用户名: 密码: 验证码:
自发性癫痫发作小鼠ERK通路活化及其对新生神经元影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:匹罗卡品致痫小鼠自发性癫痫发作模型的建立及癫痫后海马新生神经细胞增生的研究
     目的:探讨匹罗卡品致痫小鼠自发性癫痫发作模型的特点,观察癫痫发作后海马结构齿状回颗粒细胞下层中新生神经细胞增生的变化。
     方法:1.6-8周成年雄性C57BL/6小鼠进行随机分配为实验组和对照组,建立匹罗卡品致痫后自发性癫痫发作小鼠模型。对实验组小鼠进行连续50天的行为学监测,观察其自发性痫性发作的频率、时程和发作规律(n=8);并在50天后行海马结构尼氏染色观察其病理学改变。
     2.将造模成功的小鼠在癫痫持续状态(SE)后1周,2周,4周,8周,12周和正常对照组(各组n=3)的脑组织进行Doublecortin (DCX)的免疫组化染色观察新生神经细胞的分布;同时应用western blot方法检测各组小鼠海马组织中DCX的表达变化(各组n=3)。
     结果:1.对模型小鼠连续50天的行为学监测显示:匹罗卡品诱发癫痫持续状态后87.5%的模型小鼠存在自发性癫痫发作。模型小鼠在3-14天不等的潜伏期后开始出现自发性痫性发作;其发作时程约10-40秒,平均每周出现2.18±0.45次,并多在昼夜交替时出现。其次,模型小鼠的自发性痫性发作具有簇发性。
     2.匹罗卡品致痫后有自发性癫痫发作的小鼠模型海马结构尼氏染色显示门区神经元显著减少的现象恒定出现,同时可见CA1、CA3区锥体细胞排列紊乱,CA1区神经元丢失;此外一部分的模型小鼠表现为齿状回颗粒细胞减少、排列紊乱,或颗粒细胞层弥散化。
     3.自发性癫痫发作小鼠模型中各时间点DCX的免疫组化和Western Blot检测发现DCX+细胞和DCX蛋白的表达在模型小鼠中的显著增多。这种现象在SE后1周即可见到,在SE后4周最为明显;在SE后8周开始下降,但仍与正常对照组无明显差异;至SE后12周,DCX+细胞显著减少,其蛋白表达亦下降。在最初时增生的DCX+细胞呈簇状分布,随时间推移出现迁移分散;DCX+细胞逐渐增多的同时伴有DCX+细胞树突的分支增加。
     结论:匹罗卡品致痫后自发性癫痫发作小鼠模型具备与颞叶癫痫相似的行为学特点和病理学改变,并且存在有持续的新生神经元增生。
     第二章:匹罗卡品致痫小鼠自发性癫痫发作相关的ERK通路激活及其对新生神经细胞影响的研究
     目的:研究匹罗卡品致痫小鼠自发性癫痫发作模型海马结构中ERK通路激活的改变,并探索性研究自发性癫痫发作后ERK通路的活化影响新生神经细胞增生的可能机制。
     方法:1.将SE后2-7周具有自发性痫性发作的小鼠进行行为学观察,在正常对照组(n=14),自发性癫痫发作后2min (n=5),3min (n=3),6min (n=2),30min (n=3)(在此之前12 h无其它痫性发作)和发作静止期(n=3)进行脑组织ERK通路活化(pERK)的检测,并比较了自发性癫痫发作后pERK与Fos, GABAAR 6亚基的表达差异。
     2.对自发性癫痫发作后2min的模型小鼠海马结构进行pERK与BLBP,GFAP, S100β,Nestin, Pax6, NeuroD, PSA-NCAM, DCX, Tuj-1, Prox1,NeuN, Ki67, Mcm2的免疫荧光,检测表达pERK的细胞类型(各组n=5)。
     3.半定量分析正常组和自发性癫痫发作后颗粒细胞下层细胞增殖指标Mcm2标记的细胞密度的变化,并通过检测BLBP与Mcm2的共表达(n=5)观察自发性癫痫发作后海马结构中多能神经干细胞的增殖潜能改变。
     4.利用pERK/BLBP/Mcm2免疫荧光三标技术检测自发性癫痫发作后颗粒细胞下层ERK通路活化与多能神经干细胞增殖的关系(n=3)。
     结果:1.在正常对照组中,少数pERK阳性的细胞散在于颗粒细胞层中,在发作静止期,其表达显著下降。而在自发性癫痫发作后ERK通路被迅速激活:在自发性癫痫发作后2min,pERK在颗粒细胞下层中的表达显著增加,随后扩散到整个颗粒细胞下层;在自发性癫痫发作后6min达高峰,30 min后回到基础水平。在与Fos, GABAARδ亚基的表达比较发现Fos表达较pERK表达延迟,并且出现Fos和pERK表达上调的区域表现为GABAARδ亚基表达的下调。
     2.在模型小鼠自发性癫痫发作后2min,颗粒细胞下层中有77.62±4.89%的pERK+细胞表达多能神经干细胞标记物BLBP,77.68±5.50%的pERK+细胞表达GFAP,21.67±7.12%的pERK+细胞表达具有神经元潜能的神经干细胞指标NeuroD,少于5%的pERK+细胞表达PSA-NCAM。pERK+细胞不表达胶质细胞标记物S100p,亦不表达神经元前体细胞标记物DCX, Tuj-1, Prox1,NeuN。
     3.在模型小鼠自发性癫痫发作后2min,Mcm2标记的细胞密度显著高于正常对照组;同时其BLBP+Mcm2+细胞在BLBP+细胞中的比率显著增加。
     4.在模型小鼠自发性癫痫发作后2min,所有BLBP+Mcm2+细胞亦同时表达pERK。
     结论:1.pERK作为ERK通路活化的指标,在匹罗卡品致痫后自发性癫痫发作小鼠模型中随着其癫痫活动状态的不同呈现相应的改变,是衡量其神经元活动敏感的指标之一。
     2.在匹罗卡品致痫后自发性癫痫发作小鼠模型中,其多能神经干细胞的增殖潜能显著增加。
     3.在匹罗卡品致痫小鼠模型自发性癫痫发作后,ERK通路首先在多能神经干细胞和早期具有神经元潜能的干细胞中激活,并可能促进其增殖潜能。
     4.自发性癫痫发作可能通过影响新生神经元形成过程中相关环节从而促进癫痫后新生神经元的增生。
Part one:A mouse model of temporal lobe epilepsy characterized with spontaneous seizures and its influence on adult neurogenesis
     Objective:To investigate a useful pilocarpine model of temporal lobe epilepsy (TLE) characterized by recurrent spontaneous seizures, and to explore its influence on the adult neurogenesis of hippocampal formation.
     Methods:1.Young adult (6-8 week of age) C57BL/6 male mice were used in the study. Sustained seizures were induced in experimental animals by the administration of pilocarpine. After recovery from status epilepticus (SE), the behaviors of pilocarpine-treated mice were continuously monitored for 50 days (n=8).Then the mice were stained with cresyl violet for the historical study.
     2.DCX, a neural progenitor cell marker, was detected by immunohistochemistry and Western blot method at 1 week,2 weeks,4 weeks,8weeks,12 weeks after SE, as well as in control animals (n=3, respectively).
     Results:1.Fifty-day behavior study showed that 87.5% of pilocarpine-treated mice developed spontaneous seizures.They usually experienced a latent period from 3-14 days after SE before they begin to have spontaneous seizures.The duration ranged from 10-40 seconds. Spontaneous seizures occurred 2.18±0.45 per week on average, usually during the light on/off period and appeared in clusters.
     2.The Nissl staining of the pilocarpine treated mice consistently showed hilus cells loss, and usually accompanied by cell loss in CA1 area and disorganization of CA1,CA3 pyramidal cell layers.In addition, some animals also showed cell loss in dentate granule cell layer or granule cell layer dispersion.
     3.The Western bolt results revealed that the level of DCX began to increase at 1 week after SE in the hippocampus formation, and downregulated to basal level at 8 weeks after SE. The immunohistochemistry of DCX showed that the DCX-labeled cells were located in the subgranular zone (SGZ).After SE, they were originally appeared in clusters, and then immigrated to dentate inner granule cell layer and occasionally to hilus or outer layer of dente gurus.
     Conclusions:The mouse model of TLE with spontaneous seizures shares most of the characteristics of TLE patients, meanwhile it showed consistently increased neurogenesis which could also be observed in TLE patients.It offered a useful tool to help investigate the ongoing epilepsy-related processes associated with spontaneous seizures.
     Part two:Activation of ERK pathway by spontaneous seizures and its potential effects on neurogenesis in a mouse model of TLE
     Objective:To evaluate the dynamic changes of ERK pathway in the mouse model of epilepsy with spontaneous seizures,and to explore the influence of ERK pathway activated by spontaneous seizures on neurogenesis.
     Methods:1.Pilocarpine-treated mice from 2 to 7 weeks following SE were monitored for spontaneous seizures, and a total of 17 pilocarpine-treated animals were included in the pERK study. The mice were purfused at different intervals following a spontaneous seizures, including 2min (n=6),3min (n=3),6min (n=2),30min (n=3)following seizure detection. Animals that demonstrated additional spontaneous seizures during the previous 12-24h before perfusion were excluded. For comparison, age-matched epileptic mice (n=3)following SE that had not experienced a behavioral seizure in the last 24h prior to perfusion were included. Age-matched control animals were included in the study and were perfused at the same time as the pilocarpine-treated animals.In addition, for comparison of pERK labeling, the immunohistochemistry of Fos and GABAARδsubunit were also studied at the onset of a spontaneous seizure (2 min).
     2.In the pilocarpine-treated animals which experienced a spontaneous seizure at 2 min before perfusion, several neural progenitor cell (NPC) markers were used for double immunofluorescence labeling with pERK in the hippocampal formation:(1)radial glia-like NPC markers, including GFAP, BLBP, Nestin and Pax6; (2) a marker of intermediate stage NPCs with neuronal lineage potential, NeuroD; (3) immature neuronal markers, including DCX, Tuj-1;(4) an early granule cell-specific marker, Prox1;(5)a general neuronal marker, NeuN; (6) A marker of mature astrocytes,S100β.In addition, proliferation markers, Ki67 and Mcm2 were also used to determine if pERK labeled cells were in the proliferative cycle.
     3.To evaluate the difference of Mcm2 labeled cells and the BLBP-expressing NPCs that were in the proliferateive cycle in the SGZ between pilocarpine-treated animals at the onset of a spontaneous seizure and control animals, the density of Mcm2 labeled cells and the percentage of double-labeled cells that expressed BLBP and Mcm2 were calculated (n=5).
     4.Triple immunofluorescece of pERK, BLBP and Mcm2 were conducted in the hippocampal formation of pilocarpine-treated animals at the onset of a spontaneous seizure, and the percentages of single-, double-and triple-labeled cells were calculated (n=3).
     Results:1.In the control animals, the pERK-labeled cells were scattered in the dentate gyrus.In the pilocarpine-treated animals, when the mice had not experience spontaneous seizure in the last 24h before perfusion, the pERK labeling was obviously decreased. At the onset of a spontaneous seizure, the pERK labeling dramatically increased, it first appeared in the cells located in the SGZ at 2 min after a spontaneous seizures, and quickly spread to the whole granule cell layer, then went back to basic level within 30min. For comparison of pERK labeling with Fos and GABAARδsubunit, The Fos labeling were relatively delayed compared to pERK staining although they shared the similar changes; The area with pERK upregulation showed downregulation of GABAARδsubunit expression.
     2.In the animals that just experienced a spontaneous seizure at 2 min before perfusion,77.62±4.89% of pERK labeled cells colocalized with BLBP,77.68±5.50% of pERK labeled cells colocalized with GFAP, 21.67±7.12% of pERK labeled cells colocalized with NeuroD, and less than 5% of pERK labeled cells meanwhile expressed PSA-NCAM. Virtually no expression of DCX, Tuj-1, Prox1 or NeuN was found in pERK labeled cells.
     3.In the animals that just experienced a spontaneous seizure at 2 min before perfusion, the density of Mcm2 labeled cells were increased compared to that in the control animals. Similarly, the potential of BLBP labeled cells that were proliferating was also increased.
     4.In the animals that just experienced a spontaneous seizure at 2 min before perfusion, virtually all BLBP and Mcm2 double-labeled cells meanwhile showed ERK activation.
     Conclusions:1.ERK pathway activation showed dynamic changes following spontaneous seizures, which suggests it could be a sensitive marker considering the spontaneous seizure activity.
     2.In the pilocarpine treated animals with spontaneous seizures, the proliferative potential of neural stem cells that located in the SGZ were increased.
     3.At the onset of a spontaneous seizure, ERK pathway activation was first appeared in the neural stem cells and the NPCs with neuronal potential.
     4.Spontaneous seizure could exert its influence on the proliferation of NPCs and may contribute to the epilepsy-related neurogenesis.
引文
[1]Wieser HG. ILAE Commission on Neurosurgery of Epilepsy. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia,2004,45(6):695-714.
    [2]Bartolomei F, Khalil M, Wendling F, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy:an electrophysiologic and volumetric study. Epilepsia,2005,46 (5):677-687.
    [3]Mathern GW, Adelson PD, Cahan LD, et al.Hippocampal neuron damage in human epilepsy:Meyer's hypothesis revisited. Prog Brain Res,2002,135: 237-251.
    [4]Cavazos JE and Sutula TP.Progressive neuronal loss induced by kindling:a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis.Brain Res,1990,527(1):1-6.
    [5]French JA.,Williamson PD, Thadani VM, et al.Characteristics of medial temporal lobe epilepsy:I.Results of history and physical examination. Ann Neurol,1993,34(6):774-780.
    [6]Mathern GW, TL Babb, BB Vickrey, et al.The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain,1995,118(Pt1):105-118.
    [7]Nohria V, Lee N, Tien RD,et al.Magnetic resonance imaging evidence of hippocampal sclerosis in progression:a case report. Epilepsia,1994,35(6): 1332-1336.
    [8]VanLandingham KE, Heinz ER, Cavazos JE, et al.Magnetic resonance imaging evidence of hippocampal injury after prolonged febrile convulsions. Ann Neurol, 1998,43(4):413-426.
    [9]Mathern GW, Kuhlman PA, Mendoza D, et al. Human fascia dentata anatomy and hippocampal neuron densities differ depending on the epileptic syndrome and age at first seizure. J Neuropathol Exp Neurol,1997,56(2):199-212.
    [10]Zhang K, Peng BW, Sanchez RM. Decreased IH in hippocampal area CA1 pyramidal neurons after perinatal seizure-inducing hypoxia. Epilepsia,2006, 47(6):1023-1028.
    [11]Kharatishvili I, Pitkanen A. Posttraumatic epilepsy. Curr Opin Neurol,2010, 23(2):183-188.
    [12]Wais M, Wu C,Zahid T, et al. Repeated hypoxic episodes induce seizures and alter hippocampal network activities in mice. Neuroscience,2009,61(2): 599-613.
    [13]Nilsen KE,Walker MC, Cock HR. Characterization of the tetanus toxin model of refractory focal neocortical epilepsy in the rat. Epilepsia,2005,6(2):179-187.
    [14]Ma J, Leung LS.Kindled seizure in the prefrontal cortex activated behavioral hyperactivity and increase in accumbens gamma oscillations through the hippocampus. Behav Brain Res,2010,206(1):68-77.
    [15]Rakic P. Adult neurogenesis in mammals:an identity crisis. J Neurosci,2002, 22(3):614-618.
    [16]Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci,2002,22(3):629-634.
    [17]Garcia AD, Doan NB,Imura T, et al. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci,2004,7(11):1233-1241.
    [18]Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci,1997,17(10):3727-3738.
    [19]Gray WP, Sundstrom L. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Research,1998,790(1-2): 52-59.
    [20]Parent JM, Janumpalli S, McNamara JO, et al. Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neuroscience Letters, 1998,247(1):9-12.
    [21]Huttmann K, Sadgrove M, Wallraff A, et al.Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus:functional and immunocytochemical analysis.Eur J Neurosci,2003,18(10):2769-2778.
    [22]Overstreet-Wadiche LS,Bromberg DA, Bensen AL, et al. Seizures accelerate functional integration of adult-generated granule cells. J Neurosci,2006,26(15): 4095-4103.
    [23]Kandel ER. The molecular biology of memory storage:a dialogue between genes and synapses. Science,2001,294(5544):1030-1038.
    [24]Swear JD. Mitogen-activated protein kinases in synaptic phmticity and memory. Curr Opin Neurobiol,2004,14(3):311-317.
    [25]Berkeley JL, Decker MJ, Levey AI.The role of muscarinic acetylcholine receptor-mediated activation of extracellular signal-regulated kinase 1/2 in pilocarpine-induced seizures.J Neurochem,2002,82(1):192-201.
    [26]Choi YS,Lin SL, Lee B, et al.Status epilepticus-induced somatostatinergic hilar interneuron degeneration is regulatedby striatal enrichedprotein tyrosinephosphatase. J.Neurosci,2007,27(11):2999-3009.
    [27]Choi YS,Cho HY, Hoyt KR, et al.IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia,2008,56(7):791-800.
    [28]Garrido YC, Sanabria ER, Funke MG, et al.Mitogen-activated protein kinase is increased in the limbic structures of the rat brain during the early stages of status epilepticus. Brain Res Bull,1998,47(3):223-229.
    [29]Gass P, Kiessling M, Bading H. Regionally selective stimulation of mitogen activated protein (MAP) kinase tyrosine phosphorylation after generalized seizures in the rat brain. Neurosci Lett,1993,162(1-2):39-42.
    [30]Kim YS,Hong KS,Seong YS,et al.Phosphorylation and activation of mitogen-activated protein kinase by kainic acid-induced seizure in rat hippocampus.Biochem Biophys Res Commun,1994,202(2):1163-1168.
    [31]Lugo JN, Barnwell LF, Ren Y, et al.Altered phosphorylation and localization of the A-type channel, Kv4.2 in status epilepticus. J Neurochem,2008,106(4): 1929-1940.
    [32]Howell OW, Doyle K, Goodman JH, et al. Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem, 2005,93(3):560-570.
    [33]Liu L, Wang J, Zhao L, et al. Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2.Endocrinology,2009, 150(7):3186-3196.
    [34]Ohtsuka M, Fukumitsu H, Furukawa S.Neurotrophin-3 stimulates neurogenetic proliferation via the extracellular signal-regulated kinase pathway. J Neurosci Res,2009,87(2):301-306.
    [35]Miller F.D, Gauthier AS.Timing is everything:making neurons versus glia in the developing cortex.Neuron,2007,54(3):357-369.
    [36]Yoon S,Seger R. The extracellular signal-regulated kinase:multiple substrates regulate diverse cellular functions. Growth Factors,2006,24(1):21-44.
    [37]Samuels IS,Karlo JC, Faruzzi AN, et al.Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci,2008,28(27):6983-6995.
    [38]Leite JP, Garcia-Cairasco N, Cavalheiro EA. New insights from the use of pilocarpine and kainate models. Epilepsy Res,2002,50(1-2):93-103.
    [39]Covolan L, Mello LE.Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res,2000,39(2): 133-152.
    [40]Fisahn A, Pike FG, Buhl EH, et al.Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro.Nature,1998,394(6689): 186-189.
    [41]Goffin K, Nissinen J, Van Laere K, et al.Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol,2007, 205(2):501-505.
    [42]Cha BH, Akman C, Silveira DC, et al.Spontaneous recurrent seizure following status epilepticus enhances dentate gyrus neurogenesis. Brain Dev,2004,26(6): 394-397.
    [43]Arida RM, Scorza FA, Peres CA, et al. The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res,1999,34(2-3):99-107.
    [44]Glien M, Brandt C, Potschka H, et al.Repeated low-dose treatment of rats with pilocarpine:low mortality but high proportion of rats developed epilepsy. Epilepsy Res,2001,46(2):111-119.
    [45]Haut SR, Swick C, Freeman K, et al.Seizure clustering during epilepsy monitoring. Epilepsia,2002,43(7):711-715.
    [46]Balish M, Albert PS,Theodore WH. Seizure frequency in intractable partial epilepsy:a statistical analysis.Epilepsia,1991,32(5):642-649.
    [47]Haut SR. Seizure clustering. Epilepsy Behav,2006,8(1):50-55.
    [48]Bowman T, Leppik I, Haus E. Periodicity of seizure activity in persons with complex partial seizures. Epilepsia,1984,25,658.
    [49]Bauer J, Burr W. Course of chronic focal epilepsy resistant to anticonvulsant treatment. Seizure,2001,10(4):239-246.
    [50]Sohal VS,Keist R, Rudolph U, et al. Dynamic GABA(A) receptor subtype-specific modulation of the synchrony and duration of thalamic oscillations. J Neurosci,2003,23(9):3649-3657.
    [51]Hoexter MQ, Rosa PS,Tufik S, et al.Consequences of prolonged caffeine administration and its withdrawal on pilocarpine-and kainite-induced seizures in rats. Epilepsia,2005,46(9):1401-1406.
    [52]Curia G, Longo D, Biagini G, et al.The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods,2008,172(2):143-157.
    [53]Houser CR. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res,1990,535(2):195-204.
    [54]Maudsley AA, Domenig C, Ramsay RE, et al.Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res, 2010,88(2-3):127-138.
    [55]Andre V, Marescaux C, Nehlig A, et al. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus,2001,11(4): 452-468.
    [56]Carlson H, Ronne EE, Ungerstedt U, et al.Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett,1992,140(1): 30-32.
    [57]During MJ, Spencer DD.Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet,1993,341(8861):1607-1610.
    [58]Lasztoczi B, Nyitrai G, Heja L, et al.Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices. J Neurophysiol,2009,102(4):2538-2553.
    [59]Bender RA, Dube C, Gonzalez-Vega R, et al. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus, 2003,13(3),399-412.
    [60]Santhakumar V, Ratzliff AD, Jeng J, et al. Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol,2001,50(6): 708-717.
    [61]Toth Z, Hollrigel GS,Gores T, et al.Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci,1997,17(21):8106-8117.
    [62]Hamilton SE, Loose MD, Qi M, et al.Disruption of the ml receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA,1997,94(24):13311-13316.
    [63]Clifford DB,Olney JW, Maniotis A, et al.The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience,1987,23(3):953-968.
    [64]Smolders I, Khan GM, Manil J, Ebinger G, Michotte Y. NMDA receptor-mediated pilocarpine-induced seizures:characterization in freely moving rats by microdialysis. Br J Pharmacol,1997,121(6):1171-1179.
    [65]Rakic P. Adult neurogenesis in mammals:an identity crisis. J Neurosci,2002, 22(3):614-618.
    [66]Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci,2002,22(3):629-634.
    [67]Francis F, Koulakoff A, Boucher D,et al.Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons.Neuron,1999,23(2):247-256.
    [68]Friocourt G, Koulakoff A, Chafey P, et al.Doublecortin functions at the extremities of growing neuronal processes. Cereb Cortex,2003,3(6):620-626.
    [69]Liu YW, Curtis MA, Gibbons HM, et al. Doublecortin expression in the normal and epileptic adult human brain.. Eur J Neurosci,2008,28(11):2254-6225.
    [70]Huttmann K, Sadgrove M, Wallraff A, et al.Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus:functional and immunocytochemical analysis. Eur J Neurosci,2003,18(10):2769-2778.
    [71]Jessberger S,Romer B,Babu H, et al. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells.Exp Neurol, 2005,196(2):342-351.
    [72]Shapiro LA, Ribak CE.Newly born dentate granule neurons after pilocarpine-induced epilepsy have hilar basal dendrites with immature synapses. Epilepsy Res,2006,69(1):53-66.
    [73]Pierce JP, Melton J, Punsoni M, et al.Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures. Exp Neurol,2005,196(2):316-331.
    [74]Scharfman HE,Goodman JH,Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells:functional implications of seizure-induced neurogenesis. J Neurosci,2000, 20(16):6144-6158.
    [75]Wenzel HJ, Robbins CA,Tsai LH, et al.Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures. J Neurosci,2001,21(3): 983-998.
    [76]Tanaka T, Serneo FF, Tseng HC, et al.Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration.Neuron,2004,41(2):215-227.
    [77]Umka J, Mustafa S,ElBeltagy M, et al. Valproic acid reduces spatial working memory and cell proliferation in the hippocampus.Neuroscience,2010,166(1): 15-22.
    [78]Anthony TE, Klein C, Fishell G, et al.Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron,2004,41(6):881-890.
    [79]Seri B, Garcia-Verdugo JM, McEwen BS,et al.Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci,2001,21(18): 7153-7160.
    [80]Doetsch F, Caille I, Lim DA, et al.Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell,1999,97(6):703-716.
    [81]Scotto C, Deloulme JC, Rousseau D, et al.Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis.Mol Cell Biol,1998,18(7): 4272-4281.
    [82]Raponi E, Agenes F, Delphin C, et al. S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia,2007,55(2):165-177.
    [83]Filippov V, Kronenberg G, Pivneva T, et al.Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes.Mol Cell Neurosci,2003,23(3): 373-382.
    [84]Fukuda S,Kato F, Tozuka Y, et al.Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci,2003,23(28): 9357-9366.
    [85]Lagace DC, Whitman MC, Noonan MA, et al.Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci,2007,27(46): 12623-12629.
    [86]Maekawa M, Takashima N, Arai Y, et al.Pax6 is required for production and
    maintenance of progenitor cells in postnatal hippocampal neurogenesis.Genes Cells,2005,10(10):1001-1014.
    [87]Osumi N, Shinohara H, Numayama-Tsuruta K, et al. Concise review:Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 2008,26(7):1663-1672.
    [88]Sansom SN, Griffiths DS,Faedo A, et al.The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet,2009,5(6):e1000511.
    [89]von Bohlen Und Halbach O.Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res,2007,329(3):409-420.
    [90]Seri B,Garcia-Verdugo JM, Collado-Morente L, et al.Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 2004,478(4):359-378.
    [91]Tamimi R, Steingrimsson E, Copeland NG, et al. The NEUROD gene maps to human chromosome 2q32 and mouse chromosome 2.Genomics,1996,34(3): 418-421.
    [92]Seki T. Hippocampal adult neurogenesis occurs in a microenvironment provided by PSA-NCAM-expressing immature neurons. J Neurosci Res,2002,69(6): 772-783.
    [93]Brown JP, Couillard-Despres S,Cooper-Kuhn CM, et al. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol,2003,467(1),1-10.
    [94]Menezes JR, Luskin MB.Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci,1994,14(9):5399-5416.
    [95]Maslov AY, Barone TA, Plunkett RJ, et al.Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci,2004,24(7):1726-1733.
    [96]Stoeber K, Tlsty TD, Happerfield L, et al.DNA replication licensing and human cell proliferation. J Cell Sci,2001,114(Pt 11):2027-2041.
    [97]Zhao M, Adams JP, Dudek SM. Pattern-dependent role of NMDA receptors in action potential generation:consequences on extracellular signal-regulated kinase activation. J Neurosci,2005,25(30):7032-7039.
    [98]Keyse SM. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol,2000,12(2):186-192.
    [99]Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal,2004,16(7):769-779.
    [100]Lang R, Hammer M, Mages J. DUSP meet immunology:dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol,2006, 177(11):7497-504.
    [101]Dugladze T, Vida I, Tort AB, et al.Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proc Natl Acad Sci U S A,2007, 104(44):17530-17535.
    [102]Nateri AS,Raivich G, Gebhardt C, et al. ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J,2007,26(23):4891-4901.
    [103]Dudek SM, Fields RD.Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments:roles of action potentials, frequency, and mode of calcium entry. J Neurosci,2001,21(2): RC122.
    [104]Komiyama NH, Watabe AM, Carlisle HJ, et al.SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci,2002,22(22):9721-9732.
    [105]Xu J, Kurup P, Zhang Y, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci,2009,29(29):9330-9343.
    [106]Xia Z, Dudek H, Miranti CK,et al.Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci,1996,16(17):5425-5436.
    [107]Zucchini S,Buzzi A, Barbieri M,et al.Fgf-2 overexpression increases excitability and seizure susceptibility but decreases seizure-induced cell loss. J Neurosci,2008,28(49):13112-24.
    [108]Watabe AM, Zaki PA, O'Dell TJ. Coactivation ofβ-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci,2000,20(16):5924-5931.
    [109]Zhao W, Bianchi R, Wang M, et al.Extracellular signalregulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges.J Neurosci,2004,24(1):76-84.
    [110]Schrader LA, Ren Y, Cheng F, Bui D, Sweatt JD, Anderson AE, et al.Kv4.2 is a locus for PKC and ERK/MAPK cross-talk. Biochem J,2009,417(3):705-15.
    [111]Corvol JC, Valjent E, Toutant M, et al.Depolarization activates ERK and proline-rich tyrosine kinase 2 (PYK2) independently in different cellular compartments in hippocampal slices. J Biol Chem,2005,280(1):660-668.
    [112]Peng Z, Houser CR. Temporal patterns of fos expression in the dentate gyrus after spontaneous seizures in a mouse model of temporal lobe epilepsy. J Neurosci,2005,25(31):7210-7220.
    [113]Semyanov A, Walker MC, Kullmann DM, et al.Tonically active GABAA receptors:modulating gain and maintaining the tone.Trends Neurosci,2004, 27(5):262-269.
    [114]Molteni R, Ying Z, Gomez-Pinilla F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci,2002,16(6):1107-1116.
    [115]Liu M, Pleasure SJ, Collins AE, et al.Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A, 2000,97(2):,865-870.
    [116]Pleasure SJ, Collins AE, Lowenstein DH. Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J Neurosci,2000,20(16):6095-6105.
    [117]Gong C, Wang TW, Huang HS,et al.Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J Neurosci,2007,27(8): 1803-1811.
    [118]Simo S,Pujadas L, Segura MF, et al.Reelin induces the detachment of postnatal subventricular zone cells and the expression of the Egr-1 through Erkl/2 activation. Cereb Cortex,2007,17(2):294-303.
    [119]Levison SW, Chuang C, Abramson BJ, et al.The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development,1993,119(3):611-622.
    [120]Levison SW, Young GM, Goldman JE. Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J Neurosci Res,1999,57(4):435-446.
    [121]Parent JM, von dem Bussche N, Lowenstein DH. Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus,2006,16(3):321-328.
    [122]Huttmann K, Sadgrove M, Wallraff A, et al.Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus:functional and immunocytochemical analysis. Eur J Neurosci,2003,18(10):2769-2778.
    [123]Ledergerber D, Fritschy JM, Kralic JE. Impairment of dentate gyrus neuronal progenitor cell differentiation in a mouse model of temporal lobe epilepsy. Exp Neurol,2006,199(1):130-142.
    [124]Hodge RD, Kowalczyk TD, Wolf SA, et al. Intermediate progenitors in adult hippocampal neurogenesis:Tbr2 expression and coordinate regulation of neuronal output. J Neurosci,2008,28(14):3707-3717.
    [125]Kronenberg G, Reuter K, Steiner B, et al.Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol,2003,467(4):455-463.
    [126]Zhu H, Dahlstrom A, Hansson HA. Characterization of cell proliferation in the adult dentate under normal conditions and after kainate induced seizures using ribonucleotide reductase and BrdU. Brain Res,2005,1036(1-2):7-17.
    [127]Steiner B,Zurborg S,Horster H, et al. Differential 24 h responsiveness of proxl-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience,2008,154(2):521-529.
    [128]Wang B, Gao Y, Xiao Z, et al.Erkl/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells. Neurosci Lett,2009,461(3):252-257.
    [129]Aberg MA, Aberg ND, Hedbacker H, et al.Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci,2000, 20(8):2896-2903.
    [130]Bull N.D, Bartlett PF. The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci,2005,25(47):10815-10821.
    [131]Scharfman H, Goodman J, Macleod A, et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats.Exp Neurol,2005,192(2):348-356.
    [132]Segi-Nishida E, Warner-Schmidt JL, Duman RS.Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci U S A,2008,105(32):11352-11357.
    [133]Hagihara H, Hara M, Tsunekawa K, et al. Tonic-clonic seizures induce division of neuronal progenitor cells with concomitant changes in expression of neurotrophic factors in the brain of pilocarpine-treated mice.Brain Res Mol Brain Res,2005,139(2):258-266.
    [134]Jankowsky JL, Savonenko A, Schilling G, et al.Transgenic mouse models of neurodegenerative disease:opportunities for therapeutic development. Curr Neurol Neurosci Rep,2002,2(5):457-464.
    [135]Xiao Z, Kong Y, Yang S, et al. Upregulation of Flk-1 by bFGF via the ERK pathway is essential for VEGF-mediated promotion of neural stem cell proliferation. Cell Res,2007,17(1):73-79.
    [1]Lledo PM, Alonso M, Grubb MS.Adult neurogenesis and functional plasticity in neuronal circuits.Nat Rev Neurosci,2006,7(3):179-193.
    [2]Altman J. Are new neurons formed in the brains of adult mammals? Science,1962, 135:1127-1128.
    [3]Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature, 1965,207(5000):953-956.
    [4]Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al.Neurogenesis in the adult human hippocampus. Nat Med,1998,4(11):1313-1317.
    [5]Garcia AD,Doan NB, Imura T, et al.GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci,2004,7(11):1233-1241.
    [6]Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci,2002,22(3):629-634.
    [7]Bernier PJ, Bedard A, Vinet J, et al.Newly generated neurons in the amygdala and adjoining cortex of adult primates.Proc Natl Acad Sci U S A,2002,99(17): 11464-11469.
    [8]Fukuda S,Kato F, Tozuka Y, et al.Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci,2003,23(28):9357-9366.
    [9]Filippov V, Kronenberg G, Pivneva T, et al.Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci,2003,23(3): 373-382.
    [10]Cameron HA, Woolley CS,McEwen BS,et al.Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience,1993,56(2): 337-344.
    [11]Hartfuss E, Galli R, Heins N, et al. Characterization of CNS precursor subtypes and radial glia. Dev Biol,2001,229(1):15-30.
    [12]Seri B, Garcia-Verdugo JM, McEwen BS,et al.Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci,2001,21(18): 7153-7160.
    [13]Bull ND, Bartlett PF.The adult mouse hippocampal progenitor is neurogenic but not a stem cell.J Neurosci,2005,25(47):10815-10821.
    [14]Kronenberg G, Reuter K, Steiner B, et al.Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol,2003,467(4):455-463.
    [15]Kempermann G, Jessberger S,Steiner B, et al. Milestones of neuronal development in the adult hippocampus. Trends Neurosci,2004,27(8):447-452.
    [16]Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci,2005,28:223-250.
    [17]Llorens-Martin M, Torres-Aleman I, Trejo JL. Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus,2006,16(5):480-490.
    [18]Brandt MD, Jessberger S,Steiner B,et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci,2003,24(3):603-613.
    [19]van PH, Schinder AF, Christie BR, et al.Functional neurogenesis in the adult hippocampus. Nature,2002,415(6875):1030-1034.
    [20]Scharfman H, Goodman J, Macleod A, et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol,2005,192(2):348-356.
    [21]Cameron HA, McKay RD.Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol,2001,435(4):406-417.
    [22]Nowakowski RS, Hayes NL. New neurons:extraordinary evidence or extraordinary conclusion? Science,2000,288(5467):771.
    [23]Bauer S,Patterson PH. The cell cycle-apoptosis connection revisited in the adult brain. J Cell Biol,2005,171(4):641-650.
    [24]Cooper-Kuhn CM, Kuhn HG. Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res,2002,134(1-2):13-21.
    [25]Maslov AY, Barone TA, Plunkett RJ, et al.Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci,2004,24(7):1726-1733.
    [26]Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci,1997,17(13):5046-5061.
    [27]Garcia AD, Doan NB,Imura T, et al.GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci,2004,7(11):1233-1241.
    [28]Namba T, Mochizuki H, Onodera M, et al. The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci,2005,22(8):1928-1941.
    [29]Reynolds BA, Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science,1992,255(5052): 1707-1710.
    [30]Cao F, Hata R, Zhu P, et al.Overexpression of SOCS3 inhibits astrogliogenesis and promotes maintenance of neural stem cells. J Neurochem,2006,98(2): 459-470.
    [31]Steiner B,Klempin F, Wang L, et al.Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia,2006,54(8):805-814.
    [32]Yamaguchi M, Saito H, Suzuki M, et al.Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice.Neuroreport, 2000,11(9):1991-1996.
    [33]Itoh T, Satou T, Nishida S, et al. Cultured rat astrocytes give rise to neural stem cells.Neurochem Res,2006,31(11):1381-1387.
    [34]Kalman M, Ajtai BM. A comparison of intermediate filament markers for presumptive astroglia in the developing rat neocortex:immunostaining against nestin reveals more detail, than GFAP or vimentin. Int J Dev Neurosci,2001, 19(1):101-108.
    [35]Duggal N, Schmidt-Kastner R, Hakim AM. Nestin expression in reactive astrocytes following focal cerebral ischemia in rats. Brain Res,1997,768(1-2): 1-9.
    [36]Sahin KS,Mahmood A, Li Y, et al. Expression of nestin after traumatic brain injury in rat brain. Brain Res,1999,840(1-2):153-157.
    [37]Yoo YM, Lee U, Kim YJ. Apoptosis and nestin expression in the cortex and cultured astrocytes following 6-OHDA administration. Neurosci Lett,2005, 382(1-2):88-92.
    [38]Heins N, Malatesta P, Cecconi F, et al. Glial cells generate neurons:the role of the transcription factor Pax6.Nat Neurosci,2002,5(4):308-315.
    [39]Englund C, Fink A, Lau C, et al.Pax6, Tbr2, and Tbrl are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci,2005,25(1):247-251.
    [40]Nacher J, Varea E, Blasco-Ibanez JM, et al.Expression of the transcription factor Pax 6 in the adult rat dentate gyrus. J Neurosci Res,2005,81(6):753-761.
    [41]Maekawa M, Takashima N, Arai Y, et al.Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells,2005,10(10):1001-1014.
    [42]Hevner RF, Hodge RD,Daza RA, et al. Transcription factors in glutamatergic neurogenesis:conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res,2006,55(3):223-233.
    [43]Lee JE, Hollenberg SM, Snider L, et al.Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science,1995,268(5212): 836-844.
    [44]Tamimi R, Steingrimsson E, Copeland NG, et al.The NEUROD gene maps to human chromosome 2q32 and mouse chromosome 2.Genomics,1996,34(3): 418-421.
    [45]Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev,1999,13(13): 1647-1652.
    [46]Liu M, Pleasure SJ, Collins AE, et al. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A,2000, 97(2):865-870.
    [47]Seki T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res,2002,70(3):327-734.
    [48]Seki T. Hippocampal adult neurogenesis occurs in a microenvironment provided by PSA-NCAM-expressing immature neurons. J Neurosci Res,2002,69(6): 772-783.
    [49]Ben-Hur T, Rogister B, Murray K, et al.Growth and fate of PSA-NCAM+ precursors of the postnatal brain. J Neurosci,1998,8(15):5777-5788.
    [50]Seki T, Arai Y. The persistent expression of a highly polysialylated NCAM in the dentate gyrus of the adult rat. Neurosci Res,1991,12(4):503-513.
    [51]Seki T, Arai Y. Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J Comp Neurol,1999,410(3):503-513.
    [52]Venero C,Herrero Al, Touyarot K, et al.Hippocampal up-regulation of NCAM expression and polysialylation plays a key role on spatial memory. Eur J Neurosci,2006,23(6):1585-1595.
    [53]Cremer H, Chazal G, Lledo PM, et al.PSA-NCAM:an important regulator of hippocampal plasticity. Int J Dev Neurosci,2000,18(2-3):213-220.
    [54]Pham K, Nacher J, Hof PR, et al.Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci,2003,17(4):879-886.
    [55]Gleeson JG, Lin PT, Flanagan LA, et al. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron,1999,23(2):257-271.
    [56]Francis F, Koulakoff A, Boucher D, et al.Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron,1999,23(2):247-256.
    [57]Rao MS,Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci,2004,19(2):234-246.
    [58]Koizumi H, Higginbotham H, Poon T, et al.Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat Neurosci,2006,9(6):779-786.
    [59]Dayer AG, Cleaver KM, Abouantoun T, et al.New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors.J Cell Biol,2005,168(3):415-427.
    [60]Brown JP, Couillard-Despres S, Cooper-Kuhn CM, et al.Transient expression of doublecortin during adult neurogenesis. J Comp Neurol,2003,467(1):1-10.
    [61]Couillard-Despres S,Winner B,Schaubeck S, Aigner R, Vroemen M, et al. Doublecortin expression levels in adult brain reflect neurogenesis.Eur J Neurosci,2005,21(1):1-14.
    [62]Minturn JE, Fryer HJ, Geschwind DH, et al.TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33,a C.elegans gene involved in axon outgrowth. J Neurosci,1995,15(10):6757-6766.
    [63]Minturn JE, Geschwind DH, Fryer HJ, et al. Early postmitotic neurons transiently express TOAD-64, a neural specific protein. J Comp Neurol,1995, 355(3):369-379.
    [64]Quinn CC, Gray GE, Hockfield S.A family of proteins implicated in axon guidance and outgrowth.J Neurobiol,1999,41(1):158-164.
    [65]Fernandez A, Radmilovich M, Trujillo-Cenoz O.Neurogenesis and gliogenesis in the spinal cord of turtles. J Comp Neurol,2002,453(2):131-144.
    [66]Munoz-Elias G, Woodbury D, Black IB.Marrow stromal cells, mitosis, and neuronal differentiation:stem cell and precursor functions. Stem Cells,2003, 21(4):437-448.
    [67]Ngwenya LB,Peters A, Rosene DL. Maturational sequence of newly generated neurons in the dentate gyrus of the young adult rhesus monkey. J Comp Neurol, 2006,498(2):204-216.
    [68]Cecchini T, Ciaroni S,Ferri P, et al. Alpha-tocopherol, an exogenous factor of adult hippocampal neurogenesis regulation. J Neurosci Res,2003,73(4): 447-455.
    [69]Easter SS, Jr.,Ross LS, Frankfurter A. Initial tract formation in the mouse brain. J Neurosci 1993,13(1):285-299.
    [70]Menezes JR, Luskin MB.Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci,1994,14(9):5399-5416.
    [71]Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus.J Neurosci,1997,17(10):3727-3738.
    [72]Gould E, Vail N, Wagers M, et al. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci U S A,2001, 98(19):10910-10917.
    [73]Yang HK, Sundholm-Peters NL, Goings GE, et al.Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res,2004,76(3):282-295.
    [74]Ambrogini P, Lattanzi D, Ciuffoli S,et al. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res,2004,1017(1-2):21-31.
    [75]Seri B, Garcia-Verdugo JM, Collado-Morente L, et al.Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 2004,478(4):359-378.
    [76]Jacobowitz DM, Winsky L. Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol,1991,304(2):198-218.
    [77]Miettinen R, Gulyas AI, Baimbridge KG, et al. Calretinin is present in non-pyramidal cells of the rat hippocampus--Ⅱ.Co-existence with other calcium binding proteins and GABA. Neuroscience,1992,48(1):29-43.
    [78]Gulyas AI, Miettinen R, Jacobowitz DM, et al. Calretinin is present in non-pyramidal cells of the rat hippocampus--Ⅰ. A new type of neuron specifically associated with the mossy fibre system. Neuroscience,1992,48(1): 1-27.
    [79]Dominguez MI, Blasco-Ibanez JM, Crespo C, et al.Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse. Brain Res,2003,966(2):206-217.
    [80]Gray WP, Sundstrom L. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Research,1998,790(1-2): 52-59.
    [81]Parent JM, Janumpalli S, McNamara JO, et al.Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neuroscience Letters, 1998,247(1):9-12.
    [82]Scott BW, Wang S,Burnham WM, et al.Kindling-induced neurogenesis in the dentate gyrus of the rat. Neuroscience Letters,1998,248(2):73-76.
    [83]Madsen TM, Treschow A, Bengzon J, et al.Increased neurogenesis in a model of electroconvulsive therapy. Biological Psychiatry,2000,47(12):1043-1049.
    [84]Scott BW, Wojtowicz JM, Burnham WM. Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures.Experiments in Neurology, 2000,165(2):231-236.
    [85]Bengzon J, Kokaia Z, Elmer E, et al. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA,1997,94(19):10432-10437.
    [86]Radley JJ, Jacobs BL. Pilocarpine-induced status epilepticus increases cell proliferation in the dentate gyrus of adult rats via a 5-HT1A receptor-dependent mechanism. Brain Research,2003,966(1):1-12.
    [87]Zucchini S, Barbieri M, Simonato M. Alterations in seizure susceptibility and in seizure-induced plasticity after pharmacologic and genetic manipulation of the fibroblast growth factor-2 system. Epilepsia,2005,46, Suppl 5:52-58.
    [88]Mazarati A, Lu X, Kilk K, et al. Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizureinduced neurogenesis in the dentate gyrus. Eur J Neurosci,2004,19(12):3235-3244.
    [89]Howell OW, Doyle K, Goodman JH, et al.Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem, 2005,93(3):560-570.
    [90]Yoshimura S,Takagi Y, Harada J, et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A,2001,98(10): 5874-5879.
    [91]Banerjee SB, Rajendran R, Dias BG, et al.Recruitment of the Sonic hedgehog signalling cascade in electroconvulsive seizuremediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci,2005,22(7):1570-1580.
    [92]Kulkarni VA, Jha S,Vaidya VA. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur J Neurosci,2002,16(10): 2008-2012.
    [93]Sadgrove M, Chad JE, Gray WP.Kainic acid induces rapid cell death followed by transiently reduced cell proliferation in the immature granule cell layer of rat organotypic hippocampal slice cultures. Brain Research,2005,1035(2): 111-119.
    [94]Hagihara H. Tonic-clonic seizures induce division of neuronal progenitor cells with concomitant changes in expression of neurotrophic factors in the brain of pilocarpine-treated mice. Molecular Brain Research,2005,139(2):258-266.
    [95]Pirttila TJ.Cystatin C modulates neurodegeneration and neurogenesis following status epilepticus in mouse. Neurobiological Disorder,2005,20(2):241-253.
    [96]Huttmann K, Sadgrove M, Wallraff A, et al.Seizure preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus:functional and immunocytochemical analysis.European Journal of Neuroscience,2003, 18(10):2769-2778.
    [97]Zhu H, Dahlstrom A, Hansson HA. Characterization of cell proliferation in the adult dentate under normal conditions and after kainate induced seizures using ribonucleotide reductase and BrdU. Brain Research,2005,1036(1-2):7-17.
    [98]Jessberger S,Romer B,Babu H, et al.Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells.Experiments in Neurology,2005,196(2):342-351.
    [99]Ekdahl CT, Mohapel P, Elmer E,et al.Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus. European Journal of Neuroscience,2001,14(6):937-945.
    [100]Mohapel P, Ekdahl CT, Lindvall O.Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiological Disorder,2004,15(2):196-205.
    [101]Scott BW, Burnham WM.Kindled seizures enhance young neuron survival in the adult rat dentate gyrus. Acta Neuropathology (Berlin),2004,111(4): 364-371.
    [102]Scharfman HE,Goodman JH,Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells:functional implications of seizureinduced neurogenesis.J Neurosci,2000, 201(16):6144-6158.
    [103]Ekdahl CT, Zhu C, Bonde S,et al. Death mechanisms in status epilepticusgenerated neurons and effects of additional seizures on their survival. Neurobiol Dis,2003,14(3):513-523.
    [104]McCloskey DP, Hintz T, Pierce JP, et al.Stereological methods reveal the robust size and stability of an ectopic population of hilar granule cells after pilocarpine-induced status epilepticus in the adult rat. Eur J of Neurosci,2006, 24(8):2203-2210.
    [105]Sloviter RS,Dean E, Sollas AL, et al.Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol,1996,366(3):516-533.
    [106]Bengzon J, Mohapel P, Ekdahl CT, et al. Neuronal apoptosis after brief and prolonged seizures. Prog Brain Res,2002,135:111-119.
    [107]Overstreet-Wadiche LS, Bromberg DA, Bensen AL, et al. Seizures accelerate functional integration of adult-generated granule cells. J Neurosci,2006,26(15): 4095-4103.
    [108]Houser CR. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Research,1990,535(2):195-204.
    [109]Lurton D, El Bahh B,Sundstrom L, et al. Granule cell dispersion is correlated with early epileptic events in human temporal lobe epilepsy. J Neurol Sci,1998, 154(2):133-136.
    [110]Suzuki F, Junier MP, Guilhem D, et al.Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor. Neuroscience,1995,64(3):665-674.
    [111]Bouilleret V, Ridoux V, Depaulis A, et al.Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience,1999,89(3):717-729.
    [112]Thom M. Cytoarchitectural abnormalities in hippocampal sclerosis.J Neuropathol and Exp Neurol,2002,61(6):510-519.
    [113]Shetty AK, Turner DA. Fetal hippocampal grafts containing CA3 cells restore host hippocampal glutamate decarboxylase-positive interneuron numbers in a rat model of temporal lobe epilepsy. J Neurosci,2000,20(23):8788-8801.
    [114]Hattiangady B, Rao MS,Zaman V, et al.Incorporation of embryonic CA3 cell grafts into the adult hippocampus at 4-months after injury:Effects of combined neurotrophic supplementation and caspase inhibition. Neuroscience,2006, 139(4):1369-1383.
    [115]Shetty AK, Turner DA. Development of fetal hippocampal grafts in intact and lesioned hippocampus. Prog Neurobiol,1996,50(5-6):597-653.
    [116]Shetty AK, Turner DA. Development of long-distance efferent projections from fetal hippocampal grafts depends upon pathway specificity and graft location in kainate-lesioned adult hippocampus.Neuroscience,1997,76(4):1205-1219.
    [117]Shetty AK, Turner DA. Fetal hippocampal cells grafted to kainatelesioned CA3 region of adult hippocampus suppress aberrant supragranular sprouting of host mossy fibers.Exp Neurol,1997,143(2):231-245.
    [118]Borlongan CV, Yu G, Matsukawa N, et al.Cell transplantation:Stem cells in the spotlight. Cell Transplant,2005,14(8):519-526.
    [119]Chu K, Kim M, Jung KH, et al.Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res,2004,1023(2):213-221.
    [120]Shetty AK, Hattiangady B.Survival and differentiation of stem/progenitor cells from the postnatal hippocampus following grafting into the intact or injured young adult and aged hippocampus. Society for Neuroscience Abstracts, October 16,2006, Atlanta.
    [121]Nakagawa E, Aimi Y, Yasuhara O, et al.Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy. Epilepsia,2000,41(1):10-18.
    [122]Noe'F, Nissinen J, Pitkanen A, et al.Gene therapy in epilepsy:The focus on NPY. Peptides,2007,28(2):377-383.
    [123]Kanter-Schlifke I, Georgievska B, Kirik D, et al.Seizure suppression by GDNF gene therapy in animal models of epilepsy.Mol Ther,2007,15(6):1106-1113.
    [124]Li T, Steinbeck JA, Lusardi T, et al.Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain,2007,130(Pt 5): 1276-1288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700