用户名: 密码: 验证码:
载体辅助液相微萃取-HPLC联用分析复杂流体中的药物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液相微萃取(LPME)是近年来发展起来的一种环境友好的新型的前处理技术。该技术集采样、萃取和富集于一体,具有操作简单、富集效果好、抗干扰能力强等特点。目前,LPME主要与气相色谱(GC)、气相色谱-质谱(GC-MS)、高效液相色谱(HPLC)、液相色谱-质谱(LC-MS)、毛细管电泳(CE)联用,广泛的应用于分析化学、药学、生物化学、临床医学和环境化学等领域,对于复杂流体中药物,特别是亲水性药物的研究报道还较少,本文就液相微萃取-高效液相色谱联用技术在复杂流体中违禁药物的分离分析方面进行了较为系统的研究。主要研究内容如下:
     1.对样品前处理技术的发展进行了介绍,重点介绍了液液液微萃取(LLLPME)和分散液相微萃取(DLPME)。
     2.载体辅助液相微萃取-HPLC联用检测人体尿样中的β-阻断剂。考察了有机相、载体种类和浓度、料液相pH值、搅拌速度、接受相浓度、萃取时间等因素对富集因子的影响,得到了萃取溶剂为0.005mol/L的TOAB-甲苯溶液,接受相为1.4μL0.5 mol/L HCl,料液相pH值为12,搅拌速度为700 rpm,萃取时间为30 min的最佳实验条件。在此实验条件下,索它洛尔、卡替洛尔、比索洛尔、普洛萘尔的富集比分别为235.7、152、253.7、182.5,线性范围分别为索它洛尔0.05-10.0 mg/L、卡替洛尔0.05-10.0 mg/L、比索洛尔0.05-8.0 mg/L、普洛萘尔0.05-8.0 mg/L,检测限除普萘洛尔为0.005 mg/L外,其余的为0.01 mg/L(S/N=3)。对浓度分别为1 mg/L和5 mg/L的加标尿样进行回收率分析,相应的方法回收率分别为安非他明:索它洛尔104.7%和91.7%、卡替洛尔104.2%和109.4%、比索洛尔100.8%和1 00.3%、普洛萘尔99.3%和97.9%说明该方法用于尿样中索它洛尔、卡替洛尔、比索洛尔、普洛萘尔的测定,能获得准确的结果。
     3.载体辅助液相微萃取-HPLC法测定水样中的磺胺类药物。通过对实验条件的优化,我们选择用0.001 mol/L四辛基溴化铵的甲苯溶液作为有机相,0.5 mol/L的盐酸作为的接受相,料液相的pH值为12,搅拌速度为700 rpm,萃取时间为40 min的实验条件。在最优的实验条件下得到较高的富集因子,磺胺嘧啶、磺胺甲噁唑、磺胺二甲嘧啶方法的线性范围为:均为0.01-8 mg/L;检出限分别为:0.005 mg/L、0.001 mg/L和0.005 mg/L。相对标准偏差均小于7.2%,对浓度分别为5μg/mL和1μg/mL的加标水样进行回收率分析,相应的方法回收率分别为磺胺嘧啶100.1%和110.7%、磺胺甲噁唑100.2%和109.5%、磺胺二甲嘧啶108.6%和107.8&(信噪比为3)。
     4.纳米金载体辅助液相微萃取-HPLC联用检测人体尿样中的四种局部麻醉剂。对各实验条件进行了优化,获得了优化的实验条件为:以0.79 mg/L的AuNPs-TOAB-甲苯溶液作为有机相,0.1 mol/L的盐酸作为接受相,搅拌速度为600 rpm,料液相的pH为11,萃取时间为25 min。在最佳萃取条件下,获得了较高的富集因子。方法的线性范围均为0.01-8 mg/L,相对标准偏差均小于6.0%,对浓度分别为1 mg/L和5 mg/L的加标尿样进行回收率分析,相应的方法回收率分别为:利多卡因100.1%和100.3%、布比卡因99.1%和101.1%、普鲁卡因107.4%和100.3%、丁卡因108.6%和100.9%。检测限普鲁卡因的为0.0001 mg/L,其余均为0.005 mg/L。
     5.载体辅助分散液相微萃取-HPLC联用检测环境水中的β-阻断剂。考察了有机相、载体种类和浓度、料液相pH值、接受相浓度、分散萃取时间、三相微萃取的搅拌速度、三相微萃取的萃取时间等因素对富集因子的影响,得到了萃取溶剂为0.01 mol/L的TOAB-甲苯溶液,接受相为1.4μL 0.1 mol/L HCl,料液相pH值为13.7,分散萃取的搅拌速度为1700 rpm,分散萃取时间为30 S,三相微萃取搅拌速度为800 rpm,萃取时间为15 min的最佳实验条件。在此实验条件下,索它洛尔、卡替洛尔、美托洛尔、比索洛尔、普洛萘尔的线性范围分别为:索它洛尔0.01-10.0 mg/L、卡替洛尔0.01-10.0 mg/L、美托洛尔0.005-8.0 mg/L、比索洛尔0.01-8.0 mg/L、普洛萘尔0.01-8.0 mg/L,检测限除比索洛尔为0.001 mg/L外,其余的为0.005 mg/L(S/N=3)。对浓度分别为1 mg/L和4 mg/L的加标尿样进行回收率分析,相应的方法回收率分别为安非他明:索它洛尔94.5%和102.9%、卡替洛尔102.4%和101.2%、美托洛尔96.2%和98.7%、比索洛尔99.7%和103.6%、普洛萘尔107.3%和105.8%说明该方法用于尿样中索它洛尔、卡替洛尔、美托洛尔、比索洛尔、普洛萘尔的测定,能获得准确的结果。
Liquid phase microextraction (LPME) is a new and environment friendly pretreatment method. LPME integrates the sampling, extraction, and enrichment in one process and owns the merits of simple, excellent selectivity, and high enrichment. It has been applied widely in analytical chemistry, pharmacy, biochemistry, clinical medicine and environmental chemistry coupled with gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), high performance liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis(CE). However, the studies focus mainly the hydrophobic compounds because the high enrichment with hydrophobic compounds extraction is obtained easily. In the present paper, some drugs, especial hydrophilic drugs, in complex fluids were separated and enriched by using carrier-mediated liquid phase microextraction (CM-LPME) and dispersed liquid-phase microextraction (DLPME).
     The details are summarized as follows:
     1. The review of several sample pretreatment methods, especially liquid phase microextraction (LPME) and dispersed liquid-phase microextraction (DLPME).
     2. A CM-LPME-HPLC method was developed for the simultaneous determination of four kinds ofβ-blockers, sotalol, bisoprolol, carteolol, and propranolol in human urine. The effects of the organic phase, the pH in the donor solution, the composition and the concentration of the acceptor phase, the stirring rate, and the extraction time on the enrichment factors of analytes were investigated. Under the optimal conditions, high enrichment factors were reached. The linear ranges were from 0.1 to 10.0 mg·L-1 for sotalol and carteolol, from 0.1 to 8.0 mg·L-1 for bisoprolol and propranolol. The limits of detection (S/N=3) were 0.01 mg·L-1 for sotalol, carteolol and bisoprolol,0.005 mg·L-1 for propranolol. The relative standard deviations were lower than 5.9%. The method with little solvent consumption may provide high analyte pre-concentration and excellent sample clean-up, and it is a sensitive and suitable method for simultaneous determining of above four drugs in human urine.
     3. A CM-LPME-HPLC method was developed for the determination of sulfadiazine, sulfamethoxazole, and sulfadimidine in environmental water. The effects of the organic phase, the pH in the donor solution, the composition and the concentration of the acceptor phase, the stirring rate, and the extraction time on the enrichment factors of analytes were investigated. Under the optimal conditions, high enrichment factors were reached. The linear ranges were from 0.1 to 8.0 mg-L-1 for the three drugs. The limits of detection (S/N=3) were 0.005 mg-L-1 for sulfadiazine and sulfadimidine,0.001 mg-L-1 for sulfamethoxazole. The relative standard deviations were lower than 7.2%. Analyse We determined the recovery of the sample by adding the standard samples, the recovery of water sample is 100.2~110.7%. he method with little solvent consumption may provide high analyte pre-concentration and excellent sample clean-up, and it is a sensitive and suitable method for simultaneous determining of above four drugs in environmental water.
     4. Gold nanoparticles carrier mediated (AuNPs-CM)-LPME-HPLC was developed for the simultaneous determination of procaine, lidocaine, bupivacaine, and tetracainel in human urine. Relevant parameters were optimized. The organic phase was 0.79 mg/L AuNPs-TOAB-toluene, the acceptor was 0.1 mol/L HCl, the stirring speed is 600 rpm, pH in the donor phase was 11, the extraction time was 25 min. Under the optimal conditions, high enrichment factors were reached. The linear ranges were from 0.01 to 8.0 mg·L-1 for the four drugs. The limits of detection (S/N=3) were 0.005 mg·L-1 for lidocaine, bupivacaine, and tetracainel,0.0001 mg·L-1 for procaine. The relative standard deviations were lower than 6.0%. We determined the recovery of the sample by adding the standard samples, the recovery of water sample is 99.1~110.7%. The results indicate that AuNPs-CM-LPME-HPLC can be successfully applied to the separation and enrichment of procaine, lidocaine, bupivacaine, and tetracainel.
     5. DLPME-HPLC was developed for the simultaneous determination of five kinds ofβ-blockers, sotalol, bisoprolol, metoprolol, carteolol, and propranolol in environmental water. The kind of the organic solvent, the concentration of carrier in the organic phase, pH in the donor phase, the composition of the acceptor solution, the DLPME time, the stirring rate and the back-extraction time were optimized. The organic phase was 0.01 mol/L TOAB-toluene, the acceptor was 0.1 mol/L HCl, the stirring speed in DLPME is 1700 rpm, pH in the donor phase was 13.7, the stirring speed in LLLME is 800 rpm, the DLPME time was 30 s, the extraction time was 15 min. Under the optimal conditions, high enrichment factors were reached. The linear ranges were from 0.01 to 10.0 mg·L-1 for sotalol and carteolol,0.005-8.0 mg/L for metoprolol,0.01-8.0 mg/L for bisoprolol and propranolol. The limits of detection (S/N=3) were 0.001 mg-L-1 for bisoprolol, and 0.005 mg·L-1 for the other four drugs. We determined the recovery of the sample by adding the standard samples, the recovery of water sample is 94.5~107.3%. The method was proved to be a fast and efficient extraction method, which can be applied to simultaneous determine sotalol, bisoprolol, metoprolol, carteolol, and propranolol in tap water and four environmental waters.
引文
[1]J. Pwaliszyn. New dieretions in sample Preparation for analysis of organic compounds[J]. Tends Anal.Chem.,1995,14(3):113-122.
    [2]徐晖.分散液液微萃取和固相微萃取技术在水中苯胺类物质检测中的应用研究[D].武汉:华中师范大学,2008:1-3.
    [3]M. Dressler. Extraction of trace amounts of organic compounds from water with porous organic polymers [J]. J.Chromatogr.,1979,165(2):167-206.
    [4]A. Balinova. Strategies for chromatographic analysis of pesticide in ater[J]. J.Chromatogr.A,1996,754(1-2):125-135.
    [5]D.T. Rossi, D.S. Wright. Analytical considerations for trace determinations of drugs in brest milk[J]. J.Chromatogr.A,2003,983(1-2):153-162.
    [6]叶非.液液萃取效率的讨论[J].大学化学,1997,12(4):47-48.
    [7]刘颖,嘎日迪.液-液萃取分配比对萃取效率影响研究[J].内蒙古可给予经济,1999,科技文献版,59.
    [8]张朝晖.体液中药物的液相微萃取-高效液相色谱分离分析研究[D].长沙:湖南师范大学,2006:1-6.
    [9]张红,陈玲,陈皓,彭中良.液相微萃取技术及其在环境水样预处理中的应用[J].环境监测管理与技术,2004,16(6):8-11.
    [10]张海霞,朱彭玲.固相萃取[J].分析化学,2000,28(9):1172-1180.
    [11]胡闻莉,刘文英.一种新型固相萃取技术-固相微萃取[J].药学进展,1999,23(5):257-260.
    [12]M.A. Crespin, E. Ballesteros, M. Gallego, M. Valcarcel. Trace enrichment of phenols by on-line solid-phase extraction and gas chromatographic determination[J]. J. Chromatogr. A,1997,757(1-2):165-172.
    [13]T. Mohabbat, B. Drew. Simultaneous determination of 33 amino acids and dipeptides in spent cell culture media by gas chromatography-flame ionization detection following liquid and solid phase extraction[J]. J. Chromatogr. B,2008, 862 (1-2):86-92.
    [14]M. Guang, S. Wang, H.P. Zhu, et al. Multi-walled carbon nanotubes as solid-phase extraction adsorbents for determination of atrazine and its principal metabolites in water and soil samples by gas chromatography-mass spectrometry[J]. Sci. Total Environ.,2008,396(1):79-85.
    [15]M.V. Russo, A.D. Leonardis, V. Macciola. Solid phase extraction-gas-chromatographic method to determine free cholesterol in animal fats[J]. J. Food Compos. Anal.,2005,18(7):617-624.
    [16]D. Lenz, L. Kroner, M.A. Rothschild. Determination of gamma-hydroxybutyric acid in serum and urine by headspace solid-phase dynamic extraction combined with gas chromatography-positive chemical ionization mass spectrometry[J]. J. Chromatogr. A,2009,1216(18):4090-4096.
    [17]B.J. Yang, F.H. Jiang, X.Q. Xu, et al. Determination of Alkylphenols in Water by Solid-Phase Extraction with On-column Derivatization Coupled with Gas Chromatography-Mass Spectrometry[J]. Chin. J. Anal. Chem.2007,35(5): 633-637.
    [18]M.J. Paik, H. Kim, J. Lee, et al. Separation of triacylglycerols and free fatty acids in microalgal lipids by solid-phase extraction for separate fatty acid profiling analysis by gas chromatography[J]. J. Chromatogr. A,2009,1216(31): 5917-5923.
    [19]H.A.G. Niederlander, E.H.M. Koster. M.J. Hilhorst. High throughput therapeutic drug monitoring of clozapine and metabolites in serum by on-line coupling of solid phase extraction with liquid chromatography-mass spectrometry[J]. J. Chromatogr. B,2006,834(1-2):98-107.
    [20]Z.X. Xu, G.Z. Fang, S. Wang. Molecularly imprinted solid phase extraction coupled to high-performance liquid chromatography for determination of trace dichlorvos residues in vegetables[J]. Food Chem.,2010,119(2):845-850.
    [21]H.W. Sun, F.C. Wang, L.F. Ai. Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with solid-phase extraction[J]. J. Chromatogr.B,2007,857(2):296-300.
    [23]C.C. Chou, M.R. Lee, F.C. Cheng, D.Y. Yang. Solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for determination of trace rosiglitazone in urine [J]. J. Chromatogr. A,2005,1097(1-2):74-83.
    [24]H. Bagheri, A. Mohammadi, A. Salemi. On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography[J]. Anal. Chim. Acta.,2004,513(2):445-449.
    [25]Q.Z. Feng, L.X.Zhao, W. Yan, J.M. Lin. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples[J]. J. Hazard. Mater., 2009,167(1-3):282-288.
    [26]P. Puig, F. Borrull, M. Calull, et al. Improving the sensitivity of the determination of ceftiofur by capillary electrophoresis in environmental water samples:In-line solid phase extraction and sample stacking techniques [J]. Anal. Chim. Acta.2007, 587(2):208-215.
    [27]M.A. Strausbauch, J.P. Landers, P.J Wettstein. Mechanism of peptide separations by solid phase extraction capillary electrophoresis at low pH[J]. Anal. Chem., 1996,68(2):306-314.
    [28]J.R.E. Thabano, M.C. Breadmore, J.P. Hutchinson, et al. Capillary electrophoresis of neurotransmitters using in-line solid-phase extraction and preconcentration using a methacrylate-based weak cation-exchange monolithic stationary phase and a pH step gradient[J]. J. Chromatogr. A,2007,1175(1): 117-126.
    [29]B. Suarez, B. Santos, B.M. Simonet, et al. Solid-phase extraction-capillary electrophoresis-mass spectrometry for the determination of tetracyclines residues in surface water by using carbon nanotubes as sorbent material [J]. J. Chromatogr. A,2007,1175(1):127-132.
    [30]F. Benavente, M.C. Vescina, E. Hernandez, et al. Lowering the concentration limits of detection by on-line solid-phase extraction-capillary electrophoresis-electrospray mass spectrometry [J]. J. Chromatogr. A,2007, 1140(1-2):205-212.
    [31]C.L. Arthur, J. Pawliszyn. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal.Chem.,1990,62(19):214-2148.
    [32]J. Beltran, F.J. Lopez, F. Hernandez. Solid-phase microextraction in pesticide residue analysis[J]. J. Chromatogr. A,2000,885(1-2):389-404.
    [33]A. Achouri, J.I. Boye, Y. Zamani. Identification of volatile compounds in soymilk using solid-phase microextraction-gas chromatography[J]. Food Chem.,2006, 99(4):759-766.
    [34]S. Cortes-Aguado, N.S. Morito, F.J. Arrebola, et al. Fast screening of pesticide residues in fruit juice by solid-phase microextraction and gas chromatography-mass spectrometry[J]. Food Chem.,2008,107(3):1314-1325.
    [35]J. Regueiro, M. Llompart, C. Garcia-Jares, R. Cela. Development of a solid-phase microextraction-gas chromatography-tandem mass spectrometry method for the analysis of chlorinated toluenes in environmental waters[J]. J. Chromatogr. A,2009,1216(14):2816-2824.
    [36]H.P. Ho, R.J. Lee, M.R. Lee. Purge-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry for determination of chlorophenols in aqueous samples[J]. J. Chromatogr. A,2008, 1213(2):245-258.
    [37]E. Gallardo, C. Margalho, A. Cruz, et al. Determination of quinalphos in blood and urine by direct solid-phase microextraction combined with gas chromatography-mass spectrometry [J]. J. Chromatogr. B,2006,832(1): 162-168.
    [38]G. Sagratini, J. Manes, D. Giardina, et al. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography-mass spectrometry [J]. J. Chromatogr. A,2007,1141(2): 135-143.
    [39]N. Unceta, A. Gomez-Caballero, A. Sanchez, et al. Simultaneous determination of citalopram, fluoxetine and their main metabolites in human urine samples by solid-phase microextraction coupled with high-performance liquid chromatography [J]. J. Pharm. Biomed. Anal.,2008,46(4):763-770.
    [40]B.J.G. Silva, F. M. Lancas, Q.M.E. Costa. In-tube solid-phase microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of nontricyclic antidepressants in human plasma[J]. J. Chromatogr. B,2008,862(1-2):181-188.
    [41]P. Vifias, N. Campillo,N. Aguinaga, et al. Use of headspace solid-phase microextraction coupled to liquid chromatography for the analysis of polycyclic aromatic hydrocarbons in tea infusions[J]. J. Chromatogr. A,2007,1164(1-2): 10-17.
    [42]L. Vera-Candioti, M.D. Gil Garcia, M. Martinez Galera, H.C. Goicoechea. Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography-diode array detection[J]. J. Chromatogr. A,2008,1211(1-2): 22-32.
    [43]M.D. Gil Garcia, F. Canada, M.J. Culzoni, et al. Chemometric tools improving the determination of anti-inflammatory and antiepileptic drugs in river and wastewater by solid-phase microextraction and liquid chromatography diode array detection[J]. J. Chromatogr. A,2009,1216(29):5489-5496.
    [44]H.F. Fang, M.M. Liu, Z.R. Zeng. Solid-phase microextraction coupled with capillary electrophoresis to determine ephedrine derivatives in water and urine using a sol-gel derived butyl methacrylate/silicone fiber[J]. Tal.,2006,68(3): 979-986.
    [45]X.F. Fan, Y.W. Deng. Separation and identification of aromatic acids in soil and the Everglades sediment samples using solid-phase microextraction followed by capillary zone electrophoresis [J]. J. Chromatogr. A,2002,979(1-2):417-424.
    [46]S.W. Zhang, C.J. Zou, N. Luo, et al. Determination of urinary 8-hydroxy-2'-deoxyguanosine by capillary electrophoresis with molecularly imprinted monolith in-tube solid phase microextraction[J]. Chin. Chem. Lett., 2010,21(1):85-88.
    [47]X.W. Zhou, X.J. Li, Z.R. Zeng. Solid-phase microextraction coupled with capillary electrophoresis for the determination of propranolol enantiomers in urine using a sol-gel derived calix[4]arene fiber[J]. J. Chromatogr. A,2006, 1104(1-2):359-365.
    [48]Y. Sanchez-Vicente, A. Cabanas, J.A.R. Renuncio, Pando C. Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol[J]. J. Supercrit. Fluid,2009,49(2),167-173.
    [49]J.W. King, J.H. Johnson, S.L. Taylor, et al. Simultaneous multi-sample supercritical-fluid extraction of food products for lipids and pesticide residue analysis[J]. J. Supercrit. Fluid,1995,8(2):167-165.
    [50]K.L. Nyam, C.P. Tan, R. Karim, et al. Extraction of tocopherol-enriched oils from Kalahari melon and roselle seeds by supercritical fluid extraction (SFE-CO2) [J]. Food Chem.,2010,119(3):1278-1283.
    [51]M.A.A. Melreles, G. Zahedi, T. Hatami. Mathematical modeling of supercritical fluid extraction for obtaining extracts from vetiver root[J]. J. Supercrit. Fluid, 2009,49(1):23-31.
    [52]S.H. Page, Jr. B.A. Benner, J.A. Small, S.J. Choquette. Restrictor plugging in off-line supercritical fluid extraction of environmental samples:Microscopic, chemical, and spectroscopic evaluations[J]. J. Supercrit. Fluid,1999,14(1): 257-270.
    [53]A. Akinlua, N. Torto, T.R. Ajayi. Supercritical fluid extraction of aliphatic hydrocarbons from Niger Delta sedimentary rock[J]. J. Supercrit. Fluid,2008, 45(1):57-63.
    [54]C.C. Yang, M.R. Lee, S.L. Hsu, C. M. J. Chang. Supercritical fluids extraction of capillarisin from Artemisia capillaris and its inhibition of in vitro growth of hepatoma cells[J]. J. Supercrit. Fluid,2007,42(1):96-103.
    [55]Y.L. Lin, C.C. Yang, H.K. Hsu, et al. Response surface methodology to supercritical fluids extraction of artemisinin and the effects on rat hepatic stellate cell in vitro[J]. J. Supercrit. Fluid,2006,39(1):48-53.
    [56]A. El-Fatah, M. Goto, A. Kodama, T. Hirose. Supercritical fluid extraction of hazardous metals from CCAwood[J]. J. Supercrit. Fluid,2004,28(1):21-27.
    [57]B.E. Richter, J.L. Ezzell, J. Felix, et al. A comparison of accelerated solvent extraction for organophosphorus pesticides and herbicides [J]. LC/GC,1995, 13(1):390-398.
    [58]J. Gan, S.K. Papiernik, W.C. Koskinen, S.R. Yates. Evaluation of ASE for analysis of pesticide residues in soil[J]. Environ. Sci. Technol.,1999,33(18): 3249-3253.
    [59]A. Hubert, K.D. Wenzel, M. Mann, et al. High extraction efficiency for POPS in real contaminated soil samples using accelerated solvent extraction[J]. Anal. Chem.,2000,72(6):1294-1300.
    [60]K. Li, M. Landriault, M. Fingas, M. Llompart. Accelerated solvent extraction(ASE)of environmental organic compounds in soils using a modified supercritical fluid extractor[J]. J. Hazard. Mater.,2003,102(1):93-104.
    [61]I. Pecorelli, R. Galarini, R. Bibi, et al. Simultaneous determination of 13 quinolones from feeds using accelerated solvent extraction and liquid chromatography[J]. Anal. Chim. Acta.,2003,483(1):81-89.
    [62]W. Zhuang, B. McKague, D. Reeve, J. Carey. A comparative evaluation of accelerated solvent extraction and Polytron extraction for quantification of lipids and extractable organochlorine infish[J]. Chemosphere,2004,54(4):467-480.
    [63]J.M. Cano, M.L. Marin, A. Sanchez, V. Hernandis. Determination of adipate plasticizers in poly(vinyl chloride) by microwave-assisted extraction[J]. J. Chromatogr. A,2002,963(1-2):401-409.
    [64]X.J. Pan, G.G. Niu, H.Z. Liu. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves[J]. Chem. Eng. Process.,2003,42(2): 129-133.
    [65]G. Purcaro, S. Moret, L.S. Conte. Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat[J]. Meat Science,2009,81(1):275-280.
    [66]Y.F. Sun, M. Takaoka, N. Takeda, et al. Application of microwave-assisted extraction to the analysis of PCBs and CBzs in fly ash from municipal solid waste incinerators[J]. J. Hazard. Mater.,2006,137(1):106-112.
    [67]N.N. Li. Membrane separation process. US 3410794[P],1968.
    [68]R.A. Kumbasar, O. Tutkun. Separation of cobalt and nickel from acidic leach solutions by emulsion liquid membranes using Alamine 300 (TOA) as a mobile carrier[J]. Desalination,2008,224(1-3):201-208.
    [69]王献科,李玉萍,李莉芬.液膜分离富集测定柠檬酸根.上海有色金属,2000,21(2):77-79.
    [70]S.C. Lee. Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions[J]. Chem. Eng. J.,2000,79(1):61-67.
    [71]P.F.M.M. Correia, J.M.R. Carvalho. Recovery of 2-chlorophenol from aqueous solutions by emulsion liquid membranes:batch experimental studies and modeling[J]. J. Membrane Sci.,2000,179(1-2):175-183.
    [72]Y. Park, A.H.P. Skelland, L. J. Forney, J. H. Kim. Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process [J]. Water Research,2006,40(9):1763-1772.
    [73]F.F. Zha, H.G.L. Coster, A.G. Fane. A study of stability of supported liquid membranes by impedances spectroscopy[J]. J. Membrane Sci.,1994,93(3): 255-271.
    [74]喻远达,谷淑湘,罗小健等.N902-煤油-HCl反萃分散组合液膜迁移和分离铜[J].应用化学,2006,23(7):766-769.
    [75]M.A. Jeannot, F.F. Cantwell. Solvent microextraction into a single drop[J]. Anal. Chem.,1996,68(13):2236-2240.
    [76]M.A. Jeannot, F.F. Cantwell. Mass tansfer characteristics of solvent extraction into a single drop at the tip of a syringe needle[J]. Anal. Chem.,1997,69:235-239.
    [77]Y. He, H.K. Lee. Liquid-Phase Microextraction in a Single Drop of Organic Solvent by Using a Conventional Microsyringe[J]. Anal.Chem.1997,69(22): 4634-4640.
    [78]Y. Wang, y. Chiankwork, Y. He, H.K. Lee. Application of Dynamic Liquid-Phase Microextraction to the Analysis of Chlorobenzenes in Water by Using a Conventional Microsyringe[J]. Anal.Chem.1998,70(19):4610-4614..
    [79]W.P. Liu, H.K. Lee. Continuous-Flow Microextraction Exceeding 1000-Fold Concentration of Dilute Analytes[J]. Anal.Chem.,2000,72(18):4462-4467.
    [80]A. Przyjazny, J.M. Kokosa. Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction[J]. J. Chromatogr. A,2002,977(2):143-153.
    [81]G. Manetto, M.S. Bellini, Z. Deyl. Application of capillaries with minimized electroosmotic flow to the electrokinetic study of acidic drug-β-oleoyl-y-palmitoyl-L-a-phosphatidyl choline liposome interactions[J]. J. Chromatogr. A,2003,990(1-2):205-214.
    [82]A.L. Theis, A.J. Waldack, S.M. Hansen, M.A. Jeannot. Headspace Solvent Microextraction[J]. Anal.Chem.2001,73(23):5651-5654.
    [83]G.H. Li, L.J. Zhang, Z.E. Zhang. Determination of polychlorinated biphenyls in water using dynamic hollow fiber liquid-phase microextraction and gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1204(1): 119-122.
    [84]S.F. Cui, S. Tan, G.F. Ouyang, J. Pawliszyn. Automated polyvinylidene difluoride hollow fiber liquid-phase microextraction of flunitrazepam in plasma and urine samples for gas chromatography/tandem mass spectrometry[J]. J. Chromatogr. A, 2009,1216(12):2241-2247.
    [85]A. Sarafraz-Yazdi, F. Mofazzeli, Z. Es'haghi. A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography[J]. Tal.2009,79(2):472-478.
    [86]A. Saleh, Y. Yamini, M. Faraji, et al. Hollow fiber liquid phase microextraction followed by high performance liquid chromatography for determination of ultra-trace levels of Se(IV) after derivatization in urine, plasma and natural water samples[J]. J. Chromatogr. B,2009,877(18-19):1758-1764.
    [87]T.G. Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen. Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug[J]. J. Chromatogr. A,2001,909(1):87-93.
    [88]E. Psillakis, N. Kalogerakis. Developments in liquid-phase microextraction[J]. Trends Anal. Chem.,2003,10(22):565-574.
    [89]M. Ma, F.F. Cantwell. Solvent Microextraction with simultaneous back-extraction for sample cleanup and preconcentration:quantitative extraction[J]. Anal. Chem.,1998,70(18):3912-3919.
    [90]H. Chen, R.w. Chen, S.Q. Li. Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples[J]. J. Chromatogr. A,2010,1217(8):1244-1248.
    [91]D. Nagaraju, S.D. Huang. Determination of triazine herbicides in aqueous samples by dispersive liquid-liquid microextraction with gas chromatography-ion trap mass spectrometry [J]. J. Chromatogr. A,2007, 1161(1-2):89-97.
    [92]H. Farahani, P. Norouzi, A. Beheshti. Quantitation of atorvastatin in human plasma using directly suspended acceptor droplet in liquid-liquid-liquid microextraction and high-performance liquid chromatography-ultraviolet detection[J]. Tal.,2009,80(2):1001-1006.
    [93]D.F. Freitas, C.E.D. Porto, E.P. Vieira. Three-phase, liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detection for the simultaneous determination of fluoxetine and norfluoxetine in human plasma[J]. J. Pharm. Biomed. Anal.,2010,51(1):170-177.
    [94]Z.F. Zhu, X.M. Zhou, N. Yan, et al. On-line combination of single-drop liquid-liquid-liquid microextraction with capillary electrophoresis for sample cleanup and preconcentration:A simple and efficient approach to determining trace analyte in real matrices[J]. J. Chromatogr. A,2010,1217(11):1856-1861.
    [95]M. Rezaee, Y. Assadi, M.R.M. Hosseini. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. J. Chromatogr. A,2006, 1116(1-2):1-9.
    [96]E. Pujos, C. Cren-Olive, O. Paisse, et al. Comparison of the analysis of β-blockers by different techniques[J]. J. Chromatogr. B,2009,877 (31) 4007-4014.
    [97]G.J. Murray, J.P. Danaceau. Simultaneous extraction and screening of diuretics, beta-blockers, selected stimulants and steroids in human urine by HPLC-MS/MS and UPLC-MS/MS[J]. J. Chromatogr. B,2009,877 (30):3857-3864.
    [98]International Olympic Committee Medical Code and Explanatory Document, International Olympic Committee, Lausanne 2007.
    [99]M. Delamoye, C. Duverneuil, F. Paraire, et al. Simultaneous determination of thirteen (3-blockers and one metabolite by gradient high-performance liquid chromatography with photodiode-array UV detection[J]. Forensic Sci. Int.,2004, 141(1):23-31.
    [100]J.J.B. Nevado, J.R. Flores, G.C. Penalvo, F.J.G. Bernardo. Development and validation of a capillary zone electrophoresis method for the determination of propranolol and N-desisopropylpropranolol in human urine[J]. Anal. Chim. Acta,2006,559 (1):9-14.
    [101]M. Kolmonen, A. Leinonen, A. Pelander, I. Ojanpera. A general screening method for doping agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass spectrometry[J]. Anal. Chim. Acta,2007, 585 (1):94-102.
    [102]X.G. Hu, J.L. Pan, Y.L. Hu, G.K. Li. Preparation and evaluation of propranolol molecularly imprinted solid-phase microextraction fiber for trace analysis of β-blockers in urine and plasma samples[J]. J. Chromatogr. A,2009,1216 (2): 190-197.
    [103]H. Kataoka, S. Narimatsu, H.L. Lord, J. Pawliszyn. Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of β-blockers and metabolites in urine and serum samples[J]. Anal. Chem.,1999,71 (19):4237-4244.
    [104]H. Lord, J. Pawliszyn. Microextraction of drugs[J]. J. Chromatogr. A,2000,902 (1):17-63.
    [105]T.S. Ho, T.G. Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen. Liquid-phase microextraction of hydrophilic drugs by carrier-mediated transport[J]. J. Chromatogr. A,2003,998 (1-2):61-72.
    [106]T.S. Ho, J.L.E. Reubsaet, H.S. Anthonsen, et al. Liquid-phase microextraction based on carrier mediated transport combined with liquid chromatography-mass spectrometry:New concept for the determination of polar drugs in a single drop of human plasma [J]. J. Chromatogr. A,2005:1072 (1):29-36.
    [107]J.M. Wu, H.K. Lee. Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry[J]. Anal. Chem.,2006,78(20): 7292-7301.
    [108]J.M. Wu, H.K. Lee. Ion-pair dynamic liquid-phase microextraction combined with injection-port derivatization for the determination of long-chain fatty acids in water samples[J]. J. Chromatogr A,2006,1133 (1-2):13.
    [109]A.S. Yazdi, Z. Es'haghi, Surfactant enhanced liquid-phase microextraction of basic drugs of abuse in hair combined with high performance liquid chromatography[J]. J. Chromatogr. A,2005,1094 (1-2):1-8.
    [110]A.S. Yazdi, Z. Es'haghi. Liquid-liquid-liquid phase microextraction of aromatic amines in water using crown ethers by high-performance liquid chromatography with monolithic column[J]. Talanta,2005,66 (3):664-669.
    [111]A.S. Yazdi, F. Mofazzeli, Z. Es'haghi. Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography [J]. J. Chromatogr. A,2009,1216 (26):5086-5091.
    [112]A.S. Yazdi, F. Mofazzeli, Z. Es'haghi. A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography [J]. Talanta,2009,79 (2):472-478.
    [113]Y. Yamini, C.T. Reimann, A. Vatanara, J.A. Jonsson. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier [J]. J. Chromatogr. A,2006,1124 (1-2):57-67.
    [114]S. Shariati, Y. Yamini, A. Esrafili. Carrier mediated hollow fiber liquid phase microextraction combined with HPLC-UV for preconcentration and determination of some tetracycline antibiotics [J]. J. Chromatogr. B,2009,877 (4):393-400.
    [115]Y. Tao, J.F. Liu, T. Wang, G.B. Jiang. Simultaneous conduction of two-and three-phase hollow-fiber-based liquid-phase microextraction for the determination of aromatic amines in environmental water samples [J]. J. Chromatogr. A,2009,1216 (5):756-762.
    [116]Z.H. Zhang, C.G. Zhang, X.L. Su., et al. Carrier-mediated liquid phase microextraction coupled with high performance liquid chromatography for determination of illicit drugs in human urine[J]. Anal. Chim. Acta,2008,621(2): 185-192.
    [117]H.C. Li, B. Fu, Concise Handbook of Solvent[M], Chemical Industry Press, Beijing,2008.
    [118]S.T. Yang, S.A. White, S.Z. Hsu. Extraction of carboxylic acids with tertiary and quaternary amines:effect of pH[J]. Ind. Eng. Chem. Res.1991,130 (6): 1335-1342.
    [119]M. Palit, D. Pardasani, A.K. Gupta, D.K. Dubey. Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry[J]. Anal. Chem.,2005,77 (2):711-717.
    [120]J.W. Lv, Q. Yang, J.W. Jiang, T.S. Chung. Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection[J]. Chem. Eng. Sci.,2007,62 (21):6032-6039.
    [121]A. Drapala, J.A. Jonsson, P. Wieczorek._Peptides analysis in blood plasma using on-line system of supported liquid membrane and high-performance liquid chromatography [J]. Anal. Chim. Acta,2005,553 (1-2):9-14.
    [122]R.A. Kumbasar. Transport of cadmium ions from zinc plant leach solutions through emulsion liquid membrane-containing Aliquat 336 as carrier[J]. Sep. Purif. Technol.,2008,63 (3):592-599.
    [123]D.W. Kolpin, E.T. Furlong, M.T. Meyer, et al. Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams,1999-2000:A national reconnaissance[J]. Environ Sci Technol,2002,36(6):1202-1211.
    [124]T. Heberer. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:A review of recent research data[J]. Toxicol Lett,2002, 131(1):5-17.
    [125]R. Hirsch, T. Ternes, K. Haberer, et al. Occurrence of antibiotics in the aquatic environment[J]. Sci Total Environ.,1999,225(1,2):109-118.
    [126]X. Miao, F. Bishay, M. Chen, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol.,2004, 38(13):3533-3541.
    [127]A. Gobel, C.S. McArdell, A. Joss, et al. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Sci Total Environ.,2007,372(2):361-371.
    [128]R.H. Lindberg, P. Wennberg, M.I. Johansson, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden[J]. Environ Sci Technol.,2005,39(10):3421-3429.
    [129]龙洲雄,万春花,胡海山,鄢兵.动物性食品中六种磺胺类药物残留的快速测定[J].食品科学,2007,28(11):503-505.
    [130]李德良.养殖水产品中多种磺胺类药物残留量的高效液相色谱法研究[J].南昌高专学报,2007,72(5):125-127.
    [131]刘庆堂,职爱民,邓瑞广,张改平.磺胺类药物在饲料和畜产品中的残留、危害与检测[J].饲料工业,2007,28(17):33-35.
    [132]C.E. Lin, C.C. Chang, W.C. Lin. Migration behavior and separation of sulfonamides in capillary zone electrophoresi citrate buffer as a background eletrolyte[J]. J. Chromatogr. A,1997,768:105-112.
    [133]张从良,王岩.磺胺类药物正辛醇/水分配系数与分子价键连接性指数相关性研究[J].计算机与应用化学,2008,25(11):1465-1468.
    [134]Z.R. Sheng, J.K. Wang. Practical clinical anesthesiology. Liaoning:Scicece and Technology Press, Shenyang,1996, pp129-158.
    [135]C.Y. Wang, X.Y. Hu, G.D. Jin, Z.Z. Leng. Differential pulse adsorption voltammetry for determination of procaine hydrochloride at a pumice modified carbon paste electrode in pharmaceutical preparations and urine[J]. J. Pharm. Biomed. Anal.,2002,30(1):131-139.
    [136]M.R. Dhananjeyan, J.A. Trendel, C. Bykowski. Rapid and sensitive HPLC assay for simultaneous determination of procaine and para-aminobenzoic acid from human and rat liver tissue extracts[J]. J. Chromatogr. B,2008,867(2): 247-252.
    [137]J. Piwowarska, J. Kuczynska, J. Pachecka. Liquid chromatographic method for the determination of lidocaine and monoethylglycine xylidide in human serum containing various concentrations of bilirubin for the assessment of liver function[J]. J. Chromatogr. B,2004,805(1):1-5.
    [138]W.W. Qin, Z. Jiao, M.k. Zhong, et al. Simultaneous determination of procaine, lidocaine, ropivacaine, tetracaine and bupivacaine in human plasma by high-performance liquid chromatography[J]. J. Chromatogr. B,2010, inpress.
    [139]A. Koehler, R. Oertel, W. Kirch. Simultaneous determination of bupivacaine, mepivacain, prilocaine and ropivacain in human serum by liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2005, 1088(1-2):126-130.
    [140]P. Ball, L. Garwin. Science at the atomic scale[J]. Nature,1992,35(5):761-766.
    [141]K.J. Kabimde, J. Stark, O. KoPer, et al. Nanoerystals as stoiehiometrie reagents with unique surface chemistry[J]. J.Phys.Chem.,1996,100(30): 12142-12153.
    [142]张梅,陈焕春.纳米材料的研究现状及展望[J].导弹与航天运载技术,2000,3:11-16.
    [143]高红,赵勇.纳米材料及纳米催化剂的制备[J].2003,17(5):14-15.
    [144]夏和生,王琪.纳米技术进展[J],高分子材料科学与工程,2001,17:1-6.
    [145]黄德欢.纳米技术与应用[M],北京中国纺织大学出版社,2001.
    [146]R.A. Andrievski, A.M. Glezer. Size effects in properties of nanomaterials[J]. Scri. Pta. Mater.,2001,44:1621-1624.
    [147]代淑芬.纳米材料的特性和发展[J].无锡南洋学院学报,2008,7(4):49-53.
    [148]S.M. Golabi, A.J. Nozad. Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly(o-phenylenediamine) film[J]. J. Electroanal. Chem.,2002,521(1-2):161-167.
    [149]W.P. Faulk, G.M. Taylor. An immunocolloid method for the election microscope[J]. Immunochemistry,1971,8(11):1081-1083.
    [150]Huang X.H., El-Sayed I.H., Qian W., et al. Cancer cell Imaging and photothermal therapy in the near-Infrared region by using gold nanorods[J]. JACS,2006,128(6):2115-2120.
    [151]Y. Chen, K. Flowers, M. Calizo, S.W. Bishnoi. The role of protein binding in the poisoning of gold nanoparticle catalysts [J]. Colloids Surf., B:Biointerfaces, 2010,76(1):241-247.
    [152]L.Y. Chen, H.P. Wei, Y.C. Guo, et al. Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein[J]. J. Immonol. Methods,2009,346(1-2):64-70.
    [153]Q. Pan, R.y. Zhang, Y.f. Bai, et al. An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement[J]. Anal. Biochem.,2008,375(2):179-186.
    [154]P.R. Sudhir, H.F. Wu, Z.C. Zhou. Identification of Peptides Using Gold Nanoparticle-Assisted Single-Drop Microextraction Coupled with AP-MALDI Mass Spectrometry[J]. Anal. Chem.,2005,77(22):7380-7385.
    [155]R.J.E. Grouls, E.W. Ackerman, H.H.M. Korsten, et al. Partition coefficients(n-octanol/water) of N-butyl-p-aminobenzoate and other local anesthetics measured by reversed-phase high performance liquid chromatography[J]. J. Chromatogr. B,1997,694:421-425
    [156]J. Fink, J. Christopher, K.D. Bethell, D.J. Schiffrin. Self-Organization of Nanosized Gold Particles[J]. Chem. Mater.,1998,10(3):922-926.
    [157]C. Aprile, A. Abad, H. Garcia, A. Corma. Synthesis and catalytic activity of periodic mesoporous materials incorporating gold nanoparticles[J]. J. Mater. Chem.,2005,15:4408-4413.
    [158]P.R. Sudhir, H.F. Wu, Z.C. Zhou, Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with AP-MALDI mass spectrometry[J]. Anal. Chem.2005,77:7380-7385.
    [159]K.G. Thomas, P.V. Kamat. Chromophore-Functionalized Gold Nanoparticles[J]. Acc. Chem. Res.2003,36(12):888-898.
    [160]H.B. Lee, K. Sarafin, T.E. Peart. Determination of β-blockers and β2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2005,1148(2):158-167.
    [161]G. Brun, M. Bernier, R. Losier, et al. Pjarmacertically active compounds in atlantic canadian sewage treatment plant effluents and receiving waters, an potential for encironmental effects as measured by acute and chronic aquatic toxicity[J]. Environ. Toxicol. Chem.,2006,25(8):2163-2176.
    [162]L.N. Nikolai, E.L. McClure, S.L. MacLeod, C.S. Wong. Stereoisomer quantification of the P-blocker drugs atenolol, metoprolol, and propranolol in wastewaters by chiral high-performance liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2006,1131(1-2):103-109.
    [163]R.R. Kozani, Y. Assadi, F. Shemirani. Part-per-trillion determination of chlorobenzenes in water using dispersive liquid-liquid microextraction combined gas chromatography-electron capture detection[J]. Tal.,2007,72(2): 387-393.
    [164]N. Shokoufi, F. Shemirani, Y. Assadi. Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt[J]. Anal. Chim. Acta.,2007,597(1-2):23-29.
    [165]L. Farina, E. Boido, F. Carrau, E. Dellacassa. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection[J]. J. Chromatogr. A,2007, 1157(1-2):46-50.
    [166]E.Z. Jahromi, A. Bidari, Y. Assadi. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry Ultra trace determination of cadmium in water samples[J]. Anal. Chim. Acta.,2007,585(2): 305-311.
    [167]N. Shokoufi, F. Shemirani, Y. Assadi. Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt[J]. Anal. Chim. Acta.,2007,597(2):349-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700