用户名: 密码: 验证码:
沙门氏菌特异性靶点的筛选及荧光定量PCR检测方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用生物信息学手段,通过比对沙门氏菌及其他原核生物的基因组序列,发掘出361段沙门氏菌特异性片段作为候选分子检测靶点。从这些序列中随机挑选出30个序列片段,设计普通PCR引物,并用58株沙门氏菌菌株和22株非沙门氏菌菌株对每对引物的检测特异性进行评价,筛选出15对特异性较好的引物。经进一步灵敏度评价,得到6对检测灵敏度较好的引物,分别为:c1(36.5 fg/PCR,500 cfu/ mL);c3(36.5 fg/PCR,500 cfu/ mL);c20(36.5 fg/PCR,500 cfu/ mL);c23(36.5 fg/PCR,5×104 cfu/ mL);c24(36.5 fg/PCR,500 cfu/ mL)和plc(36.5 fg/PCR,500 cfu/ mL)。用鼠伤寒沙门氏菌(ATCC 14028)人为污染牛奶样品后,用建立好的普通PCR方法进行检测验证,当初始接种菌量为8 cfu/25g牛奶时,引物c3,c20,c24和plc均能在增菌6-8小时内检出阳性结果;而严重污染的牛奶样品(>104 cfu/25 g牛奶)则只需增菌2-4小时即可检出沙门氏菌。
     在普通PCR方法的基础上,挑选出一段特异性较好的沙门氏菌基因组片段,设计出MGB-TaqMan探针p4以及相应的引物。同时,利用DNA随机重组技术构建扩增内标探针,合成单链寡核苷酸直接作为内标模板,以指示由PCR抑制剂等因素引起的假阴性结果,建立沙门氏菌实时荧光PCR检测方法,并对其特异性、灵敏度、抗干扰性以及在食品样品中的实际检测能力进行评价。经40株沙门氏菌和24株非沙门氏菌检测验证,荧光定量PCR具有良好的特异性,以肠炎沙门氏菌(CDC H3526)基因组DNA作为模板,检测灵敏度达到18.6 fg/PCR;以鼠伤寒沙门氏菌(CDC G7601)基因组DNA作模版,PCR反应检测灵敏度为40.2 fg/PCR。在鸡肉样品中自然存在背景菌群的干扰下,PCR检测限为130 cfu/mL,且PCR定量结果与实际接入的沙门氏菌量处于相同或相近水平。用所建立的荧光定量PCR方法检测人工污染至鸡肉样品中的沙门氏菌,当污染量低至5 cfu/10 g样品时,经6小时非选择性增菌后,检验结果与标准方法符合率为23/24(95.8%);人工污染液体鸡蛋样品,初始接种量低至1 cfu/10 g样品时,检出率为100%,并与标准检测方法结果吻合;荧光定量PCR方法对人工污染沙门氏菌的花生酱样品检出率为26/27(96.3%),与标准方法符合率为35/36(97.2%),检测限低至3 cfu/ 10g样品。
In this study 361 candidates for Salmonella-specific targets were successfully identified by comparing the sequences of Salmonella enterica and other prokaryotic genomes using bio-informatic analysis. Primers were designed from 30 randomly selected fragments for end-point PCR detection. The specificity of 15 primer sets was verified by testing against 58 Salmonella strains and 22 non-Salmonella strains, and 6 primer pairs, namely c1 (36.5 fg/PCR, 500 cfu/ mL); c3 (36.5 fg/PCR, 500 cfu/ mL); c20 (36.5 fg/PCR, 500 cfu/ mL); c23 (36.5 fg/PCR, 5×104 cfu/ mL); c24 (36.5 fg/PCR,500 cfu/ mL) and plc (36.5 fg/PCR, 500 cfu/ mL),showed high sensitivity. The PCR method yielded positive results from milk samples that were artificially contaminated with Salmonella Typhimurium (as low as 8 cfu/25mL milk) within 6-8 hours of non-selective enrichment. The enrichment time was shortened to 2-4 hours when the samples were heavily contaminated ( >104 cfu/25mL milk).
     One of the verified Salmonella specific fragments was targeted to generate a minor groove binding TaqMan probe and the corresponding primer set for real-time PCR detection. An internal amplification control obtained by DNA random shuffling technology was included in the real-time PCR assay to indicate false negative results caused by PCR inhibitors. The real-time PCR method, incorporated with the IAC, demonstrated a high specificity when tested against 40 Salmonella strains and 24 non-Salmonella strains. Detection limits were 18.6 fg genomic DNA /PCR for Salmonella Enteritidis (CDC H3526) and 40.2 fg/PCR for Salmonella Typhimurium (CDC G7601). In the presense of a natural background flora enriched from chicken breast samples, the detection limit was as low as 130 cfu/mL, and the quantitation results of the real-time PCR assay were in accordance with the actual amount of the spiked Salmonella cells prior to DNA extraction. The real-time PCR method was able to detect as low as 5 cfu/10g chicken sample or 1 cfu/ 10g liquid egg sample after a 6-hour non-selective enrichment. Twenty-six out of 27 peanut butter samples, artificially contaminated with as low as 3 cfu/10g sample, were confirmed positive by this real-time PCR sysytem, exhibiting a 97.2% consistency with the standard culture methods.
引文
[1] WHO, WHO global strategy for food safety[J]. WHO Library Cataloguing in Publication Data, Food safety issues. 2002, WA695, 12-27.
    [2] Anonymous. Salmonella serotype Tennessee in powdered milk products and infant formula--Canada and United States, 1993[J]. Morbidity and Mortality Weekly Report. 1993, 42 (26), 516-517.
    [3] Popoff, M. Y.; Bockemuhl, J.; Brenner, F. W., etc., Supplement 2000 (no. 44) to the Kauffmann-White scheme[J]. Research in Microbiology. 2001, 152 (10), 907-909.
    [4]张河战;辜清吾,沙门氏菌的分类、命名及中国沙门氏菌菌型分布[J].微生物学免疫学进展. 2002, 30 (2), 74-76.
    [5] Abubakar, I.; Irvine, L.; Aldus, C. F., etc., A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food[J]. Health Technology Assessment. 2007, 11 (36), 1-216.
    [6]陈建林;刘明辉,细菌性食物中毒流行趋势及预防对策[J].中国卫生检验杂志. 2002, 12 (4), 480-481.
    [7] Manzano, M.; Cocolin, L.; Astori, G., etc., Development of a PCR microplate-capture hybridization method for simple, fast and sensitive detection of Salmonella serovars in food[J]. Molecular and Cellular Probes. 1998, 12 (4), 227-234.
    [8] Whyte, P.; Mc Gill, K.; Collins, J. D., etc., The prevalence and PCR detection of Salmonella contamination in raw poultry[J]. Veterinary Microbiology. 2002, 89 (1), 53-60.
    [9] CDC, Salmonella Annual Summary[J]. 2005.
    [10] Multistate outbreak of Salmonella infections associated with peanut butter and peanut butter-containing products--United States, 2008-2009[J]. Morbidity and Mortality Weekly Report. 2009, 58 (4), 85-90.
    [11] -2003, G. T.,食品卫生微生物学检验沙门菌检验[J].中国标准出版社. 2003.
    [12] AOAC/BAM(Bacteriological Analytical Manual, FDA).伯杰细菌鉴定手册(第八版)[J].科学出版社. 1984.
    [13] Isolation And Identification of Salmonella From Meat, Poultry And Egg Products (MLG 4.04). United States Department of Agriculture, Food Safety and Inspection Service 2008.
    [14]汪琦;张昕,利用PCR方法快速检测食品中的沙门氏菌[J].检验检疫科学. 2005, 15 (6), 26-28.
    [15] Ranga, S.; Pandey, J.; Talib, V. H., Evaluation of two techniques (RPHA and latex agglutination) for use as a screening tool for HBsAg[J]. Indian Journal of Pathology and Microbiology. 1994, 37 (4), 375-380.
    [16] Lee, C. L.; Huang, H. C.; Chiu, S. Y., etc., Latex agglutination test for detection of tetanus antitoxins[J]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1995, 28 (2), 151-156.
    [17]黄金林;焦新安,直接ELISA和PCR相结合快速检测样品中的沙门氏菌[J].中国人兽共患病杂志. 2004, 20 (4), 321-324.
    [18] Cardullo, R. A.; Agrawal, S.; Flores, C., etc., Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer[J]. Proceedings of the National Academy of Sciences. 1988, 85 (23), 8790-8794.
    [19] Bassler, H. A.; Flood, S. J.; Livak, K. J., etc., Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes[J]. Applied and Environmental Microbiology. 1995, 61 (10), 3724-8.
    [20] Heid, C. A.; Stevens, J.; Livak, K. J., etc., Real time quantitative PCR[J]. Genome Research. 1996, 6 (10), 986-994.
    [21]韩俊英;曾瑞萍,荧光定量PCR技术及其应用[J].国外医学遗传分册. 2002, 23 (3), 117.
    [22] Yao, Y.; Nellaker, C.; Karlsson, H., Evaluation of minor groove binding probe and Taqman probe PCR assays: Influence of mismatches and template complexity on quantification[J]. Molecular and Cellular Probes. 2006, 20 (5), 311-316.
    [23] Di Trani, L.; Bedini, B.; Donatelli, I., etc., A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control[J]. BMC Infectious Diseases. 2006, 6, 87.
    [24] Yoshitomi, K. J.; Jinneman, K. C.; Weagant, S. D., Optimization of a 3'-minor groove binder-DNA probe targeting the uidA gene for rapid identification of Escherichia coli O157:H7 using real-time PCR[J]. Molecular and Cellular Probes. 2003, 17 (6), 275-280.
    [25] Galan, J. E.; Curtiss, R., 3rd, Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells[J]. Proceedings of the National Academy of Sciences. 1989, 86 (16), 6383-6387.
    [26] Rahn, K.; De Grandis, S. A.; Clarke, R. C., etc., Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella[J]. Molecular and Cellular Probes. 1992, 6 (4), 271-279.
    [27] Doran, J. L.; Collinson, S. K.; Kay, C. M., etc., fimA and tctC based DNA diagnostics for Salmonella[J]. Molecular and Cellular Probes. 1994, 8 (4), 291-310.
    [28] Cohen, N. D.; Wallis, D. E.; Neibergs, H. L., etc., Comparison of the polymerase chain reaction using genus-specific oligonucleotide primers and microbiologic culture for the detection of Salmonella in drag-swabs from poultry houses[J]. Poultry Sciences. 1994, 73 (8), 1276-1281.
    [29] Yeh, K. S.; Chen, T. H.; Liao, C. W., etc., PCR amplification of the Salmonella typhimurium fimY gene sequence to detect the Salmonella species[J]. International Journal of Food Microbiology. 2002, 78 (3), 227-234.
    [30] Dinjus, U.; Hanel, I.; Muller, W., etc., Detection of the induction of Salmonella enterotoxin gene expression by contact with epithelial cells with RT-PCR[J]. FEMS Microbiology Letters. 1997, 146 (2), 175-179.
    [31] Chopra, A. K.; Peterson, J. W.; Chary, P., etc., Molecular characterization of an enterotoxin from Salmonella typhimurium[J]. Microbial Pathogenesis. 1994, 16 (2), 85-98.
    [32] Murugkar, H. V.; Rahman, H.; Dutta, P. K., Distribution of virulence genes in Salmonella serovars isolated from man & animals[J]. Indian Journal of Medical Researches. 2003, 117, 66-70.
    [33] Riyaz-Ul-Hassan, S.; Verma, V.; Qazi, G. N., Rapid detection of Salmonella by polymerase chain reaction[J]. Molecular and Cellular Probes. 2004, 18 (5), 333-339.
    [34] Prager, R.; Fruth, A.; Tschape, H., Salmonella enterotoxin (stn) gene is prevalent among strains of Salmonella enterica, but not among Salmonella bongori and other Enterobacteriaceae[J]. FEMS Immunology and Medical Microbiology. 1995, 12 (1), 47-50.
    [35] Rahman, H., Prevalence of enterotoxin gene (stn) among different serovars of Salmonella[J]. Indian J Med Res 1999, 110, 43-6.
    [36] Guo, X.; Chen, J.; Beuchat, L. R., etc., PCR detection of Salmonella enterica serotype Montevideo in and on raw tomatoes using primers derived from hilA[J]. Applied and Environmental Microbiology. 2000, 66 (12), 5248-5252.
    [37] Kubori, T.; Matsushima, Y.; Nakamura, D., etc., Supramolecular structure of the Salmonella typhimurium type III protein secretion system[J]. Science. 1998, 280 (5363), 602-605.
    [38] Song, J. H.; Cho, H.; Park, M. Y., etc., Detection of the H1-j strain of Salmonella typhi among Korean isolates by the polymerase chain reaction[J]. American Journal of Tropical Medicine and Hygiene. 1994, 50 (5), 608-611.
    [39] Hayashi, F.; Smith, K. D.; Ozinsky, A., etc., The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5[J]. Nature. 2001, 410 (6832), 1099-1103.
    [40] Mizumoto, N.; Toyota-Hanatani, Y.; Sasai, K., etc., Detection of specific antibodies against deflagellated Salmonella Enteritidis and S. Enteritidis FliC-specific 9kDa polypeptide[J]. Veterinary Microbiology. 2004, 99 (2), 113-120.
    [41] Itoh, Y.; Hirose, K.; Miyake, M., etc., Amplification of rfbE and fliC genes by polymerase chain reaction for identification and detection of Salmonella serovar Enteritidis, Dublin and Gallinarum-Pullorum[J]. Microbiology and Immunology. 1997, 41 (10), 791-794.
    [42] Kumar, S.; Balakrishna, K.; Batra, H. V., Detection of Salmonella enterica serovar Typhi (S. Typhi) by selective amplification of invA, viaB, fliC-d and prt genes by polymerase chain reaction in mutiplex format[J]. Letters in Applied Microbiology. 2006, 42 (2), 149-154.
    [43] Lampel, K. A.; Keasler, S. P.; Hanes, D. E., Specific detection of Salmonella enterica serotype Enteritidis using the polymerase chain reaction[J]. Epidemiology and Infection. 1996, 116 (2), 137-145.
    [44] Mahon, J.; Lax, A. J., A quantitative polymerase chain reaction method for the detection in avian faeces of Salmonellae carrying the spvR gene[J]. Epidemiology and Infecttion. 1993, 111 (3), 455-464.
    [45] Luk, J. M.; Kongmuang, U.; Reeves, P. R., etc., Selective amplification of abequose and paratose synthase genes (rfb) by polymerase chain reaction for identification of Salmonella major serogroups (A, B, C2, and D)[J]. Journal of Clinical Microbiology. 1993, 31 (8), 2118-2123.
    [46] Kwang, J.; Littledike, E. T.; Keen, J. E., Use of the polymerase chain reaction for Salmonella detection[J]. Letters in Applied Microbiology. 1996, 22 (1), 46-51.
    [47] Trkov, M.; Avgustin, G., An improved 16S rRNA based PCR method for the specific detection of Salmonella enterica[J]. International Journal of Food Microbiology. 2003, 80 (1), 67-75.
    [48] Ziemer, C. J.; Steadham, S. R., Evaluation of the specificity of Salmonella PCR primers using various intestinal bacterial species[J]. Letters in Applied Microbiology. 2003, 37 (6), 463-469.
    [49] http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome.
    [50] Kim, H. J.; Park, S. H.; Lee, T. H., etc., Identification of Salmonella enterica serovar Typhimurium using specific PCR primers obtained by comparative genomics in Salmonella serovars[J]. Journal of Food Protection. 2006, 69 (7), 1653-1661.
    [51] Kim, H. J.; Park, S. H.; Lee, T. H., etc., Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics[J]. Biosensors and Bioelectronics. 2008, 24 (2), 238-246.
    [52] Ou, H. Y.; Ju, C. T.; Thong, K. L., etc., Translational genomics to develop a Salmonella enterica serovar Paratyphi A multiplex polymerase chain reaction assay[J]. Journal of Molecular Diagnostics. 2007, 9 (5), 624-630.
    [53] Sachadyn, P.; Kur, J., The construction and use of a PCR internal control[J]. Molecular and Cellular Probes. 1998, 12 (5), 259-62.
    [54] Abdulmawjood, A.; Roth, S.; Bulte, M., Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction[J]. Molecular and Cellular Probes. 2002, 16 (5), 335-339.
    [55] Brightwell, G.; Pearce, M.; Leslie, D., Development of internal controls for PCR detection of Bacillus anthracis[J]. Molecular and Cellular Probes. 1998, 12 (6), 367-377.
    [56] Hoorfar, J.; Malorny, B.; Abdulmawjood, A., etc., Practical considerations in design of internal amplification controls for diagnostic PCR assays[J]. Journal of Clinical Microbiolgoy. 2004, 42 (5), 1863-1868.
    [57] Malorny, B.; Bunge, C.; Helmuth, R., A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs[J]. Journal of Microbiological Methods. 2007, 70 (2), 245-51.
    [58] Klerks, M. M.; Zijlstra, C.; van Bruggen, A. H., Comparison of real-time PCR methods for detection of Salmonella enterica and Escherichia coli O157:H7, and introduction of a general internal amplification control[J]. Journal of Microbiological Methods. 2004, 59 (3), 337-349.
    [59]刘斌;史贤明,扩增内标在沙门氏菌PCR检测方法中的应用[J].微生物学通报. 2006, 33, 156-161.
    [60] Boeckh, M.; Boivin, G., Quantitation of cytomegalovirus: methodologic aspects and clinical applications[J]. Clinical Microbiology Reviews. 1998, 11 (3), 533-554.
    [61] Piva, F.; Principato, G., RANDNA: a random DNA sequence generator[J]. In Silico Biology. 2006, 6 (3), 253-258.
    [62] Long, F.; Zhu, X. N.; Zhang, Z. M., etc., Development of a quantitative polymerase chain reaction method using a live bacterium as internal control for the detection of Listeria monocytogenes[J]. Diagnostic Microbiology and Infectious Disease. 2008, 62 (4), 374-381.
    [63] Malorny, B.; Hoorfar, J.; Bunge, C., etc., Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard[J]. Applied and Environmental Microbiology. 2003, 69 (1), 290-296.
    [64] Moore, M. M.; Feist, M. D., Real-time PCR method for Salmonella spp. targeting the stn gene[J]. Journal of Applied Microbiology. 2007, 102 (2), 516-530.
    [65] McClelland, M.; Sanderson, K. E.; Spieth, J., etc., Complete genome sequence of Salmonella enterica serovar Typhimurium LT2[J]. Nature. 2001, 413 (6858), 852-856.
    [66] Hein, I.; Flekna, G.; Krassnig, M., etc., Real-time PCR for the detection of Salmonella spp. in food: An alternative approach to a conventional PCR system suggested by the FOOD-PCR project[J]. Journal of Microbiological Methods. 2006, 66 (3), 538-547.
    [67] Bickley, J.; Short, J. K.; McDowell, D. G., etc., Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions[J]. Letters in Applied Microbiology. 1996, 22 (2), 153-158.
    [68] Chen, C. Y.; Nace, G. W.; Irwin, P. L., A 6 x 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli[J]. Journal of Microbiological Methods. 2003, 55 (2), 475-479.
    [69] Hensel, M.; Shea, J. E.; Raupach, B., etc., Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2[J]. Molecular Microbiology. 1997, 24 (1), 155-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700