抗体合成生物复合物,构建了具有温度敏感开关功能的可再生免疫传感器。该方法可保持生物识别体系的活性和环境,再生的抗原/抗体表面均可重复识别相应目标物,检测灵敏度高、速度快,所构建的温敏开关免疫传感器可重复使用30次以上,解决了目前免疫传感器抗体表面仅能单次使用的弊端,同时为研究蛋白质-蛋白质动态相互作用过程提供了新手段。
     本论文共五章内容,主要摘要如下:
     第一章综述了表面分子开关的研究现状及其相关技术在生物传感器领域的应用进展。分子自组装和高分子聚合物是构建分子开关的两条重要途径。自组装单分子层是构膜分子与基底材料间发生物化作用而自发形成的一种热力学稳定、排列规则的单层分子膜。这种构膜方式,可以容易的为表面引入各种各样的功能团,这就为制备具有多种不同功能的智能化表面打下了很好的基础。温敏材料是指对温度可感知且可响应并具有功能发现能力的一类材料。具有“温度开关”特性的聚-N异丙基丙烯酰胺(PNIPAAm)是近年来引起研究兴趣的一类高分子材料。利用它对温度响应的敏感性,使其在药物缓释、免疫分析、生命科学等研究领域都有着广泛的潜力。
     第二章介绍了基于人工自组装膜技术构建表面亲疏水开关发展生物传感器的新方法。本章利用环糊精作为巯酸分子间距有效的调控手段,以乙醇作为高效的洗脱溶剂,通过自组装方法在金电极表面构建了间距均一、性能稳定的巯基化合物低密度薄膜,由此构建了具有亲疏水可逆开关的智能化表面生物传感器。以高密度自组装膜表面的覆盖度为100%计算可知,α,β,γ三种环糊精分子构建的低密度自组装膜表面的覆盖度分别为61.2%,45.3%和29.2%。通过改变外加电压状况,使巯基化合物构型发生改变,从而实现表面的亲水/疏水性能的转换。通过质谱,核磁,交流阻抗,QCM,荧光等多种检测手段对膜表面可逆过程进行了实时监控。
     第三章主要围绕此类亲疏水开关生物传感器进行抗生物素及链霉亲和素可控组装的应用研究。本章采用荧光标记抗生物素、链霉亲和素功能蛋白分子作为研究对象,通过改变外加电流正负情况使得低密度自组装膜表面具有亲疏水可逆转换性能。在pH值为7.4的缓冲溶液中,两种蛋白质由于等电点的差异而带上了两种不同的电荷,由于表面电荷作用及亲疏水性质的转换,两种蛋白质可以在外加电场作用下发生可控组装行为。主要利用EQCM实验和荧光光谱实验对两种蛋白质的可控组装进行了实时监测,对于Avidin蛋白在β-CD构建的低密度自组装膜上的组装过程,将其在负电压下组装30分钟后它的荧光强度是正电压条件下的4.9倍。对于Streptavidin蛋白来说,当外加正电压30分钟后,在β-CD构建的低密度自组装膜表面上蛋白组装量分别是负电压条件下同种组装膜的1.5倍。利用微电极中获得的良好分离分析效果,我们还初步尝试将之应用于微流控芯片体系,发展了一种利用“分子开关”原理构建的蛋白质芯片。
     第四章是基于温敏聚合物的表面分子开关构建及抗原抗体可逆识别界面的研究。本章主要研究温敏高分子材料PNIPAAm与抗BSA抗体合成的生物复合物(bioconjugate)组装到金表面与对应抗原BSA识别时的可逆过程。由于这种温敏高分子材料的存在,这个结合过程与抗体-抗原直接结合的情况有很大变化,选择不同分子量的聚合物进行构建,该材料对抗原结合过程中造成的空间位阻有所不同,结合量可通过测定QCM,交流阻抗法,天然PAGE胶以及荧光标记抗原的光亮度加以定量。当抗原抗体结合完毕后,改变溶液的温度,由于温敏材料分子量的差异,高分子量时随着温度升高,抗体结合位点附近的高分子材料会团聚在已经结合的抗原周围,而且会产生较大的空间力以及疏水力,从而将已经结合的抗原从抗体结合部位顶开,使得所构建的温敏开关免疫传感器具有良好的再生功能。高温降至低温过程中,免疫识别体系抗原抗体结合常数差别可以达到两个数量级。高分子量聚合物构建的免疫开关传感器对于抗原抗体结合后表面的再生率最高可以达到89%以上,跟通常文献中大量报道的有机溶液再生表面法(再生率80%-92%)相差很小,而且这个方法基本没有破坏生物识别体系的活性和环境,抗原抗体均可重复利用,这种温敏开关免疫传感器可重复使用30次以上,抗疲劳性较好。综上所述,这种基于温敏聚合物的表面开关可以在免疫生物传感领域进行广泛的应用。
     第五章工作围绕基于手性氨基酸抗体构建电容型手性免疫传感器进行相关研究。利用自制手性抗体构建高选择性的新型电容型免疫传感器,设计了逆向竞争法进行检测,得到了很好的响应,这一部分工作仍在进行中。构建的电容性手性免疫传感器从所有的图表中可以看出这种传感器对于小分子的手性氨基酸具有很强的识别和分析能力,检测限可以达到5pg/mL,对氨基酸混合物中痕量D型苯丙氨酸可以达到0.001%的检测灵敏度。竞争法测定灵敏快速,既可以测定D型、L型苯丙氨酸对电极表面半抗原与抗体免疫识别的抑制情况,还可以测定消旋体中单一构型(D型)氨基酸含量,此方法对于混合氨基酸体系中痕量的单一构型抗原检测限比标准的手性色谱分析方法还要低一个数量级,具有高灵敏度、高选择性的特点,为无标记法检测手性氨基酸提供了一种可行的检测方法。具有操作简便,重现性好,成本低廉等一系列优点,对于手性物质的快速在线分析对于临床检测及手性药物分析等具有较大的意义。
     第六章是对本论文工作的总结及对下一步工作的展望。
     总之,本论文围绕表面分子开关进行了多种生物传感新方法的成功尝试。利用自组装膜技术,温敏聚合物材料等结合外界不同触发条件构建了亲疏水表面开关、温度敏感表面开关生物传感器,形成了具有良好生物相容性的仿生界面,将其应用于蛋白质分子、抗原-抗体体系等进行人工可操控的生物过程的考察与研究均获得了良好的结果。
Controlled study of microscopic fields is one of the most important challenges to scientific and technological development. Scientists use chemical and biological methods to build complex molecular-level devices from the basic building blocks of atomic or molecular microstructure. This strategy, known as "bottom-up" design allows for devices with specific structure or function to be built. Of particular interest has been the development of molecular switches, which could serve as the precursor to the preparation of more complicated molecular devices. Molecular switches are molecules which are capable of changing their behavior in a controlled fashion based on external stimuli such as light, electricity, heat, magnetic fields, or pH. By taking advantage of such switching behavior it should be possible to realize the transmission of information.
     Switching behavior requires an external stimuli to cause either an electronic transition or a structural rearrangement. The three most important stimuli are light (absorption of photons), electricity (addition or removal of electrons) and chemical energy (binding of protons, metal ions, or other special molecules). The most common photochemical switches are related to light-induced isomerization and light-induced oxidation and reduction reactions. Electrochemical methods can also be used to produce redox type switching behavior. Moreover, electrochemical techniques are a useful way to monitor the operation of molecular machinery, with the electrode serving as the connection to the macroscopic world. As an example, surface electric switches can be used to control protein adsorption and separation. By combining molecular design, organic synthesis, and polymer chemistry, it is possible to introduce hydrophilic or hydrophobic functional groups or antigen-antibody complexes to the surface resulting in a reversible switch.
     This thesis is based on the use of a low-density self-assembled monolayer and temperature-sensitive polymer to build a biocompatible surface. By using these innovative methods, controlled in situ determination and monitoring for biological molecules could be carried on. The intelligent modification of surface properties allows for the detection of a wide range of biological species. The focus of this work has been the development of a sensitive and reversible switch for the detection of specific biomolecules. By using a low-density self-assembled monolayer (SAM) to establish a hydrophobic/hydrophilic switch it has been possible to achieve the rapid and controlled detection of avidin and streptavidin. Reversible control of the surface properties has been achieved with various methods, including: photoillumination, potential effects, and thermal driving. By using temperature-sensitive poly (N-isopropylacrylamide) (PNIPAAm) materials, an immune switch sensor for Anti-BSA antibody and FITC-BSA could be created. The switch is stable in biological environments, does not interfere with the antibody/antigen detection, and can be reused more than 30 times.
     In the first chapter we review the research on surface molecular switches and related technical progress in the field of biosensors. Polymers and self-assembly are two important ways to build molecular surface switches. Using self-assembled monolayers could supply a thermodynamically stable and ordered membrane. The structure of SAMs can easily be varied by the introduction of a wide range of functional groups. Temperature-sensitive materials are also found to be good candidates and have the useful ability to respond to external temperature stimuli. In recent years PNIPAAm has attracted interest in the study of temperature-sensitive polymer materials because of its potential application in drug delivery, immunoassays, and life science research.
     The second chapter describes using SAMs to constructsmart hydrophobic/hydrophilic reversible surfaces as a new method for biosensor development. The inclusion complex (IC) between 16-mercaptohexadecanoic acid (MHA) andα-,β- orγ-cyclodextrin acted as the space-filling group of the SAM. The unwrapping procedure, the removal of n-CD from the SAM, was accomplished by dissociating the bond n-CD—MHA with ethanol. The surface coverage for LD-SAM-n referring to high-density SAM shows an obvious decrease from 100% to 61.2%, 45.3% and 29.2%, respectively. The thus-prepared low density-SAM shows reversible conformational reorientation under negative and positive potential; this induces changes in wettability, which can be observed by means of contact angle measurements. The removal of n-CD was monitored by quartz crystal microbalance (QCM), nuclear magnetic resonance (NMR), impedance (IMP), and MALDI-TOF-MS.
     The third chapter describes the application of our LD-SAM surface to the controlled assembly of two kinds of fluorescent-labeled avidin and streptavidin. Selective protein adsorption was demonstrated on the above-mentioned switchable surface. The assembly of the two proteins on MHA-SAM-n was performed in PBS buffer (pH 7.4) at an applied potential of 0.3 V and -0.3 V (vs.SCE), respectively. From either QCM or fluorescence spectra (FL) data, distinctly different assembly behaviors for the two proteins were observed at two controlled potentials. For example, the emission intensity for avidin-LD-SAM-1 assembled at negative potential for 30 min was about 4.9 times that for assembly at positive potential. The dissimilarity of the surface loading for these two proteins is believed to be mainly due to the charge status difference originating from their isoelectric points. We believe that it might lead to versatile applications, e.g. control of protein adsorption/release in a functionalized capillary or microfluidics channel, or design of intelligent protein chips. We have also attempted to apply this system to a homemade microfluidic chip.
     The fourth chapter works on establishing the PNIPAAm-antibody surface that could supply the most effective dissociation of the antigen and regeneration of antibody into reuse of the immunosensors. As a model antibody-antigen system, bovine serum albumin (BSA) and the corresponding antibody (anti-BSA) were chosen. A reversible PNIPAAm-antibody (anti-BSA) conjugates surface was established by triggered control of external temperature. This took advantage of the thermally tunable conformational changes for the PNIPAAm-conjugated antibody surface, and could be used for switchable antigen association and dissociation. The temperature controlling strategy could realized the regeneration of the immunosensor on which immobilized anti-BSA antibodies retain the activity and specificity necessary to carry out more than 30 reproducible assays for BSA. The dissociation reaches 89%, which can compare with the general recovery methods. The controlled binding and unbinding were monitored by quartz crystal microbalance (QCM), confocal fluorescence, native electrophoresis, laser induced fluorescence, and electrochemical impedance.
     The fifth chapter describes a highly enantioselective and sensitive immunosensor for the detection of chiral amino acids based on capacitive measurement. The sensor was prepared by first binding mercaptoacetic acid to the surface of a gold electrode, followed by modification with tyramine utilizing carbodiimide activation. Stereoselective binding of an anti-D-amino acid antibody to the hapten-modified sensor surface resulted in capacitance changes that were detected with high sensitivity by a potentiostatic step method. Using capacitance measurement, detection limits of 5 pg of antibody/mL were attained. The exquisite stereoselectivity of the antibody was also utilized in a competitive setup to quantitatively determine the concentration of D-phenylalanine in nonracemic samples. Trace impurities of D-phenylalanine as low as 0.001% could be detected. This method should be useful not only for the enantioselective detection of amino acids as described here but also for investigating other targets (e.g., drugs) using appropriate antibodies.
     The sixth chapter is the summary of this thesis and the future prospects for related research.
     This thesis reports on the development of several different surface molecular switches which can be used as biosensors. Using self-assembled monolayers, hydrophobic/hydrophilic surface switches capable of responding to external temperature and electrical stimuli were prepared. These switches could supply a smart and biocompatible interface to determine and analyze proteins and antigen-antibody immune systems, which may open a new paradigm for the design of functional biocomposite films.
引文
[1] Browne WR, Feringa BL. Making molecular machines work[J]. Nature Nanotechnology, 2006, 1, 25-35.
    [2] Feringa BL. Molecular Switch Wiley-VCH, Weinheim, 2001
    [3] Holten D, Bocian DF, Lindsey JS. Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices[J]. Acc. Chem. Res. 2002, 35, 57-69.
    [4] Balzani V, Credi A, F.M.Raymo, J.F.Stoddart. Artificial molecular machines[J]. Angewandte Chemie-International Edition, 2000, 39, 3348-3391.
    [5] Feynman RP. The Caltech. Alumini Magazine[J], 1960, 23(5): 22—25
    [6] Pollard MM, Lubomska M, Rudolf P, Feringa BL. Controlled rotary motion in a monolayer of molecular motors[J]. Angewandte Chemie-International Edition 2007, 46, 1278-1280.
    [7] Gittins DI, Bethell D, Schiffrin DJ. A nanometer-scale electronic switch consisting of ametal cluster and redox-addressable groups[J]. Nature 2000, 408(6808): 67~69.
    [8] Service RF. Molecules Get Wired[J]. Science 2001, 294(5551): 2442~2443.
    [9] Lehn JM, Tsivgouli GM. Multiplexing optical systems: Multicolor- bifluorescent- biredox photochromic mixtures[J]. Adv. Mater., 1997, 9: 39-&.
    [10] Tsuchiya S. Intramolecular electron transfer of diporphyrins comprised of electron-deficient porphyrin and electron-rich porphyrin with photocontrolled isomerization[J]. J Am Chem Soc., 1999, 121: 35, 8132-8132.
    [11] Steenwinkel P, Grove DM, Veldman N. Ionic 4, 4'-biphenylene-bridged bis-ruthenium complexes [Ru-2(4, 4'-(C6H2(CH2NMe2)(2)-2, 6}(2))(terpy)(2)](n+) (n=2 and 4) and their reversible redox interconversion: A molecular switch[J]. Organometallics, 1998, 17: 5647-5655.
    [12] Gittins DI, Bethell D, Schiffrin DJ. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups[J]. Nature, 2000, 408: 67-69.
    [13] 李荣金,李洪祥.分子器件的研究进展[J].物理,2006,35(12):1003-1009.
    [14] Pease AR, Jeppesen JO, Stoddart JF. Switching devices based on interlocked molecules[J]. Acc Chem Res, 2001, 34: 433-444.
    [15] Collier CP, Wong EW, Belohradsk. Electronically configurable molecular-based logic gates[J]. Science, 1999, 285: 391-394.
    [16] 吴璧耀,张道洪.分子开关研究进展.化工新型材料[J].2001,29(11):9-13
    [17] Lehn J M.超分子化学,(日译本)化学同人 1997
    [18] Walz J, Uirich K, Port H. Fulgides as switches for intramolecular energy-transfer[J]. Chem Phys Lett, 1993, 213: 321-324.
    [19] Collins GE, Choi LS, Ewing KJ. Photoinduced switching of metal complexation by quinolinospiropyranindolines in polar solvents[J]. Chemical Communications, 1999, 321: 8~18.
    [20] Saika T, Iyoda K. Emission control of a pyrene-thioindigo compound[J]. J Chem Soc Chem Commun, 1992, 591-592.
    [21] Bourson J, Borrel MN, Valeur B. Ion-responsive fluorescent compounds. 3. Cation complexation with coumarin-153 linked to monoaza-15-crown-5[J]. Analytica Chimica Acta, 1992, 257: 189-193.
    [22] Alihoαzic S, Zinic M, Klaic B. Fluoroionophores with phenanthridinyl units[J]. Tetrahedron Lett, 1993, 34: 8345-8348.
    [23] DeSilva AP, Sandanayake KR. Fluorescence off-on signaling upon linear recognition and binding of alpha, omega-alkanediyldiammonium ions by 9, 10-bis((1-aza-4, 7, 10, 13, 16-pentaoxacyclooctadecyl)methyl)anthracene[J]. Angew Cem Int Ed Engl, 1990, 29: 1173-1175.
    [24] DeSilve AP, Guaratne HQN. Fluorescent PET(photoinduced photoinduced electron-transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties[J]. J Chemm Soc Chem Commum, 1990, 186-188
    [25] Parker D, Wiliams J. Luminescence behavior of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores[J]. J Chem Soc PerkinTrans, 1995, 2(7): 1305-1314
    [26] Beer PD, Szemes F, Balzani V. Anion selective recognition and sensing by novel macrocyclic transition metal receptor systems. H-1 NMR, electrochemical, and photophysical investigations[J]. Journal of the American Chemical Society 1997, 119(49): 11864-11875
    [27] Huston ME, Akkaya EU, Czarnik AW. Chelation-enhanced fluorescence of non-metal ions in aqueous-solution[J]. J Am Chem Soc, 1989, 111: 8735-8737.
    [28] Vance DH, Czarnik AW. Real-time assay of inorganic pyrophosphosphatase using a high-affinity chelation-enhanced fluorescence chemosesor[J]. J Am Chem Soc, 1994, 116: 9397-9398.
    [29] Guntas G, Mitchell SF, Ostermeier M, A molecular switch created by in vitro recombination of nonhomologous genes [J]. Chemistry & Biology 2004, 11, 1483-1487.
    
    
    [30]Saito T, Hirai R, Loo YM, Owen D, Johnson CL, S. C. Sinha, S. Akira, T. Fujita, M. Gale, Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2 [J]. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104, 582-587.
    [31]Milner ST. Polymer brushes [J]. Science 1991, 251, 905-914.
    [32]Russell TP. Surface-responsive materials [J]. Science 2002, 297, 964-967.
    [33]Nakayama K, Jiang L, Iyoda T, Fujishima A. Photo-induced structural transformation on the surface of azobenzene crystals [J]. Jpn J Appl Phys Part 1 1997, 36, 3898-3902.
    [34]Prins MWJ, Welters WJJ, Weekamp J W. Fluid control in multichannel structures by electrocapillary pressure [J]. Science 2001, 291, 277-280.
    [35]Abbott NL, Gorman CB, Whitesides GM. Active control of wetting using applied electrical potentials and self-assembled monolayers [J]. Langmuir 1995, 11, 16-18.
    [36]Byloos M, Al-Maznai H, Morin M. Phase transitions of alkanethiol self-assembled monolayers at an electrified gold surface [J]. J Phys Chem B. 2001, 105, 5900-5905.
    [37]Crevoisier GB, Fabre P, Corpart J, Leibler L. Switchable tackiness and wettability of a liquid crystalline polymer [J]. Science 1999, 285, 1246-1249.
    [38]Minko S, Sidorenko A, Goreshnik E. Environment friendly and switchable polymer brushes. [J]. The American Chemical Society 2000, 220: 279-PMSE
    
    [39]Chaudhury MK, Whitesides GM. How to make water run uphill [J]. Science 1992, 256, 1539-1541.
    [40]Wang ZH , Chen KC , Tian H. Intramolecular fluorescence quenching in ferrocene-naphthalimide dyads [J]. Chem Lett , 1999 , 423-424.
    [41]Collier CP, Mattersteig G, Wong EW. A [2]catenane-based solid state electronically reconfigurable switch [J]. Science, 2000, 289:1172-1175.
    
    [42] a)Raphael E, DeGennes PG. Rubber rubber adhesion with connector molecules [J]. J Phys Chem. 1992, 96, 4002-4007; b)Ruths M, Johannsmann D.Ruhe J, Knoll W. Repulsive forces and relaxation on compression of entangled, polydisperse polystyrene brushes [J]. Macromolecules 2000, 33, 3860-3870.
    [43]Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ, Reduction of frictional forces between solid-surfaces bearing polymer brushes [J]. Nature 1994, 370, 634-636.
    [44]Galaev IY, Mattiasson B. "Smart" polymers and what they could do in biotechnology and medicine [J]. Trends In Biotechnology 1999, 17, 335-340.
    [45]Aksay IA, Trau MS, Honma I. Biomimetic pathways for assembling inorganic thin films [J]. Science 1996, 273, 892-898.
    [46] a) Julthongpiput D, Lin YH, Teng J. Y-shaped amphiphilic brushes with switchable micellar surface structures [J]. J Am Chem Soc. 2003, 125, 15912-15921; b) Julthongpiput D, Lin YH, Teng J. Y-shaped polymer brushes: Nanoscale switchable surfaces [J]. Langmuir 2003, 19, 7832-7836.
    [47]Zhao B, Brittain WJ, Zhou W, Cheng SZD. Nanopattern formation from tethered PS-b-PMMA brushes upon treatment with selective solvents [J]. J Am Chem Soc 2000, 122, 2407-2408.
    [48]Sun TL, Feng L. Bioinspired surfaces with special wettability [J]. Accounts Of Chemical Research 2005, 38(8): 644-652.
    [49]Moller G, Harke M, Motschmann H, Prescher D. Controlling microdroplet formation by light [J]. Langmuir 1998, 14, 4955.
    [50]Chia SY, Cao J, Stoddart JF Working supramolecular machines trapped in glass and mounted on a film surface [J]. Angew Chem Int Ed. 2001, 13, 2447.
    
    [51]Liu Y, Mu L, Liu BH, Zhang S, Yang PY, Kong JL. Controlled protein assembly on a switchable surface [J]. Chem Commun. 2004, 1194-1195.
    [52] Abbott NL, Gorman CB, Whitesides GM. Active Control of Wetting Using Applied Electrical Potentials And Self-Assembled Monolayers [J]. Langmuir 1995,11,16-18.
    
    [53]Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E. Light-induced amphiphilic surfaces [J]. Nature 1997, 388, 431.
    [54]Feng XJ , Feng L , Jin MH , Zhai J , Jiang L , Zhu DB , Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. J Am Chem Soc. 2004, 126, 62-63.
    [55]Breimer DD. Future challenges for drug delivery. Journal of Controlled Release [J]. 62(1-2): 3-6.
    [56]Ye SJ , Chen MC. Controlled-release polyurethane created by absorbing transition-metal acetate and benzyl carbinol [J]. Journal of Applied Polymer Science 85(6): 1170-1173.
    [57]Ichikawa H, Fukumori Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix [J]. Journal of Controlled Release 63(1-2): 107-119.
    [58]Kwon IC, Bae YH. Electrically Erodible Polymer Gel For Controlled Release Of Drugs [J]. Nature 354(6351): 291-293.
    [59]Komlev VS, Barinov SM. A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release [J]. Biomaterials 2002, 23(16): 3449.3454.
    
    [60]Nowakowska M, Sterzel M. Photoactive modified hydroxyethylcellulose [J]. Macromolecular Rapid Communications 2002, 23(16): 972-974.
    [61]Iwata H , Oodate M. Preparation Of Temperature-Sensitive Membranes By Graft-Polymerization Onto A Porous Membrane [J]. Journal Of Membrane Science 1991, 55(1-2): 119-130.
    [62]Klee D, Hocker H. Polymers for biomedical applications: Improvement of the interface compatibility [J]. Biomedical Applications: Polymer Blends 1999, 149: 1-57.
    [63]Zdrahala RJ, Zdrahala IJ. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future [J]. Journal of Biomaterials Applications 1999, 14(1): 67-90.
    [64]Minko S, Muller M. Two-level structured self-adaptive surfaces with reversibly tunable properties [J]. Journal of The American Chemical Society 2003, 125(13): 3896-3900.
    [65]Rosario R, Gust D. Photon-modulated wettability changes on spiropyran-coated surfaces [J]. Langmuir 2002, 18(21): 8062-8069.
    [66] Sun TL , Wang GJ. Reversible switching between superhydrophilicity and superhydrophobicity [J]. Angewandte Chemie-International Edition 2004, 43(3): 357-360.
    [67]Feng XJ, Zhai J. The fabrication and switchable superhydrophobicity of TiO2 nanorod films [J]. Angewandte Chemie-International Edition 2005 , 44(32): 5115-5118.
    [68] Jin MH, Feng L. Super-hydrophobicity of aligned polymer nanopole films [J]. Chemical Journal Of Chinese Universities-Chinese 2004, 25(7): 1375-1377.
    [69]Lahann J. A reversibly switching surface [J]. Science 2003, 299: 371-372.
    [70]Mu L, Y Liu. Selective assembly of specifically charged proteins on an electrochemically switched surface [J]. New Journal Of Chemistry 2005, 29(6): 847-852.
    [71]Bunker BC, Huber DL. Switching surface chemistry with supramolecular machines [J]. Langmuir 2007, 23(1): 31-34.
    [72]Skrabania K, Kristen J. Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers [J]. Langmuir 2007, 23(1): 84-93.
    [73]Khoukh S, Oda R, Labrot T, Perrin P, Tribet C. Light-responsive hydrophobic association of azobenzene-modified poly(acrylic acid) with neutral surfactants [J]. Langmuir 2007, 23, 94-104.
    [74]Molchanov VS, Philippova OE. Self-assembled networks highly responsive to hydrocarbons [J]. Langmuir 2007, 23(1): 105-111.
    [75]Ayres N, Boyes SG. Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization [J]. Langmuir2007, 23(1): 182-189.
    
    [76]Si S, Mandal TK. pH-controlled reversible assembly of peptide-functionalized gold nanoparticles [J]. Langmuir 2007, 23(1): 190-195.
    [77]Garcia A, Marquez M. Photo-, thermally, and pH-responsive microgels [J]. Langmuir 2007, 23(1): 224-229.
    
    [78]Chang DP, Dolbow JE. Switchable friction of stimulus-responsive hydrogels [J]. Langmuir 2007, 23(1): 250-257.
    [79]Kamikawa Y, Kato T. Color-tunable fluorescent organogels: Columnar self-assembly of pyrene-containing oligo(glutamic acid)s [J]. Langmuir 2007, 23(1): 274-278.
    [80]Zhu C, Wu LQ. Reversible vesicle restraint in response to spatiotemporally controlled electrical signals: A bridge between electrical and chemical signaling modes [J]. Langmuir 2007, 23(1): 286-291.
    [81]Peng K , Yu ST. Switching the electrochemical impedance of low-density self-assembled monolayers [J]. Langmuir 2007, 23(1): 297-304.
    [82]Song WL , Xia F. Controllable water permeation on apoly(N-isopropylacrylamide)-modified nanostructured copper mesh film [J]. Langmuir 2007, 23(1): 327-331.
    [83]Motornov M, Sheparovych R. Nonwettable thin films from hybrid polymer brushes can be hydrophilic [J]. Langmuir 2007, 23(1): 13-19.
    [84]DeSilva AP, Gunaratne HQN. Signaling recognition events with fluorescent sensors and switches [J]. Chemical Reviews 1997, 97(5): 1515-1566.
    
    [85]Lavigne JJ, Anslyn EV. Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors [J]. Angewandte Chemie-International Edition2001, 40(17): 3119-3130.
    [86]Rotello VM. in Electron Transfer in Chemistry [M]. Wiley-VCH, Wein-heim2001, Vol.4, p68
    [87]Berkovic G, Krongauz V. Spiropyrans and spirooxazines for memories and switches [J]. Chemical Reviews 2000, 100(5): 1741-1753.
    [88]Clavier G, Ilhan F. Photochemical control of the macroconformation of polystyrene using azobenzene side chains [J]. Macromolecules 2000, 33(25): 9173-9175.
    [89]Thomas L, Lionti F. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets [J]. Nature 1996, 383(6596): 145-147.
    [90]Boskovic C, Brechin EK. Single-molecule magnets: A new family of Mn-12 clusters of formula [Mn12O8X4(O2CPh)(8)L-6] [J]. Journal Of The American Chemical Society 20C2, 124(14): 3725-3736.
    [91]Feringa BL, Van Delden RA. Chiroptical molecular switches [J]. Chemical Reviews 2000, 100(5): 1789-1816.
    
    [92]Gilbert A, Baggott J, Essentials of Molecular Photochemistry[M]. Blackwell, Oxford, 1991.
    [93]Balzani V, Credi A. Artificial molecular-level machines. Dethreading-rethreading of a pseudorotaxane powered exclusively by light energy [J]. Chemical Communications 2001, (18): 1860-1861.
    
    [94]Koumura N, Zijlstra RWJ. Light-driven monodirectional molecular rotor [J]. Nature 1999, 401(6749): 152-155.
    [95]Balzani V, Credi A, Marchioni F, Stoddart JF. Artificial molecular-level machines [J]. Dethreading-rethreading of a pseudorotaxane powered exclusively by light energy Chemical Communications 2001, 1860-1861.
    [96]Ashton PR, Ballardini R. A photochemically driven molecular-level abacus [J]. Chemistry-A European Journal 2000, 6(19): 3558-3574.
    [97]Ishitobi H, Sekkat Z. The photoorientation movement of a diarylethene-type chromophore [J]. Journal Of The American Chemical Society 2000, 122(51): 12802-12805.
    [98]Okuyama T, Yokoyama Y. Control of the association of indolylfulgimide with bis(acylamino)pyridine by photochromism [J]. Bulletin Of The Chemical Society Of Japan 2001, 74(11): 2181-2187.
    [99]Kubo Y, Ikeda M, Sugasaki A, Takeuchi M, Shinkai S. A porphyrin tetramer for a positive homotropic allosteric recognition system: efficient binding information transduction through butadiynyl axis rotation [J]. Tetrahedron Letters 2001, 42, 7435-7438.
    [100] Mrozek T, Gorner H. Multimode-photochromism based on strongly coupled dihydroazulene and diarylethene [J]. Chemistry-A European Journal 2001, 7(5): 1028-1040.
    [101]Pina F, Maestri M. Photochromic flavylium compounds as multistate/multifunction molecular-level systems [J]. Chemical Communications 1999, (2): 107-114.
    [102]Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories [J]. Chemical Reviews 2000, 100(5): 1755-1776.
    [103]Vlassiouk I, Park CD. Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch [J]. Nano Letters 2006, 6(5): 1013-1017.
    [104]Ichimura K, Oh SK. Light-driven motion of liquids on a photoresponsive surface [J]. Science 2000, 288(5471): 1624-1626.
    [105]Balzani V, Credi A. Controlled disassembling of self-assembling systems: Toward artificial molecular-level devices and machines [J]. Proceedings Of The National Academy Of Sciences Of The United States Of America 2002, 99(8): 4814-4817.
    [106]Raehm L, Sauvage JP. in Molecular Machines And Motors, Vol. 99, 2001, pp. 55-78.
    [107]Balzani V , Credi A. Artificial molecular machines [J]. Angewandte Chemie-International Edition 2000, 39(19): 3349-3391.
    [108]Niemz A, Rotello VM. From enzyme to molecular device. Exploring the interdependence of redox and molecular recognition [J]. Accounts Of Chemical Research 1999, 32(1): 44-52.
    [109]Kaifer AE. Interplay between molecular recognition and redox chemistry [J]. Accounts Of Chemical Research 1999, 32(1): 62-71.
    [110] Balzani V, Gomez-Lopez M. Molecular machines [J]. Accounts Of Chemical Research 1998, 31(7): 405-414.
    [111]Beer PD, Cadman J. Electrochemical and optical sensing of anions by transition metal based receptors [J]. Coordination Chemistry Reviews 2000, 205:131-155.
    [112]Cordova E, Bissell RA. Novel Rotaxanes Based On The Inclusion Complexation Of Biphenyl Guests By Cyclobis(Paraquat-P-Phenylene) [J]. Journal Of Organic Chemistry 1993, 58(24): 6550-6552.
    [113]Gokel GW. Lariat Ethers - From Simple Sidearms To Supramolecular Systems [J]. Chemical Society Reviews 1992, 21(1): 39-47.
    [114]Riskin M, Basnar B. Switchable surface properties through the electrochemical or biocatalytic generation of Ag-0 nanoclusters on monolayer-functionalized electrodes [J]. Journal Of The American Chemical Society 2006, 128(4): 1253-1260.
    [115]Craighead HG. Nanoelectromechanical systems [J]. Science 2000, 290(5496): 1532-1535.
    [116]Jacobs HO, Tao AR. Fabrication of a cylindrical display by patterned assembly [J]. Science 2002, 296(5566): 323-325.
    [117]Tsukruk VV, Bliznyuk VN. Side chain liquid crystalline polymers at interfaces [J]. Progress In Polymer Science 1997, 22(5): 1089-1132.
    
    [118]Jones DM, Smith JR. Variable adhesion of micropatterned thermoresponsive polymer brushes: AFM investigations of poly (N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations [J]. Advanced Materials 2002, 14(16): 1130-1134.
    [119]Nath N, Chilkoti A. Creating "Smart" surfaces using stimuli responsive polymers [J]. Advanced Materials 2002, 14(17): 1243-+.
    [120]Buchholz BA, Doherty EAS. MicroChannel DNA sequencing matrices with a thermally controlled "viscosity switch" [J]. Analytical Chemistry 2001, 73(2): 157-164.
    [121]Zhang F, Du HN. Epitaxial growth of peptide nanofilaments on inorganic surfaces: Effects of interfacial hydrophobicity/hydrophilicity [J]. Angewandte Chemie-International Edition 2006, 45(22): 3611-3613.
    [122]Hyun J, Lee WK. Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide "switches" [J]. Journal Of The American Chemical Society 2004, 126(23): 7330-7335.
    [123]Kharlampieva E, Sukhishvili SA. Release of a dye from hydrogen-bonded and electrostatically assembled polymer films triggered by adsorption of a polyelectrolyte [J]. Langmuir 2004, 20(22): 9677-9685.
    [1] Adamson AW. Physical Chemistry of Surfaces (5th Ed) [M]. New York: John Wiley & Sons Inc, 1990:385-388.
    
    [2] Shibuichi S, Onda T, Satoh N, Tsujii K. Super water-repellent surfaces resulting from fractal structure [J]. J Phys Chem, 1996, 100 (50): 19512- 19517.
    [3] Wenzel R N. Surface roughness and contact angle [J]. Ind Eng Chem, 1936, 28:988-994.
    [4] Cassie ABD, Baxter S. Wettability of porous surfaces [ J ]. Trans Faraday Soc, 1944, 40:546-551.
    [5] Wenzel R N. Surface roughness and contact angle [J]. J Phys Colloid Chem, 1948, 53:1466-1467.
    [6] Nakajima A, Fujishima A. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate [J]. AdvMater, 1999, 11 (16): 1365 - 1368.
    [7] Chen W, FadeevA Y, HsiehM C. Youngblood J. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples [J]. Langmuir, 1999, 15 (10): 3395-3399.
    
    [8] MiwaM. , NakajimaA. Fujishima A. Langmuir [J], 2000, 16:5754—5760
    [9] Onda T, Shibuichi S. Super-water-repellent fractal surfaces [J]. Langmuir 1996, 12(9): 2125-2127.
    [10] Nakajima A, Fujishima A. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate [J]. Advanced Materials 1999, 11(16): 1365-1368.
    
    [11] Shibuichi S, Yamamoto T. Super water- and oil-repellent surfaces resulting from fractal structure [J]. Journal Of Colloid And Interface Science 1998,208(1): 287-294.
    
    [12] Chen W, Fadeev AY, et al. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples [J]. Langmuir 1999, 15(10): 3395-3399.
    [13] Saito N, Wu Y. Principle in imaging contrast in scanning electron microscopy for binary microstructures composed of organosilane self-assembled monolayers [J]. Journal Of Physical Chemistry B 2003, 107(3): 664-667.
    [14]Tsujii K , Yamamoto T. Super oil-repellent surfaces [J]. Angewandte Chemie-International Edition In English 1997, 36(9): 1011-1012.
    [15] Tadanaga K, Katata N. Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the sol-gel method [J]. Journal Of The American Ceramic Society 1997, 80(12): 3213-3216.
    [16] Nakajima A, Abe K. Preparation of hard super-hydrophobic films with visible light transmission [J]. Thin Solid Films 376(1-2): 140-143.
    [17] Kay ER, Leigh DA. Synthetic molecular motors and mechanical machines [J]. Angewandte Chemie-International Edition 2007, 46(1-2): 72-191.
    [18] Feng XJ, Feng L. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. Journal Of The American Chemical Society 2004, 126(1): 62-63.
    [19] Sun TL , Wang GJ. Reversible switching between superhydrophilicity and superhydrophobicity [J]. Angewandte Chemie-International Edition 2004, 43(3): 357-360.
    [20] Minko S, Muller M. Two-level structured self-adaptive surfaces with reversibly tunable properties [J]. Journal Of The American Chemical Society 2003, 125(13): 3896-3900.
    [21] Julthongpiput D, Lin YH. Y-shaped amphiphilic brushes with switchable micellar surface structures [J]. Journal Of The American Chemical Society 2003, 125(51): 15912-15921.
    [22] Liu Y, Mu L. Controlled protein assembly on a switchable surface [J]. Chemical Communications 2004, (10): 1194-1195.
    [23] Wang R, Hashimoto K. Light-induced amphiphilic surfaces [J]. Nature 1997, 388(6641): 431-432.
    [24] Sun TL, Feng L. Bioinspired surfaces with special wettability (vol 38, pg 644, 2005). Accounts Of Chemical Research 2006, 39(7): 487-487.
    [25] Crooks RM, Ricco AJ. New organic materials suitable for use in chemical sensor arrays. Accounts Of Chemical Research 1998, 31(5): 219-227.
    [26] Schreiber F. Structure and growth of self-assembling monolayers. Progress In Surface Science 2000, 65(5-8): 151-256.
    [27] Hickman JJ, Ofer D, Zou C. Selective functionalization of gold microstructures with ferrocenyl derivatives via reaction with thiols or disulfides: characterization by electrochemistry and auger electron[J ]. J Am Chem Soc 1991 , 113 , 1128.
    [28]Ho PKH, Granstroem M, Friend RH., et al. , Ultrathin self-assembled layers at the ITO interface to control charge injection and electroluminescence efficiency in polymer light-emitting diodes[J ]. Adv. Mater. , 1998 , 10 , 769-771.
    [29] Mandler D, Turyan I. Application of self - assembled monolayers in electroanalytical chemistry [J] . Electroanalysis 1996, 8, 207-211.
    [30] Willner I, Katz E, Willner B. Electrical contact of redox enzyme layers associated with electrodes :Routes to amperometric biosensors[J] . Electroanal 1997 , 9 (13) , 965.
    [31] Ghindilis AL, Atanasov P, Wilkins M, Wilkins E. Immunosensors : Electrochemical sensing and other engineering approaches[J]. Biosensors & Ioelectronics, 1998, 13 (1) , 113.
    [32] Andrew N, Willner I. Nanoparticles as structural and functional units in surface-confined architectures [J]. Chem Commun 2001 , 20 , 2035.
    [33] Bigelow WC, Pickett DL, Zisman WA. J Colloid Interface Sci 1946 , 1:513-517
    [34] Duschl C , SevinLandais AE Surface engineering: Optimization of antigen presentation in self-assembled monolayers [J]. Biophysical Journal 1996, 70(4): 1985-1995.
    [35] Piscevic D, Lawall R. Oligonucleotide Hybridization Observed By Surface-Plasmon Optical Techniques [J]. Applied Surface Science 1995, 90(4): 425-436.
    [36] Gupta S, Zhang QL. "Self-corralling" nanorods under an applied electric field [J]. Nano Letters 2006, 6(9): 2066-2069.
    [37] Lin ZQ, Kerle T. Electric field induced de wetting at polymer/polymer interfaces [J]. Macromolecules 2002, 35(16): 6255-6262.
    [38] (a) Huber DL, Manginell RP. Programmed adsorption and release of proteins in a microfluidic device [J]. Science 2003, 301(5631): 352-354. (b) Chen SF, Liu L Y. Controlling antibody orientation on charged self-assembled monolayers [J]. Langmuir 2003, 19(7): 2859-2864.
    [39] Jiang XY, Ferrigno R. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements [J]. Journal Of The American Chemical Society 2003, 125(9): 2366-2367.
    [40] (a)Abbott S, Ralston J. Reversible wettability of photoresponsive pyrimidine-coated surfaces [J]. Langmuir 1999, 15(26): 8923-8928. (b) Ichimura K, Oh SK. Light-driven motion of liquids on a photoresponsive surface [J]. Science 2000, 288(5471): 1624-1626.
    [41] (a)Weissmuller J, Viswanath RN. Charge-induced reversible strain in a metal [J]. Science 2003, 300(5617): 312-315.(b)Luk YY, Abbott NL. Surface-driven switching of liquid-crystals using redox-active groups on electrodes [J]. Science 2003, 301(5633): 623-626.
    [42] Matthews JR, Tuncel D. Surfaces designed for charge reversal [J]. Journal Of The American Chemical Society 2003, 125(21): 6428-6433.
    [43] (a) Arotcarena M, Heise B. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity [J]. Journal Of The American Chemical Society 2002, 124(14): 3787-3793. (b) Crevoisier GB,. Fabre P. Switchable tackiness and wettability of a liquid crystalline polymer [J]. Science 1999, 285(5431): 1246-1249.
    [44] (a) Whitesides GM, Grzybowski B. Self-assembly at all scales [J]. Science 2002, 295(5564): 2418-2421. (b) Lahiri J, Isaacs L. Biospecific binding of carbonic anhydrase to mixed SAMs presenting benzenesulfonamide ligands: A model systemfor studying lateral steric effects [J]. Langmuir 1999, 15(21): 7186-7198.
    [45] (a) Lahann J, Mitragotri S. A reversibly switching surface [J]. Science 2003, 299(5605): 371-374.(b) Wang XM, Kharitonov AB. Potential-controlled molecular machinery of bipyridinium monolayer-functionalized surfaces: an electrochemical and contact angle analysis [J]. Chemical Communications 2003, (13): 1542-154
    [46] Choi EJ, Foster MD. Effect of flow on human serum albumin adsorption to self-assembled monolayers of varying packing density [J]. Langmuir 2003, 19(13): 5464-5474.
    [47] Auletta T, Van Veggel F. Self-assembled monolayers on gold of ferrocene-terminated Thiols and hydroxyalkanethiols [J]. Langmuir 2002, 18(4): 1288-1293.
    [48] Yan JC, Dong SJ. Self-assembly of the pre-formed inclusion complexes between cyclodextrins and alkanethiols on gold electrodes [J]. Journal Of Electroanalytical Chemistry 1997 , 440(1-2): 229-238.
    [49] Bojinova T, Coppel Y. Complexes between beta-cyclodextrin and aliphatic guests as new noncovalent amphiphiles: Formation and physicochemical studies [J]. Langmuir 2003, 19(13): 5233-5239.
    [50] Lun MS. AC Impedance Spectroscopy Principles and Applications [M]. Beijing; National Defence and Industry Press, 2001
    [1] Cai H, Xu C. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA [J]. Journal Of Electroanalytical Chemistry 2001, 510(1-2): 78-85.
    
    [2] Chen XY, Li JR. A new step to the mechanism of the enhancement effect of gold nanoparticles on glucose oxidase [J]. Biochemical And Biophysical Research Communications 1998, 245(2): 352-355.
    [3] Xiao Y, Ju HX. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer [J]. Analytica Chimica Acta 1999, 391(1): 73-82.
    [4] Zhao JG, Henkens RW. Direct Electron-Transfer At Horseradish-PeroxidaseColloidal Gold Modified Electrodes [J]. Journal Of Electroanalytical Chemistry 1992, 327(1-2): 109-119.
    [5] Shipway AN, Willner I. Nanoparticles as structural and functional units in surface-confined architectures [J]. Chemical Communications 2001 , (20): 2035-2045.
    [6] Alfonta L, Willner I. Electronic transduction of biocatalytic transformations on nucleic acid-functionalized surfaces [J]. Chemical Communications 2001, (16): 1492-1493.
    [7] Friggeri A, Van Veggel F. Self-assembled monolayers of cavitand receptors for the binding of neutral molecules in water [J]. Langmuir 1998, 14(19): 5457-5463.
    [8] Liu Y, Mu L. Controlled protein assembly on a switchable surface [J]. Chemical Communications 2004 (10): 1194-1195.
    [9] Duschl C , SevinLandais AF. Surface engineering: Optimization of antigen presentation in self-assembled monolayers [J]. Biophysical Journal 1996, 70(4): 1985-1995.
    [10] Piscevic D, Lawall R. Oligonucleotide Hybridization Observed By Surface-Plasmon Optical Techniques [J]. Applied Surface Science 1995, 90(4): 425-436.
    
    [11] Cabilio NR, Omanovic S. Electrochemical studies of the effect of temperature andpH on the adsorption of alpha-lactalbumin at Pt [J]. Langmuir 2000, 16(22): 8480-8488.
    
    [12] Millan KM, Mikkelsen SR. Sequence-Selective Biosensor For Dna-Based On Electroactive Hybridization Indicators [J]. Analytical Chemistry 1993, 65(17): 2317-2323.
    
    [13] Tarlov MJ, Bowden EF. Electron-Transfer Reaction Of Cytochrome-C Adsorbed On Carboxylic-Acid Terminated Alkanethiol Monolayer Electrodes [J]. Journal Of The American Chemical Society 1991, 113(5): 1847-1849.
    [14] Jordan CE, Frey BL. Characterization Of Poly-L-Lysine Adsorption Onto Alkanethiol-Modified Gold Surfaces With Polarization-Modulation Fourier-Transform Infrared-Spectroscopy And Surface-Plasmon Resonance Measurements [J]. Langmuir 1994, 10(10): 3642-3648.
    [15] Frey BL, Jordan CE. Control Of The Specific Adsorption Of Proteins Onto Cold Surfaces With Poly(L-Lysine) Monolayers [J]. Analytical Chemistry 1995, 67(24): 4452-4457.
    [16] Li JH, Ding L. Interfacial characteristics of the self-assembly system of poly-L-lysine 3-mercaptopropionic acid gold electrode [J]. Journal Of Electroanalytical Chemistry 1997, 431(2): 227-230.
    [17] Razumas V, Arnebrant T. Direct electrochemistry of microperoxidase-11 at gold electrodes modified by self-assembled monolayers of 4,4'-dithiodipyridine and 1-octadecanethiol [J]. Journal Of Electroanalytical Chemistry 1997, 427(1-2): 1-5.
    
    [18] Duan CM, Meyerhoff ME. Separation-Free Sandwich Enzyme Immunoassays Using Microporous Gold Electrodes And Self-Assembled Monolayer Immobilized Capture Antibodies [J]. Analytical Chemistry 1994, 66(9): 1369-1377.
    [19] Yurke B, Turberfield AJ. A DNA-fuelled molecular machine made of DNA [J]. Nature 406(6796): 605-608.
    [20] Katz E, Lioubashevsky O. Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode [J]. Journal Of The American Chemical Society 2004, 126(47): 15520-15532.
    [21] Cheng CA, Brajtertoth A, Permselectivity And High-Sensitivity At Ultrathin Monolayers - Effect Of Film Hydrophobicity [J]. Analytical Chemistry 1995, 67(17): 2767-2775.
    [22] Liu AC, Chen DC. Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II) [J]. Analytical Chemistry 1999 , 71(8): 1549-1552.
    
    [23] Chechik V, Stirling CJM. Reactivity in self-assembled monolayers: Effect of the distance from the reaction center to the monolayer-solution interface [J]. Langmuir 1998, 14(1): 99-105.
    [24] Schonenberger C, Sondaghuethorst JAM. What Are The Holes In Self-Assembled Monolayers Of Alkanethiols On Gold [J]. Langmuir 1994, 10(3): 611-614.
    [25] Turyan I, Mandler D. Self-Assembled Monolayers In Electroanalytical Chemistry - Application Of Omega-Mercaptocarboxylic Acid Monolayers For Electrochemical Determination Of Ultralow Levels Of Cadmium(Ii) [J]. Analytical Chemistry 1994, 66(1): 58-63.
    [26] Malem F, Mandler D. Self-Assembled Monolayers In Electroanalytical Chemistry - Application Of Omega-Mercapto Carboxylic-Acid Monolayers For The Electrochemical Detection Of Dopamine In The Presence Of A High-Concentration Of Ascorbic-Acid [J]. Analytical Chemistry 1993, 65(1): 37-41.
    [27] Balamurugan S, Ista LK. Reversible protein adsorption and bioadhesion on monolayers terminated with mixtures of oligo(ethylene glycol) and methyl groups [J]. Journal Of The American Chemical Society 2005, 127(42): 14548-14549.
    
    [28] Hyun J, Lee WK. Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide switches [J]. Journal Of The American Chemical Society 2004, 126(23): 7330-7335.
    [29] Ladd J, Boozer C. DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge [J]. Langmuir 2004, 20(19): 8090-8095.
    [30] Sikes HD, Smalley JF. Rapid electron tunneling through oligophenylenevinylene bridges [J]. Science 2001, 291(5508): 1519-1523.
    [31] Nitzan A, Ratner MA. Electron transport in molecular wire junctions [J]. Science 2003, 300(5624): 1384-1389.
    [32] Manz A, Graber N. Miniaturized Total Chemical-Analysis Systems - A Novel Concept For Chemical Sensing [J]. Sensors And Actuators B-Chemical 1990, 1(1-6): 244-248.
    [33] Harrison DJ , Fluri K. Micromachining A Miniaturized Capillary Electrophoresis-Based Chemical-Analysis System On A Chip [J]. Science 1993, 261(5123): 895-897.
    [34] Ramsey JM, Jacobson SC. Microfabricated Chemical Measurement Systems [J]. Nature Medicine 1995, 1(10): 1093-1096.
    [35] Woolley AT, Mathies RA. Ultra-High-Speed Dna-Sequencing Using Capillary Electrophoresis Chips [J]. Analytical Chemistry 1995, 67(20): 3676-3680.
    [36] Woolley AT, Hadley D. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device [J]. Analytical Chemistry 1996, 68(23): 4081-4086.
    [37] Duffy DC , Gillis HL. Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays[J]. Analytical Chemistry 1999, 71(20): 4669-4678.
    [38] Huber DL, Manginell RP. Programmed adsorption and release of proteins in a microfluidic device[J]. Science 2003, 301(5631): 352-354.
    [39] 张思祥,郑炜,关学强,冉多钢,刘伟铃.微流控分析芯片快速制造方法研究.[J],光谱仪器与分析,第一期:121-123
    [1] Okano T. Responsive gels: volume transitions (Vol. II) (Dusck K, cd. ) [M] .Berlin :Springer2Verlag , 1993.
    
    [2] Osada Y, Gong JP Stimuli-responsive polymer gels and theirapplication to chemomechanical systems [J]. Prog Polym Sci , 1993 , 18 :187 - 226.
    
    [3] Galaev IY, Mattiasson B. "Smart" Polymers and what they could do in biotechnology and medicine[J ] . Trends in Biotechnology , 1999 , 17 :335- 340.
    
    [4] Mattiasson B , Dainyak MB , Galaev IY. Smart polymers and protein purification[J]. Polym-Plast Technol Eng , 1998 , 37(3) :303 - 308.
    
    [5] Eudragit. Rohm Pharma GMBH Information Materials [R] . Rohm Pharma GMBH , Weitenstad: Germany , 1993.
    
    [6] Persson J, Johansson HO. Aqueous polymer two-phase systems formed by new thermoseparating polymers [J]. Bioseparation 2000, 9(2): 105-116.
    
    [7] Mansky P, Y Liu. Controlling polymer-surface interactions with random copolymer brushes [J]. Science 1997, 275(5305): 1458-1460.
    
    [8] a) Minko S, Muller M. Two-level structured self-adaptive surfaces with reversibly tunable properties [J]. Journal Of The American Chemical Society 2003, 125(13): 3896-3900. b) Minko S, Patil S. Synthesis of adaptive polymer brushes via grafting to approach from melt [J]. Langmuir 2002, 18(1): 289-296. c) Ionov L, Minko S. Reversible chemical patterning on stimuli-responsive polymer film: Environment-responsive lithography [J]. Journal Of The American Chemical Society 2003, 125(27): 8302-8306. d) Ionov L, B. Zdyrko. Gradient polymer layers by grafting to approach [J]. Macromolecular Rapid Communications 2004, 25(1): 360-365.
    
    [9] a) Julthongpiput D, Lin YH. Y-shaped amphiphilic brushes with switchable micellar surface structures [J]. Journal Of The American Chemical Society 2003, 125(51): 15912-15921. b) Julthongpiput D, Lin YH. Y-shaped polymer brushes: Nanoscale switchable surfaces [J]. Langmuir 2003, 19(19): 7832-7836.
    
    [10] a) Luzinov I, Julthongpiput D. Polystyrene layers grafted to epoxy-modified silicon surfaces [J]. Macromolecules 2000, 33(3): 1043-1048. b) Tsukruk VV, Luzinov I. Sticky molecular surfaces: Epoxysilane self-assembled monolayers [J]. Langmuir 1999, 15(9): 3029-3032. c) Tsukruk V V. Molecular lubricants and glues for micro- and nanodevices [J]. Advanced Materials 2001, 13(2): 95-108.d) Tsukruk VV, Sidorenko A. Surface nanomechanical properties of polymer nanocomposite layers [J]. Langmuir 2001, 17(21): 6715-6719.
    
    [11] Zhao B, Brittain WJ. Nanopattern formation from tethered PS-b-PMMA brushes upon treatment with selective solvents [J]. Journal Of The American Chemical Society 2000, 122(10): 2407-2408.
    
    [12] a)Zhao B , Brittain WJ. Synthesis of tethered polystyrene-block-poly(methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization [J]. Journal Of The American Chemical Society 1999, 121(14): 3557-3558. b) Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules [J]. Progress In Polymer Science 2000 , 25(5): 677-710. c) Zhao B , Brittain WJ. Synthesis , characterization, and properties of tethered polystyrene-b-polyacrylate brushes on flat silicate substrates [J]. Macromolecules 2000, 33(23): 8813-8820. d) Zhao B, Brittain WJ. Trichlorosilane chemisorption on surface-modified poly(tetrafluoroethylene) [J]. Macromolecules 1999, 32(3): 796-800. e) Zhao B, Mulkey D. Synthesis and characterization of phenol- and o-chlorophenol-terminated monolayers [J]. Langmuir 1999, 15(20): 6856-6861.
    
    [13] a) Sidorenko A, Minko S. Switching of polymer brushes [J]. Langmuir 1999, 15(24): 8349-8355. b) Motornov M, Minko S. Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes [J]. Langmuir 2003, 19(19): 8077-8085. c) Minko S, Usov D. Environment-adopting surfaces with reversibly switchable morphology [J]. Macromolecular Rapid Communications 2001, 22(3): 206-211.
    
    [14] Sun TL, Wang GJ. Reversible switching between superhydrophilicity and superhydrophobicity [J]. Angewandte Chemie-International Edition 2004, 43(3): 357-360.
    
    [15] a)Takei YG , Aoki T. Dynamic Contact-Angle Measurement Of Temperature-Responsive Surface-Properties For Poly(N-Isopropylacrylamide) Grafted Surfaces [J]. Macromolecules 1994, 27(21): 6163-6166. b) Yamada N, Okano T. Thermoresponsive Polymeric Surfaces - Control Of Attachment And Detachment Of Cultured-Cells [J]. Makromolekulare Chemie-Rapid Communications 1990, 11(11): 571-576.
    
    [16] Huber DL, Manginell RP. Programmed adsorption and release of proteins in a microfluidic device [J]. Science 2003, 301(5631): 352-354.
    
    [17] Rehberg CE , Fisher CH. Preparation and Properties of the n-Alkyl Acrylates [J]. J Am Chem Soc , 1944 , 66:1203-1207
    
    
    [18] Jordan E F, Bennett R, Shuman AC, Wrigley AN. Reactivity ratios and copolymerization parameters for copolymers incorporating n-octadecyl acrylate and N-n-octadecylacrylamide [J]. J Polym Sci , Part A-1 , 1970 , 8 :3113—3121
    [19] Jordan EF, Koos RE , Parker WE. Viscosity index. I. Evaluation of selected copolymers incorporating n-octadecyl acrylate as viscosity index improvers [J]. J Appl Polym Sci , 1978 , 22:1509-1528
    [20] Kurahashi H , Furusaki S. Preparation And Properties Of A New Temperature-Sensitive Ionized Gel [J]. Journal Of Chemical Engineering Of Japan 1993, 26(1): 89-93.
    [21] Lokuge I, Wang X. Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization [J]. Langmuir 2007, 23(1): 305-311.
    [22] Feil H, Bae YH. Molecular Separation By Thermosensitive Hydrogel Membranes [J]. Journal Of Membrane Science 1991, 64(3): 283-294.
    [23] Iwata H, Oodate M. Preparation of Temperature-Sensitive Membranes By Graft-Polymerization Onto A Porous Membrane [J]. Journal Of Membrane Science 1991, 55(1-2): 119-130.
    [24] Yamaguchi T, Nakao S. Plasma-Graft Filling Polymerization - Preparation Of A New Type Of Pervaporation Membrane For Organic Liquid-Mixtures [J]. Macromolecules 1991, 24(20): 5522-5527.
    [25] Yamagiwa K, Sasaki T. Adsorption of Triton X-100, tryptophan and BSA on temperature-sensitive poly(vinylmethylether)gel [J]. Journal of Chemical Engineering of Japan 1995, 28(6): 697-702.
    [26] Sprecht EH, Neuman. Neher H T. U. S. Pat. 2773063.
    [27] Scarpa JS, Mueller DD, Klotz IM. Slow hydrogen-deuterium exchange in a non-.alpha.-helical polyamide [J]. J Am Chem Soc 1967, 89: 6024-6030.
    [28] Tanaka T, Nishio I, Sun ST. Collapse of Gels in an Electric Field [J]. Science, 1982, 218:467-469.
    [29] Kurihara S, Ueno Y. Preparation of poly(vinyl alcohol) graft N-isopropylacrylamide copolymer membranes with triphenylmethane leucocyanide and permeation of solutes through the membranes [J]. Journal Of Applied Polymer Science 1998, 67(11): 1931-1937.
    [30] Turner JS, Cheng YL. Heterogeneous polyelectrolyte gels as stimuli-responsive membranes [J]. Journal of Membrane Science 1998, 148(2): 207-222.
    [31] Tsuneda S, Saito K. Water Acetone Permeability Of Porous Hollow-Fiber Membrane Containing Diethylamino Groups On The Grafted Polymer Branches [J]. Journal of Membrane Science 1992, 71(1-2): 1-12.
    [32] Me M, Misumi Y. Stimuli-Responsive Polymers - Chemical-Induced Reversible Phase-Separation Of An Aqueous-Solution Of Poly(N-Isopropylacrylamide) With Pendent Crown-Ether Groups [J]. Polymer 1993, 34(21): 4531 -4535.
    [33] Marchetti M, Prager S. Thermodynamic Predictions Of Volume Changes In Temperature-Sensitive Gels.2. Experiments [J]. Macromolecules 1990, 23(14): 3445.345O.
    
    [34] Winnik FM. Fluorescence Studies Of Aqueous-Solutions Of Poly(N-Isopropylacrylamide) Below And Above Their Lcst [J]. Macromolecules 1990, 23(1): 233-242.
    [35] Kubota K, Fujishige S. Single-Chain Transition Of Poly(N-Isopropylacrylamide) In Water [J]. Journal Of Physical Chemistry 1990, 94(12): 5154-5158.
    [36] Schild HG. Poly (N-Isopropylacrylamide) - Experiment, Theory And Application [J]. Progress in Polymer Science 1992, 17(2): 163-249.
    [37] Xia F, Feng L. Dual-responsive surfaces that switch superhydrophilicity and superhydrophobicity [J]. Advanced Materials 2006, 18(4): 432-+.
    [38] Feng XJ, Feng L, Jin MH, Zhai J, Jiang L, Zhu DB. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. J Am Chem Soc 2004, 126, 62-63.
    [39] Feng XJ, Zhai J. The fabrication and switchable superhydrophobicity of TiO2 nanorod films [J]. Angewandte Chemie-International Edition 2005 , 44(32): 5115-5118.
    [40] Ren J, Ha HF. Study on interpenetrating polymer network hydrogel of diallyldimethylammoniurn chloride with kappa-carrageenan by UV irradiation [J]. European Polymer Journal 2001, 37(12): 2413-2417.
    [41] Kono K , Tabata F. Ph-Responsive Permeability Of Poly(Acrylic Acid)-Poly(Ethylenimine) Complex Capsule Membrane [J]. Journal of Membrane Science 1993, 76(2-3): 233-243.
    [42] Chu LY, Park SH. Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates [J]. Journal of Membrane Science 2001, 192(1-2): 27-39.
    [43] Choi YJ, Yamaguchi T. A novel separation system using porous thermosensitive membranes[J]. Industrial & Engineering Chemistry Research 2000, 39(7): 2491-2495.
    [44] Okano T, Suzuki K. Prevention Of Changes In Platelet Cytoplasmic Free Calcium Levels By Interaction With 2-Hydroxyethyl Methacrylate/Styrene Block-Copolymer Surfaces[J]. Journal Of Biomedical Materials Research 1993, 27(12): 1519-1525.
    [45] Monji N, Cole CA. Application Of A Thermally-Reversible Polymer-Antibody Conjugate In A Novel Membrane-Based Immunoassay[J]. Biochemical And Biophysical Research Communications 1990, 172(2): 652-660.
    [46] Chen GH, Hoffman AS. Preparation And Properties Of Thermoreversible, Phase-Separating Enzyme-Oligo(N-Isopropylacrylamide) Conjugates[J]. Bioconjugate Chemistry 1993, 4(6): 509-514.
    [47] Chen JP, Hoffman AS. Polymer Protein Conjugates.2. Affinity Precipitation Separation Of Human Immuno-Gamma-Globulin By A Poly(N-Isopropylacrylamide)-Protein-A Conjugate[J]. Biomaterials 1990, 11(9): 631-634.
    [48] Ringsdorf H, Venzmer J. Fluorescence Studies Of Hydrophobically Modified Poly(N-Isopropylacrylamides)[J]. Macromolecules 1991, 24(7): 1678-1686.
    [49] 何庆,盛京.响应性凝胶及其在药物控释上的应用[J].功能高分子学报,1997,10(1):118~127
    [50] Liu F, Tao GL. Synthesis Of Thermal Phase-Separating Reactive Polymers And Their Applications In Immobilized Enzymes[J]. Polymer Journal 1993, 25(6): 561-567.
    [51] Kawaguchi H, Fujimoto K. Hydrogel Microspheres.3. Temperature-Dependent Adsorption Of Proteins On Poly-N-Isopropylacrylamide Hydrogel Microspheres[J]. Colloid And Polymer Science 1992, 270(1): 53-57.
    [52] 张柏林,王敏灿,常文保,慈云祥.高分子控温相变免疫分析法测定苯妥因[J].分析化学,1997,25(9):993~996
    [53] 周平,邓延倬,曾云鹗.用温度敏感高分子为载体的激光光声免疫分析及其应用[J].分析化学,1997,25(2):144~148
    [54] Zhu QZ, Liu FH. Mimetic-enzyme fluorescence immunoassay using a thermal phase separating polymer[J]. Analyst 1998, 123(5): 1131-1134.
    [55] Zhu QZ, Yang HH. A novel mimetic enzymatic fluorescence immunoassay for hepatitis B surface antigen by using a thermal phase separating polymer[J]. Analyst 2000, 125(12): 2260-2263.
    [56] 朱庆枝,杨黄浩,李东辉,许金钩,张毅,张长弓.热敏相分离荧光免疫分析乙肝表面抗原的新方法[J].高等学校化学学报,1999,20(4):544~548
    [57] 杨黄浩,朱庆枝,李东辉,丁马太,许金钩.带活性末端的热敏高分子的制备及其在荧光免疫分析中的应用[J].高等学校化学学报,2001,22(5):754~758
    [58] Hoffman AS, Stayton PS. Conjugates of stimuli-responsive polymers and biomolecules: Random and site-specific conjugates of temperature-sensitive polymers and proteins[J]. Macromolecular Symposia 1997, 118: 553-563.
    [59] Oliveira ED, Silva AFS. Contributions to the thermodynamics of polymer hydrogel systems[J]. Polymer 2004, 45(4): 1287-1293.
    [60] Sassi AP, Shaw AJ. Partitioning of proteins and small biomolecules in temperature- and pH-sensitive hydrogels[J]. Polymer 1996, 37(11): 2151-2164.
    [61] Stayton PS, Hoffman AS. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics[J]. Journal Of Controlled Release 2000, 65(1-2): 203-220.
    [62] 唐江宏,侯延民,申琦.基于荧光聚合物的光纤传感器测定四环素的研究[J].理化检验-化学分册,2001,37(7):294-297
    [63] 林鹏,郑洪,张长弓,杨黄浩,李东辉,许金钩.可控相转变温度热敏高分子的制备及其在免疫分析中的应用[J].分析化学研究报告.2003,31(1):1-4
    [64] 赵金富,王永成,米健秋,常文保.酶联免疫分析结合生物素.亲合素放大体系测定血清中的雌三醇[J].高等学校化学学报,2004,25(6):1019-1022
    [65] 袁若,唐点平,柴雅琴,张凌燕,刘颜,钟霞,戴建远.高灵敏电位型免疫传感器对乙型肝炎表面抗原的诊断技术研究[J].中国科学B辑-化学 2004,34(4):279~286
    [66] 高志贤,张超,陶桂全.压电免疫传感器抗体固定方法研究[J].中华微生物学和免疫学杂志,1996,16(3):191-195.
    [67] 裴仁军,胡继明,胡毅.蛋白A定向固定抗体的纤维蛋白压电免疫传感器的研究[J].高等学校化学学报,1998,19(3):363-366.
    [68] 楚霞,林朝晖,沈国励.甲胎蛋白压电免疫传感器的研究[J].高等学校化学学报,1996,17(6):870-873.
    [69] 陆斌,韦钰.基于全内反射荧光原理的免疫传感器[J].中国生物医学工程学报,1993,12(2):142-147.
    [70] 高志贤,陶桂全,李新如.压电免疫传感器用于C2型葡萄球菌肠毒素的测 定[J].分析化学,1997,25(9):1061-1063.
    [71] 李凡超,徐京宁,何兵.免疫电化学方法测定C干扰素[J].分析化学,1994,2(1):55-57.
    [72] Takei YG, Matsukata M. Temperature-Responsive Bioconjugates.3. Antibody Poly(N-Isopropylacrylamide) Conjugates For Temperature-Modulated Precipitations And Affinity Bioseparations[J]. Bioconjugate Chemistry 1994, 5(6): 577-582.
    [73] Sauerbrey, G. Z. Phys. 1959, 155, 206.
    [74] Zhang Y, Telyatnikov V, Sathe M. Studying the Interaction of r-Gal Carbohydrate Antigen and Proteins by Quartz-Crystal Microbalance[J]. Journal of the American Chemical Society 2003, 125, 9292-9293
    [75] Ebara Y, Itakura K, Okahata Y. Kinetic Studies of Molecular Recognition Based on Hydrogen Bonding at the Air-Water Interface by Using a Highly Sensitive Quartz-Crystal Microbalance[J]. Langmuir 1996, 12, 5165-5170.
    [1] Kimaru IW, Xu YF. Characterization of chiral interactions using fluorescence anisotropy [J]. Analytical Chemistry 2006, 78(24): 8485-8490.
    
    [2] Nowlan C, Li YC. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library [J]. Journal Of The American Chemical Society 2006, 128(49): 15892-15902.
    
    [3] Wolf C, Liu SL. An enantioselective fluorescence sensing assay for quantitative analysis of chiral carboxylic acids and amino acid derivatives [J]. Chemical Communications 2006, (40): 4242-4244.
    
    [4] Zhang S , Ding JJ. Development of a highly enantioselective capacitive immunosensor for the detection of alpha-amino acids [J]. Analytical Chemistry 2006, 78(21): 7592-7596.
    
    [5] Kawasaki T, Tanaka H. Chiral discrimination of cryptochiral saturated quaternary and tertiary hydrocarbons by asymmetric autocatalysis [J]. Journal Of The American Chemical Society 2006, 128(18): 6032-6033.
    
    [6] Arnell R, Ferraz N. Analytical characterization of chiral drug-protein interactions: Comparison between the optical biosensor (surface plasmon resonance) assay and the HPLC perturbation method [J]. Analytical Chemistry 2006, 78(5): 1682-1689.
    
    [7] Zu CL , Brewer BN. Tertiary amine appended derivatives of N-(3 , 5-dinitrobenzoyl)leucine as chiral selectors for enantiomer assays by electrospray ionization mass spectrometry [J]. Analytical Chemistry 2005, 77(15): 5019-5027.
    
    [8] Kobzar K, Kessler H. Stretched gelatin gels as chiral alignment media for the discrimination of enantiomers by NMR spectroscopy [J]. Angewandte Chemie-International Edition 2005, 44(23): 3509-3509.
    
    [9] Wigglesworth TJ, Sud D. Chiral discrimination in photochromic helicenes [J]. Journal of The American Chemical Society 2005, 127(20): 7272-7273.
    
    [10] Letondor C, Humbert N. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation [J]. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102(13): 4683-4687.
    
    [11] Pais LS, Loureiro J M. Chiral separation by SMB chromatography [J]. Separation And Purification Technology 2000, 20(1): 67-77.
    [12] 李桦,胡先明.超临界流体色谱法分离手性药物[J].色谱,1997,17(2):166-170.
    [13] 邓金根,迟永样,朱槿,等.化学拆分的新方法研究[J].合成化学,1999,7(4):340-344.
    [14] Bourque AJ, Krull IS. Immobilized isocyanates for derivatization of amines for chiral recognition in liquid chromatography with UV detection[J]. Pharm B iom ed Anal, 1993, 11(6): 495-503.
    [15] Strano RS, Colamonici C, Botre F. Detection of sibutramine administration: a gas chromatography/mass spectrometry study of the main urinary metabolites[J]. Rapid Communications In Mass Spectrometry 2007, 21, 79-88.
    [16] 赵新峰,孙毓庆.毛细管区带电泳测定地黄中梓醇的含量[J].药物分析杂志,2002,22(6):471-473.
    [17] 刘学良,刘莺,王俊德,等.分子烙印技术的应用与最新进展[J].分析化学,2002,30(10):1260-1266.
    [18] Hofstetter O, Hofstetter H. Chiral discrimination using an immunosensor[J]. Nature Biotechnology 1999, 17(4): 371-374.
    [19] Hofstetter O, H. Hofstetter. Antibodies can recognize the chiral center of free alpha-amino acids[J]. Journal Of The American Chemical Society 1998, 120(13): 3251-3252.
    [20] Dutta P, Tipple CA. Enantioselective sensors based on antibody-mediated nanomechanics[J]. Analytical Chemistry 2003, 75(10): 2342-2348.
    [21] Tsourkas A, Hofstetter O. Magnetic relaxation switch immunosensors detect enantiomeric impurities[J]. Angewandte Chemie-International Edition 2004, 43(18): 2395-2399.
    [22] Zeleke JM, Smith GB. Enantiomer separation of amino acids in immunoaffinity micro LC-MS[J]. Chirality 2006, 18(7): 544-550.
    [23] Hofstetter O, Hofstetter H. An immunochemical approach for the determination of trace amounts of enantiomeric impurities[J]. Chemical Communications 2000, (17): 1581-1582.
    [24] Got PA, Scherrmann JM. Stereoselectivity of antibodies for the bioanalysis of chiral drugs[J]. Pharmaceutical Research 1997, 14(11): 1516-1523.
    [25] Josephson L, Perez JM. Magnetic nanosensors for the detection of oligonucleotide sequences[J]. Angewandte Chemie-International Edition 2001, 40(17): 3204-+.
    [26] Webb TH, Wilcox CS. Enantioselective And Diastereoselective Molecular Recognition Of Neutral Molecules[J]. Chemical Society Reviews 1993, 22(6): 383-395.
    [27] (a) Bhattarai KM, Bonarlaw RP. Diastereoselective And Enantio-Selective Binding Of Octyl Glucosides By An Artificial Receptor[J]. Journal Of The Chemical Society-Chemical Communications 1992, (10): 752-754.
    (b) Zimmerman SC,. Wu W M. Complexation Of Nucleotide Bases By Molecular Tweezers With Active-Site Carboxylic-Acids-Effects Of Microenvironment[J]. Journal Of The American Chemical Society 1991, 113(1): 196-201.
    (d) Schneider HJ. Models For Peptide Receptors[J]. Angewandte Chemie-International Edition In English 1993, 32(6): 848-850.
    [28] 江德臣,黄松,唐佳,刘宝红,黄宜平,孔继烈。高灵敏度电容型透明质酸结合蛋白免疫传感器的研制[J]。2003年31卷6期《分析化学》713-715页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700