用户名: 密码: 验证码:
LMO4/pCREB/pStat3在局灶性脑缺血再灌注大鼠中的表达及依达拉奉的干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:脑卒中具有高发病率、高死亡率、高致残率的临床特点,缺血性卒中为其主要类型,严重危害着人类的健康。脑缺血神经元死亡的分子机制特别复杂,目前已发现三条主要的细胞通路与其有关,分别为谷氨酸受体的过度激活、氧化应激及细胞凋亡。LIM蛋白是一类包含有2个或以上LIM结构域的蛋白,LMO4为最近发现的核转录协作因子,属于LIM蛋白家族的一员,通过对转录因子的激活或抑制来调控其他蛋白的功能,在基因表达、细胞分化和发育、细胞骨架的形成中发挥重要作用。pCREB、pStat3也属于核转录因子,部分研究表明二者对脑缺血神经元损伤有保护作用。在脑缺血的细胞模型中,LMO4通过调节IL-6/Stat3细胞信号通路促进体外缺氧神经细胞的存活,而pCREB又可作为上游成分调节LMO4的转录活性。本研究拟在脑缺血再灌注模型中观察LMO4、pCREB、pStat3在缺血半暗带的表达变化及定位,并探讨LMO4与后两者之间的关系及其对脑缺血细胞存活的作用,为缺血性卒中脑保护药物的开发提供新的分子靶点。
     方法:健康成年雄性Sprague-Dawley(SD)大鼠84只,随机分为假手术组及缺血再灌注1h、3h、6h、12h、24h、48h组,每组12只,6只用于分子生物学检测,余6只用于组织学实验。线栓法制备局灶性大脑中动脉闭塞(MCAO)模型,缺血2小时后恢复再灌住,以Longa5级标准评分法评价神经功能缺损,分别在各再灌注时间点处死动物。常规HE染色观察组织病理学改变;尼氏染色观察神经元的存活;Map2抗体染色观察神经元树突;TUNEL法检测缺血脑组织的凋亡细胞;免疫荧光检测、LMO4、pCREB、pStat3的在缺血半暗带皮层细胞的表达数量及部位;免疫荧光双标观察LMO4与Map2、pCREB、pStat3、TUNEL阳性细胞之间以及pCREB.pStat3与NEUN的共表达情况。RT-PCR法测定假手术组及再灌后不同时间点LMO4mRNA在缺血半暗带的表达水平;western-blot法测定假手术组及再灌后不同时间点LMO4和pStat3、pCREB三分子在缺血半暗带中的蛋白表达水平。
     结果:①模型成功率为76.60%,死亡率为13.83%,主要死亡原因为蛛网膜下腔出血、脑水肿;脑组织TTC染色显示成功模型大鼠出现皮层和纹状体梗死,而假手术组大鼠未见梗死。
     ②模型组HE染色可见典型的坏死灶、神经元丢失和组织水肿,梗死区细胞总数目呈减少趋势,假手术组细胞形态正常;
     ③模型组尼氏染色可见细胞肿胀,尼氏体消失,缺血半暗带皮层区存活神经元数目随再灌时间逐渐减少(P<0.05),48小时最低(P<0.01),假手术组神经元形态正常;
     ④模型组树突长度变短,直径变小,缺血半暗带皮层区MAP2阳性细胞OD值随再灌时间逐渐减少,48小时最低(P<0.01),假手术组神经元树突形态正常;
     ⑤TUNEL阳性细胞主要分布在梗死周围区,凋亡细胞数再灌后6小时开始增多(P<0.05),24小时达高峰,一直持续到48小时(P<0.01);
     ⑥与假手术组比较,缺血侧半暗带皮层组织LMO4mRNA水平再灌后3小时开始升高,24小时达高峰,48小时明显下降(P<0.05或P<0.01);
     ⑦与假手术组比较,缺血侧半暗带皮层组织LMO4蛋白水平再灌后3小时开始升高,24小时达高峰,48小时明显下降,pCREB、pStat3蛋白水平6小时开始升高,24小时达高峰,48小时逐渐下降(P<0.05或P<0.01);
     ⑧与假手术组比较,LMO4、pCREB、pStat3阳性细胞数再灌后6小时开始升高,24小时达高峰,48小时显著下降(P<0.05或P<0.01);
     ⑨免疫荧光双标显示LMO4和pCREB仅表达于神经元,pStat3在神经元和胶质细胞均可表达;LMO4主要表达于细胞核,少量位于细胞浆,pCREB和pStat3仅表达于细胞核;在缺血半暗带皮层区,LMO4与TUNEL阳性细胞呈分离表达,LMO4与pCREB完全共表达,而与pStat3部分共表达。
     结论:①脑缺血再灌后诱导LMO4、pCREB及pStat3表达升高,并呈动态变化趋势,可能为神经细胞对缺血再灌注损伤的一种内部适应性保护机制。
     ②LMO4可能通过与pCREB之间的相互作用及调节pStat3性来促进缺血神经元的存活。
     背景及目的:依达拉奉是一种合成的新型自由基清除剂和抗氧化剂,可改善脑缺血后引起的神经功能缺损,并且对迟发性神经细胞死亡也有抑制作用。依达拉奉对脑缺血的保护作用较为明确,但其具体的分子机制尤其是抗凋亡的机制并不十分清楚。凋亡为一种基因调控的细胞程序性死亡,而LMO4作为核转录协助因子可调节基因的表达。LMO4基因敲除小鼠出现各种发育障碍,提示其对上皮细胞及神经细胞的抗凋亡作用。本研究拟进一步探讨依达拉奉对脑缺血的保护机制及初步探讨其对LMO4表达的影响。
     方法:健康成年雄性SD大鼠36只,随机分为假手术对照组(n=12)、脑缺血模型组(n=12)及依达拉奉治疗组(n=12)。以线栓阻断一侧大脑中动脉构建局灶性脑缺血模型,缺血2小时后恢复再灌住,再灌注24小时后处死动物,药物组在脑缺血再灌注后即刻腹腔注射依达拉奉3mg/kg,模型组注射等量的生理盐水。常规HE染色、尼氏染色观察病理学改变并评价神经元的存活;TUNEL法检测缺血侧脑组织的凋亡细胞;RT-PCR、western-blot、免疫荧光检测三组缺血半暗带皮层LMO4蛋白和mRNA的表达水平,并进行组间比较。结果:①假手术组细胞形态基本正常,模型组和药物组均有细胞坏死,但后者程度减轻,形态正常的细胞数较前者增多(P<0.01);尼氏染色示缺血半暗带皮层存活神经元数目药物组较模型组显著增多(P<0.05):
     ②假手术组几乎无TUNEL阳性细胞,模型组和药物组梗死周围皮层均可见TUNEL阳性细胞,但后者明显减少(P<0.01);
     ③假手术组有少量LMO4mRNA和蛋白的表达,模型组皮层半暗带区较多LMO4mRNA和蛋白的表达,与模型组比较,药物组表达水平显著提高(P<0.05或P<0.01);
     ④假手术组可见少量LMO4阳性细胞,模型组缺血半暗带皮层可见大量LMO4阳性细胞,与模型组比较,药物组LMO4阳性细胞数更多(P<0.01)。
     结论:依达拉奉促进LMO4的表达升高,可能是其脑保护作用机制之一。
Background and objective:Stroke is characterized by high incidence, high mortality and high disability, whereas ischemic stroke has been the most common type and severely harmful to human health. The molecular mechanism of neuronal death is extremely complex under cerebral ischemia, three main cellular pathways of which has been found including over activation of glutamate receptor, oxidative stress and apoptosis. The LIM proteins are characterized by 2 or more LIM domains. LMO4 is a recently discovered transcription co-factor that belongs to LIM family. LMO4 could regulate the function of other proteins through activating or suppressing the corresponding transcription factors, playing crucial roles in gene expression, cell differentiation and development, and the formation of cytoskeleton. Both pCREB and pStat3 belongs to nuclear transcription factors also, partial studies have demonstrated that both contribute to protection of injured neurons in cerebral ischemia. In the cell models of cerebral ischemia, LMO4 can facilitate survival of hypoxic neurons in vitro by regulating the IL-6/Stat3 signal pathway, and pCREB mediates the transcriptional activity of LMO4 as an upstream molecular element. In this study we will speculate the temporal expression and localization of LMO4, pCREB and pStat3 in animal models of cerebral ischemia-reperfusion, and explore the relation of LMO4 with pCREB and pStat3 and the role of LMO4 in ischemic neuronal survival, hence providing new molecular target for introducing drugs of ischemic stroke.
     Methods:84 Sprague-Dawley rats of healthy adult male were randomly divided into seven of sham operation group, and ischemic-reperfusion 1h,3h,6h,12h,24h,48h group. Each group had 12 rats, of which 6 were used for molecular biology study and the rest for histology study. Suture methods were used to make the focal middle cerebral artery occlusion model and the ischemic brain was reperfused 2 hours after occlusion. The neurological deficit score was rated by Longa scale. Animals were killed at various reperfusion intervals. Routine HE staining was used to speculate the histopathological change. Nissle staining was used to evaluate the neuronal survival. MAP2 staining was used to detect the dendrite. TUNEL methods was used to detect the apoptotic cell. Immunoflurence was used to detect the quantity and location of、LMO4、pCREB、pStat3 on the penumbra cortex. Double immunoflurence was used to speculate the colocalization between LMO4 and MAP2, pCREB, pStat3, TUNEL positive cells respectively and between NEUN and pCREB, pStat3 respectively. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the LMO4 mRNA level of penumbra tissue in sham group and ischemic subgroups. Western-blot was used to detect the LMO4, pCREB and pStat3 protein level of penumbra tissue in sham group and ischemic subgroups.
     Results:①the qualified rate was 76.60% for model inclusion and the 48h mortality rate was 13.83%. Death was mainly caused by hemorrhage and brain edema. TTC staining of the brain tissue revealed cortex and caudate putamen infarction in the qualified rat models and no infarction in the sham group rats.
     ②HE staining revealed typical necrosis, neuronal loss, tissue edema in ischemic models, number of total cells decreased in infarction area, whereas cells in the sham group kept intact.
     ③Nissle staining revealed that cells swelled and nissle body of the neuronal cells disappeared, the number of surviving neuron decreased with perfusion time on the penumbra cortex (P<0.05), reached the lowest level at 48h (P<0.01), whereas cells in the sham group kept intact.
     ④The length and diameter of the dendrites decreased, OD signal of the MAP2 positive cells decreased with perfusion time on the penumbra cortex in ischemic group, reached the lowest level at 48h (P< 0.01), whereas the dendrites in the sham group kept intact.
     ⑤TUNEL positive cells were mainly located in the peri-infarction area, the number of apoptotic cells increased at 6h after reperfusion (P< 0.05), peaked at 24h, and persisted at 48h (P<0.01).
     ⑥Compared to the sham group, LMO4 mRNA level of the penumbra cortex in ischemic group increased at 3h after reperfusion, peaked at 24h, and obviously declined at 48h (P<0.05 or P<0.01);
     ⑦Compared to the sham group, LMO4 protein level of the penumbra cortex in ischemic group increased at 3h after reperfusion, peaked at 24h, and obviously declined at 48h, pCREB and pStat3 protein level increased at 3h after reperfusion, peaked at 24h, and gradually declined at 48h (P<0.05 or P<0.01);
     ⑧Compared to the sham group, the number of LMO4, pCREB, pStat3 positive cells in ischemic group increased at 6h after reperfusion, peaked at 24h, and gradually declined at 48h (P<0.05 or P<0.01);
     ⑨Double immunoflurence indicated that both LMO4 and pCREB were only expressed in neurons, whereas pStat3 was expressed in neurons and glial cells; LMO4 was mainly localized in nucleus, a little part in cytoplasm, both pCREB and pStat3 were only localized in nucleus; the expression of LMO4 was segregated from the TUNEL positive cells in the penumbra cortex in ischemic group; LMO4 was completely coexpressed with pCREB, whereas was partially coexpressed with pStat3.
     Conclusions:①Cerebral ischemia reperfusion induces the overexpression of LMO4, pCREB and pStat3, with a dynamic profile, which may be an endogenous adaptive protective mechanism of neuronal cells triggered by ischemia reperfusion injury.
     ②LMO4 may contribute to ischemic neuronal survival through interacting with pCREB and regulating the activity of pStat3.
     Background and objective:Edaravone is a kind of newly synthesized radical scavenger and anti-oxidant, and can improve the neurological deficit after cerebral ischemia. The neuroprotective role of edaravone in cerebral ischemia has been proved by many studies, however, the exact molecular mechanism for which remains unclear till now, especially the anti-apoptotic mechanism. Apoptosis is a kind of programmed cell death highly regulated by genes. LMO4 can mediate the expression of many other genes as a transcription co-factor. The LMO4 deficient mouse presents with all kinds of development deficits, suggesting its anti-apoptotic effect on epithelial cell and neuronal cell. This study was to further explore the molecular mechanism of edaravone protecting the ischemic neurons and the effect of edaravone on LMO4 expression.
     Methods:36 SD rats of healthy adult male were randomly divided into three of sham control group (n=12), ischemic model group (n=12) and edaravone treated group (n=12). Focal cerebral ischemia model was made by suture occluding one side of middle cerebral artery. Blood flow was restored after 2 hours of occlusion and the animals were killed at 24h after perfusion. Rats received intraperitoneal injections of edaravone for the drug group and same volume of physiological saline for the model group upon reperfusion. Routine HE and Nissle staining was used to speculate the histopathological change and evaluate the neuronal survival. TUNEL methods was used to detect the apoptotic cell. RT-PCR, western-blot and immunoflurence were used to detect the levels of LMO4 protein and mRNA on the penumbra cortex in the three groups, the final data were compared among different groups.
     Results:①Cellular morphology was normal in the sham group. Necrotic cell was seen both in the model group and the drug group, but less severe in the latter, with morphologically normal cells more common in the latter (P<0.01); Nissle staining revealed that the number of surviving neurons on the penumbra cortex was significantly higher in the drug group than in the model group (P<0.05);
     ②No TUNEL positive cell was seen in the sham group, but was seen both in model group and the drug group, with the number much less in the latter (P<0.01);
     ③The levels of LMO4 protein and mRNA were low in the sham group, however, that of the penumbra cortex were high in the model group and significantly higher in the drug group (compared to the model group, P<0.05 or P<0.01);
     ④A few LMO4 positive cells were seen in the sham group, large number of LMO4 positive cells were seen on the peri-infarction cortex in the model group, and much larger were seen in the drug group (compared to the model group, P<0.01).
     Conclusions:Edaravone can enhance the overexpression of LMO4, which may be one of the mechanisms underlying the neuroprotection of this drug.
引文
[1]Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium,2003,34(4-5):325-337.
    [2]Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. Stroke, 2007,38(2 Suppl):674-676.
    [3]Kumar V, Bal A, Gill KD. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Res,2008,1232:94-103.
    [4]Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell, 2007,99(9):489-502.
    [5]Kenny DA, Jurata LW, Saga Y, et al. Identification and characterization of LMO4, an LMO gene with a novel pattern of expression during embryogenesis. Proc Natl Acad Sci U S A,1998,95(19):11257-11262.
    [6]Wang N, Lin KK, Lu Z,et al. The LIM-only factor LMO4 regulates expression of the BMP7 gene through an HDAC2-dependent mechanism, and controls cell proliferation and apoptosis of mammary epithelial cells. Oncogene, 2007,26(44):6431-6441.
    [7]Tse E, Smith AJ, Hunt S,et al. Null mutation of the Lmo4 gene or a combined null mutation of the Lmo1/Lmo3 genes causes perinatal lethality, and Lmo4 controls neural tube development in mice. Mol Cell Biol, 2004,24(5):2063-2073.
    [8]Yu Z, Lin KK, Bhandari A,et al. The Grainyhead-like epithelial transactivator Get-1/Grh13 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol,2006,299(1):122-136.
    [9]Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci,2005,28(8):436-445.
    [10]Lonze BE, Riccio A, Cohen S,et al. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron,2002, 34(3):371-385.
    [11]Dziennis S, Alkayed NJ. Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration. Rev Neurosci,2008,19(4-5):341-361.
    [12]Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J,2003,374(Pt 1):1-20.
    [13]Gritsko T, Williams A, Turkson J, et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res,2006,12(1):11-19.
    [14]Diirkop H, Hirsch B, Hahn C,et al. cIAP2 is highly expressed in Hodgkin-Reed-Sternberg cells and inhibits apoptosis by interfering with constitutively active caspase-3. J Mol Med,2006,84(2):132-141.
    [15]Yamashita T, Sawamoto K, Suzuki S,et al. Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice:possible involvement of Stat3 activation in the protection of neurons. J Neurochem,2005,94(2):459-468.
    [16]Novotny-Diermayr V, Lin B, Gu L,et al. Modulation of the interleukin-6 receptor subunit glycoprotein 130 complex and its signaling by LMO4 interaction. J Biol Chem,2005,280(13):12747-12757.
    [17]Chen HH, Schock SC, Xu J,et al. Extracellular ATP-dependent upregulation of the transcription cofactor LM04 promotes neuron survival from hypoxia. Exp Cell Res,2007,313(14):3106-3116.
    [18]Koizumi J, Yoshida Y, Nakazawa T, et al. Experimental studies of ischemic brain edema:1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn Stroke J, 1986,8(1):1-8.
    [19]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989,20(1):84-91.
    [20]ArunaDevi R, Ramteke VD, Kumar S, et al. Neuroprotective effect of s-methylisothiourea in transient focal cerebral ischemia in rat. Nitric Oxide, 2010,22(1):1-10.
    [21]Hossmann KA. Cerebral ischemia:models, methods and outcomes. Neuropharmacology,2008,55(3):257-270.
    [22]Durukan A, Strbian D, Tatlisumak T. Rodent models of ischemic stroke:a useful tool for stroke drug development. Curr Pharm Des,2008,14(4):359-370.
    [23]Abraham H, Somogyvari-Vigh A, Maderdrut JL, et al. Filament size influences temperature changes and brain damage following middle cerebral artery occlusion in rats. Exp Brain Res,2002,142(1):131-138.
    [24]Shimamura N, Matchett G, Tsubokawa T, et al. Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods,2006,156(1-2):161-165.
    [25]Belayev L, Alonso OF, Busto R, et al. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke,1996,27(9):1616-1622.
    [26]马常升,马文领,戴维国.插线法制备大鼠局灶性脑缺血再灌注模型的研究.解剖学杂志,1999,22(3):209-211.
    [27]Zhao H, Mayhan WG, Sun H. A modified suture technique produces consistent cerebral infarction in rats. Brain Res,2008,1246:158-166.
    [28]刘运泉,戴颖.线栓法大鼠局灶性脑缺血模型的改进.中国临床解剖学杂志,2005,23(2):222-223.
    [29]Sager TN, Hansen AJ, Laursen H. Correlation between N-acetylaspartate levels and histopathologic changes in cortical infarcts of mice after middle cerebral artery occlusion. J Cereb Blood Flow Metab,2000,20(5):780-788.
    [30]Schroeter M, Jander S, Huitinga I, et al. CD8+ phagocytes in focal ischemia of the rat brain:predominant origin from hematogenous macrophages and targeting to areas of pannecrosis. Acta Neuropathol,2001,101(5):440-448.
    [31]袁琼兰,李瑞祥,张光鹏.大鼠脑缺血再灌流时脑组织病理改变的特点.泸州医学院学报,2000,23(2):87-90.
    [32]Li Y, Powers C, Jiang N, et al. Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. J Neurol Sci,1998,156(2):119-132.
    [33]Fang SH, Zhou Y, Chu LS, et al. Spatio-temporal expression of cysteinyl leukotriene receptor-2 mRNA in rat brain after focal cerebral ischemia. Neurosci Lett,2007,412(1):78-83.
    [34]Li F, Liu KF, Silva MD, et al. Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats:correlation with histopathology. Stroke,2000,31(4):946-954.
    [35]Pan J, Konstas AA, Bateman B, et al. Reperfusion injury following cerebral ischemia:pathophysiology, MR imaging, and potential therapies. Neuroradiology,2007,49(2):93-102.
    [36]Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ,2009,16(1):3-11.
    [37]Lobascio AM, Klinger FG, Scaldaferri ML, et al. Analysis of programmed cell death in mouse fetal oocytes. Reproduction,2007,134(2):241-252.
    [38]Li Y, Chopp M, Jiang N, et al. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke,1995,26(7):1252-1257.
    [39]Charriaut-Marlangue C, Margaill I, Represa A, et al. Apoptosis and necrosis after reversible focal ischemia:an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab,1996,16(2):186-194.
    [40]Terada K, Inao S, Mizutani N, et al. Cerebral blood flow, glucose metabolism and tunel-positive cells in the development of ischemia. Cerebrovasc Dis, 2001,11(1):9-19.
    [41]Yuan J, Kuida K, Flavell RA, et al. Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci U S A,2002,99(23):15188-15193.
    [42]Lee SH, Kim M, Kim YJ, et al. schemic intensity influences the distribution of delayed infarction and apoptotic cell death following transient focal cerebral ischemia in rats. Brain Res,2002,22;956(1):14-23.
    [43]Visvader JE, Venter D, Hahm K, et al. The LIM domain gene LMO4 inhibits differentiation of mammary epithelial cells in vitro and is overexpressed in breast cancer. Proc Natl Acad Sci U S A,2001,98(25):14452-14457.
    [44]Schock SC, Xu J, Duquette PM, et al. Rescue of neurons from ischemic injury by peroxisome proliferator-activated receptor-gamma requires a novel essential cofactor LMO4. J Neurosci,2008,28(47):12433-12444.
    [45]Bulchand S, Subramanian L, Tole S. Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev Dyn,2003,226(3):460-469.
    [46]Sum EY, O'Reilly LA, Jonas N, et al. The LIM domain protein Lmo4 is highly expressed in proliferating mouse epithelial tissues. J Histochem Cytochem, 2005,53(4):475-486.
    [47]Lee SK, Jurata LW, Nowak R, et al. The LIM domain-only protein LMO4 is required for neural tube closure. Mol Cell Neurosci,2005,28(2):205-214.
    [48]Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron,2002,35(4):605-623.
    [49]Bleckmann SC, Blendy JA, Rudolph D, et al. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol,2002,22(6):1919-1925.
    [50]Tanaka K, Nogawa S, Nagata E, et al. Temporal profile of CREB phosphorylation after focal ischemia in rat brain. Neuroreport, 1999,10(11):2245-2250.
    [51]Jin K, Mao XO, Simon RP,et al. Cyclic AMP response element binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci,2001,16(1):49-56.
    [52]Shibata M, Yamawaki T, Sasaki T, et al. Upregulation of Akt phosphorylation at the early stage of middle cerebral artery occlusion in mice. Brain Res, 2002,942(1-2):1-10.
    [53]Sugiura S, Kitagawa K, Omura-Matsuoka E, et al. CRE-mediated gene transcription in the peri-infarct area after focal cerebral ischemia in mice. J Neurosci Res,2004,75(3):401-407.
    [54]Mabuchi T, Kitagawa K, Kuwabara K, et al. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci, 2001,21(23):9204-9213.
    [55]Zhang ZH, Xi GM, Li WC, et al. Cyclic-AMP response element binding protein and tau are involved in the neuroprotective mechanisms of nerve growth factor during focal cerebral ischemia/reperfusion in rats. J Clin Neurosci,2010,17(3):353-356.
    [56]Zhu DY, Lau L, Liu SH, et al. Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A,2004,101(25):9453-9457.
    [57]Alonzi T, Middleton G, Wyatt S, et al. Role of STAT3 and PI 3-kinase/Akt in mediating the survival actions of cytokines on sensory neurons. Mol Cell Neurosci,2001,18(3):270-282.
    [58]Conway G. STAT3-dependent pathfinding and control of axonal branching and target selection. Dev Biol,2006,296(1):119-136.
    [59]Wen TC, Peng H, Hata R, et al. Induction of phosphorylated-Stat3 following focal cerebral ischemia in mice. Neurosci Lett,2001,11;303(3):153-156.
    [60]Suzuki S, Tanaka K, Nogawa S, et al. Phosphorylation of signal transducer and activator of transcription-3 (Stat3) after focal cerebral ischemia in rats. Exp Neurol,2001,170(1):63-71.
    [61]Choi JS, Kim SY, Cha JH, et al. Upregulation of gpl30 and STAT3 activation in the rat hippocampus following transient forebrain ischemia. Glia, 2003,41 (3):237-246.
    [62]Satriotomo I, Bowen KK, Vemuganti R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia.J Neurochem,2006,98(5):1353-1368.
    [63]Dziennis S, Jia T, R(?)nnekleiv OK, et al. Role of signal transducer and activator of transcription-3 in estradiol-mediated neuroprotection. J Neurosci, 2007,27(27):7268-7274.
    [64]Shyu WC, Lin SZ, Chiang MF, et al. Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest,2008,118(1):133-148.
    [65]Solaroglu I, Tsubokawa T, Cahill J, et al. Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience,2006,143(4):965-974.
    [66]Contestabile A. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells. Prog Neurobiol,2008,84(4):317-328.
    [67]van der Weerd L, Lythgoe MF, Badin RA, et al. Neuroprotective effects of HSP70 overexpression after cerebral ischaemia-an MRI study. Exp Neurol, 2005,195(1):257-266.
    [68]Sum EY, Peng B, Yu X, et al. The LIM domain protein LMO4 interacts with the cofactor CtIP and the tumor suppressor BRCA1 and inhibits BRCA1 activity. J Biol Chem,2002,277(10):7849-7856.
    [69]Hislop NR, Caddy J, Ting SB, et al. Grhl3 and Lmo4 play coordinate roles in epidermal migration. Dev Biol,2008,321(]):263-272.
    [70]Kashani AH, Qiu Z, Jurata L, et al. Calcium activation of the LMO4 transcription complex and its role in the patterning of thalamocortical connections. J Neurosci,2006,26(32):8398-8408.
    [71]Gomez-Smith M, Qin Z, Zhou X, et al. LIM domain only 4 protein promotes granulocyte colony-stimulating factor-induced signaling in neurons. Cell Mol Life Sci,2010,67(6):949-957.
    [72]Yoshida H, Yanai H, Namiki Y,et al. Neuroprotective effects of edaravone:a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev, 2006,12(1):9-20.
    [73]Zhang N, Komine-Kobayashi M, Tanaka R,etal. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke.2005,36(10):2220-2225.
    [74]Lee BJ, Egi Y, van Leyen K,et al. Edaravone, a free radical scavenger, protects components of the neurovascular unit against oxidative stress in vitro. Brain Res,2010,1307:22-27.
    [75]Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis, 2003,15(3):222-229.
    [76]Algeciras-Schimnich A, Shen L, Barnhart BC, et al. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol,2002,22(1):207-220.
    [77]Bi FF, Xiao B, Hu YQ, et al. Expression and localization of Fas-associated proteins following focal cerebral ischemia in rats. Brain Res,2008,1191:30-38.
    [78]Kim HE, Du F, Fang M, et al. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A,2005,102(49):17545-17550.
    [79]Zhao H, Yenari MA, Cheng D, et al. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem, 2003,85(4):1026-1036.
    [80]Otani H, Togashi H, Jesmin S, et al. Temporal effects of edaravone, a free radical scavenger, on transient ischemia-induced neuronal dysfunction in the rat hippocampus. Eur J Pharmacol,2005,512(2-3):129-137.
    [81]Shichinohe H, Kuroda S, Yasuda H, et al. Neuroprotective effects of the free radical scavenger Edaravone (MCI-186) in mice permanent focal brain ischemia. Brain Res,2004,1029(2):200-206.
    [82]Yasuoka N, Nakajima W, Ishida A, et al. Neuroprotection of edaravone on hypoxic-ischemic brain injury in neonatal rats. Brain Res Dev Brain Res, 2004,151(1-2):129-139.
    [83]Kikuchi K, Kawahara K, Tancharoen S, et al. The free radical scavenger edaravone rescues rats from cerebral infarction by attenuating the release of high-mobility group box-1 in neuronal cells. J Pharmacol Exp Ther, 2009,329(3):865-874.
    [84]Wu T, Ding XS, Wang W, et al. MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one) attenuated simulated ischemia/reperfusion injury in cultured rat hippocampal cells. Biol Pharm Bull,2006,29(8):1613-1617.
    [85]Zhang W, Sato K, Hayashi T, et al. Extension of ischemic therapeutic time window by a free radical scavenger, Edaravone, reperfused with tPA in rat brain. Neurol Res,2004,26(3):342-348.
    [86]Amemiya S, Kamiya T, Nito C, et al. Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol, 2005,516(2):125-130.
    [87]Xiao B, Bi FF, Hu YQ, et al. Edaravone neuroprotection effected by suppressing the gene expression of the Fas signal pathway following transient focal ischemia in rats. Neurotox Res,2007,12(3):155-162.
    [88]Niyaz M, Numakawa T, Matsuki Y, et al. MCI-186 prevents brain tissue from neuronal damage in cerebral infarction through the activation of intracellular signaling. J Neurosci Res,2007,85(13):2933-2942.
    [1]Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron,2003,40(2):401-413.
    [2]Yuan J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis,2009,14(4):469-477.
    [3]Pulsinelli WA, Buchan AM. The four-vessel occlusion rat model:method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke,1988,19(7):913-914.
    [4]Nitatori T, Sato N, Waguri S, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci,1995,15(2):1001-1011.
    [5]Yamamoto K, Hayakawa T, Mogami H, et al. Ultrastructural investigation of the CA1 region of the hippocampus after transient cerebral ischemia in gerbils. Acta Neuropathol,1990,80(5):487-492.
    [6]Durukan A, Strbian D, Tatlisumak T. Rodent models of ischemic stroke:a useful tool for stroke drug development. Curr Pharm Des,2008,14(4): 359-370.
    [7]Buchan AM, Xue D, Slivka A. A new model of temporary focal neocortical ischemia in the rat. Stroke,1992,23(2):273-279.
    [8]Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology,2008,55(3):310-318.
    [9]Pugliese AM, Traini C, Cipriani S, et al. The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices. Br J Pharmacol, 2009,157(5):818-830.
    [10]Tavakoli-Far B, Rahbar-Roshandel N, Rahimi-Moghaddam P, et al. Neuroprotective effects of mebudipine and dibudipine on cerebral oxygen-glucose deprivation/reperfusion injury. Eur J Pharmacol, 2009,610(1-3):12-17.
    [11]Taoufik E, Valable S, Muller GJ, et al. FLIP(L) protects neurons against in vivo ischemia and in vitro glucose deprivation-induced cell death. J Neurosci, 2007,27(25):6633-6646.
    [12]Lee TY, Murphy BD, Aviv RI, et al. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke:a systematic review.
    Stroke,2006,37(9):2201.
    [13]Moustafa RR, Baron JC. Pathophysiology of ischaemic stroke:insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol, 2008,153(Suppl 1):S44-S54.
    [14]Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg,2009,111(6):483-495.
    [15]Baron JC. Mapping the ischaemic penumbra with PET:implications for acute stroke treatment. Cerebrovasc Dis,1999,9(4):193-201.
    [16]Weinstein PR, Hong S, Sharp FR. Molecular identification of the ischemic penumbra. Stroke,2004,35(Suppl 1):2666-2670.
    [17]Hata R, Maeda K, Hermann D, et al. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 2000,20(6):937-946.
    [18]Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ,2009,16(1):3-11.
    [19]Wei L, Ying DJ, Cui L,et al. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res, 2004,1022(1-2):54-61.
    [20]Bredesen DE. Programmed cell death mechanisms in neurological disease. Curr Mol Med,2008,8(3):173-186.
    [21]Yao H, Takasawa R, Fukuda K, et al. DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Brain Res Mol Brain Res, 2001,91(1-2):112-118.
    [22]Adhami F, Liao G, Morozov YM, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol,2006,169(2):566-583.
    [23]Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol, 2005,1(2):112-9.
    [24]Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci, 2004,61(6):657-668.
    [25]Won SJ, Kim DY, Gwag BJ. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol,2002,35(1):67-86.
    [26]Mori T, Tateishi N, Kagamiishi Y, et al. Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506. Neurochem Int, 2004,45(2-3):381-387.
    [27]Taghibiglou C, Martin HG, Lai TW, et al. Role of NMD A receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat Med, 2009,15(12):1399-1406.
    [28]Chong ZZ, Kang JQ, Maiese K. Metabotropic glutamate receptors promote neuronal and vascular plasticity through novel intracellular pathways. Histol Histopathol,2003,18(1):173-189.
    [29]Esteban JA, Shi SH, Wilson C, et al. PKA phosphorylation of AMP A receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci, 2003,6(2):136-143.
    [30]Fong DK, Rao A, Crump FT, et al. Rapid synaptic remodeling by protein kinase C:reciprocal translocation of NMD A receptors and calcium/calmodulin-dependent kinase Ⅱ. J Neurosci,2002,22(6):2153-2164.
    [31]Kim DY, Kim SH, Choi HB, et al. High abundance of GluRl mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons. Mol Cell Neurosci,2001,17(6):1025-1033.
    [32]Forder JP, Tymianski M. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules. Neuroscience,2009,158(1):293-300.
    [33]Fujita A, Kurachi Y. SAP family proteins. Biochem Biophys Res Commun, 2000,269(1):1-6.
    [34]Aarts M, Liu Y, Liu L, et al. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science, 2002,298(5594):846-850.
    [35]Berliocchi L, Bano D, Nicotera P. Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci,2005,360(1464):2255-2258.
    [36]Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium,2003,34(4-5):325-337.
    [37]Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J,1997,328 (Pt 3):721-732.
    [38]Neumar RW, Meng FH, Mills AM, et al. Calpain activity in the rat brain after
    transient forebrain ischemia. Exp Neurol,2001,170(1):27-35.
    [39]Sapirstein A, Bonventre JV. Phospholipases A2 in ischemic and toxic brain injury. Neurochem Res,2000,25(5):745-753.
    [40]Muralikrishna Adibhatla R, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med, 2006,40(3):376-387.
    [41]Vanhoutte P, Barnier JV, Guibert B, et al. Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol. 1999,19(1):136-146.
    [42]Ko HW, Han KS, Kim EY, et al. Synergetic activation of p38 mitogen-activated protein kinase and caspase-3-like proteases for execution of calyculin A-induced apoptosis but not N-methyl-d-aspartate-induced necrosis in mouse cortical neurons. J Neurochem,2000,74(6):2455-2461.
    [43]Nielsen M, Zimmer J, Diemer NH. Endonuclease G expression in thalamic reticular nucleus after global cerebral ischemia. Exp Brain Res, 2008,190(1):81-89.
    [44]Ward MW, Rego AC, Frenguelli BG, et al. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci, 2000,20(19):7208-7219.
    [45]Luetjens CM, Bui NT, Sengpiel B, et al. Delayed mitochondrial dysfunction in excitotoxic neuron death:cytochrome c release and a secondary increase in superoxide production. J Neurosci,2000,20(15):5715-5723.
    [46]Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol,2004,207(Pt 18):3221-3231.
    [47]Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem,2009,109(Suppl 1):133-138.
    [48]Namura S, Iihara K, Takami S, et al. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci U S A,2001,98(20):11569-11574.
    [49]Atlante A, Valenti D, Gagliardi S, et al. A sensitive method to assay the xanthine oxidase activity in primary cultures of cerebellar granule cells. Brain Res Brain Res Protoc,2000,6(1-2):1-5.
    [50]Rego AC, Santos MS, Oliveira CR. Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinal cells. Neurochem Int, 2000,36(2):159-166.
    [51]Kondo Y, Ogawa N, Asanuma M, et al. Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. J Cereb Blood Flow Metab,1995,15(2):216-226.
    [52]Noh KM, Koh JY. Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci,2000,20(23):RC111.
    [53]Faraci FM. Protecting the brain with eNOS:run for your life. Circ Res, 2006,99(10):1029-1030.
    [54]Iadecola C, Zhang F, Xu S, et al. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab, 1995,15(3):378-384.
    [55]Stagliano NE, Dietrich WD, Prado R, et al. The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res, 1997,759(1):32-40.
    [56]Tsai SK, Hung LM, Fu YT, et al. Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats. J Vase Surg, 2007,46(2):346-353.
    [57]Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab,2001,21 (2):99-109.
    [58]Li Y, Chopp M, Jiang N, et al. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke,1995,26(7):1252-1257.
    [59]Li Y, Chopp M, Powers C, et al. Apoptosis and protein expression after focal cerebral ischemia in rat. Brain Res,1997,765(2):301-312.
    [60]Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab,2001,21(1):2-14.
    [61]Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg,2005,18(6):335-350.
    [62]Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ,1999,6(11):1028-1042.
    [63]Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai),2005,37(11):719-727.
    [64]Kumar S. Caspase function in programmed cell death. Cell Death Differ, 2007,14(1):32-43.
    [65]Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin:a comprehensive update of caspase substrates. Cell Death Differ, 2003,10(1):76-100.
    [66]Davoli MA, Fourtounis J, Tam J, et al. Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience,2002,115(1):125-136.
    [67]Badiola N, Malagelada C, Llecha N, et al. Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen-glucose deprived cultured cortical cells. Neurobiol Dis, 2009,35(3):438-447.
    [68]Basanez G, Zhang J, Chau BN, et al. Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J Biol Chem,2001,276(33):31083-31091.
    [69]Burlacu A. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med, 2003,7(3):249-257.
    [70]Sedlak TW, Oltvai ZN, Yang E, et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A, 1995,92(17):7834-7838.
    [71]Yan C, Chen J, Chen D, et al. Overexpression of the cell death suppressor Bcl-w in ischemic brain:implications for a neuroprotective role via the mitochondrial pathway. J Cereb Blood Flow Metab,2000,20(3):620-630.
    [72]Gibson ME, Han BH, Choi J,et al. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia:evidence for distinct apoptosis pathways. Mol Med,2001,7(9):644-655.
    [73]Conradt B, Horvitz HR. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell, 1998,93(4):519-529.
    [74]Algeciras-Schimnich A, Shen L, Barnhart BC, et al. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol,2002,22(1):207-220.
    [75]Jin K, Graham SH, Mao X, et al. Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab,2001,21 (12):1411-1421.
    [76]Krupinski J, Lopez E, Marti E, et al. Expression of caspases and their substrates in the rat model of focal cerebral ischemia. Neurobiol Dis, 2000,7(4):332-342.
    [77]Martin-Villalba A, Hahne M, Kleber S, et al. Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Differ, 2001,8(7):679-686.
    [78]Bi FF, Xiao B, Hu YQ,et al. Expression and localization of Fas-associated proteins following focal cerebral ischemia in rats. Brain Res. 2008,1191:30-38.
    [79]Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell, 2004,116(2):205-219.
    [80]Kim HE, Du F, Fang M, et al. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A,2005,102(49):17545-17550.
    [81]Mouw G, Zechel JL, Zhou Y, et al. Caspase-9 inhibition after focal cerebral ischemia improves outcome following reversible focal ischemia. Metab Brain Dis,2002,17(3):143-151.
    [82]Luo Y, Cao G, Pei W, et al. Induction of caspase-activated deoxyribonuclease activity after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab,2002,22(1):15-20.
    [83]Saito A, Hayashi T, Okuno S, et al. Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J Neurosci,2003,23(5):1710-1718.
    [84]Cao G, Minami M, Pei W, et al. Intracellular Bax translocation after transient cerebral ischemia:implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. Cereb Blood Flow Metab, 2001,21(4):321-333.
    [85]Zhao H, Yenari MA, Cheng D, et al. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem, 2003,85(4):1026-1036.
    [86]Zhu Y, Yang GY, Ahlemeyer B, et al. Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. Neurosci,
    2002,22(10):3898-3909.
    [87]Kamada H, Nito C, Endo H, et al. Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab,2007,27(3):521-533.
    [88]Plesnila N, Zhu C, Culmsee C, et al. Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab,2004,24(4):458-466.
    [89]Paschen W, Doutheil J. Disturbances of the functioning of endoplasmic reticulum:a key mechanism underlying neuronal cell injury? J Cereb Blood Flow Metab,1999,19(1):1-18.
    [90]DeGracia DJ, Montie HL. Cerebral ischemia and the unfolded protein response. J Neurochem,2004,91(1):1-8.
    [91]Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem,2001,276(17):13935-13940.
    [92]Althausen S, Mengesdorf T, Mies G, et al. Changes in the phosphorylation of initiation factor eIF-2alpha, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. Neurochem,2001,78(4):779-787.
    [93]Shibata M, Hattori H, Sasaki T, et al. Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience,2003,118(2):491-499.
    [94]Morishima N, Nakanishi K, Tsuchiya K, et al. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem, 2004,279(48):50375-50381.
    [95]Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem,2001,276(17):13935-13940.
    [96]Tajiri S, Oyadomari S, Yano S, et al. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ,2004,11(4):403-415.
    [97]Rutter GA, Rizzuto R. Regulation of mitochondrial metabolism by ER Ca2+ release:an intimate connection. Trends Biochem Sci,2000,25(5):215-221.
    [98]Boehning D, Patterson RL, Sedaghat L, et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol,2003,5(12):1051-1061.
    [99]Mate MJ, Ortiz-Lombardia M, Boitel B, et al. The crystal structure of the mouse apoptosis-inducing factor AIR Nat Struct Biol,2002,9(6):442-446.
    [100]Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature, 2002,419(6905):367-374.
    [101]Cipriani G, Rapizzi E, Vannacci A, et al. Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem, 2005,280(17):17227-17234.
    [102]Zhang Y, Zhang X, Park TS, et al. Cerebral endothelial cell apoptosis after ischemia-reperfusion:role of PARP activation and AIF translocation. J Cereb Blood Flow Metab,2005,25(7):868-877.
    [103]Xu Y, Huang S, Liu ZG, et al. Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP 1/TRAF2-mediated JNK1 activation. J Biol Chem,2006,281(13):8788-8795.
    [104]Yu SW, Wang H, Dawson TM, et al. Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis, 2003,14(3):303-317.
    [105]Garcia-Bonilla L, Burda J, Pineiro D, et al. Calpain-induced proteolysis after transient global cerebral ischemia and ischemic tolerance in a rat model. Neurochem Res,2006,31(12):1433-1441.
    [106]Cheng T, Liu D, Griffin JH, et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med,2003,9(3):338-342.
    [107]Endo H, Kamada H, Nito C, et al. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci, 2006,26;26(30):7974-7983.
    [108]Schilling M, Besselmann M, Leonhard C, et al. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia:a study in green fluorescent protein transgenic bone marrow
    chimeric mice. Exp Neurol,2003,183(1):25-33.
    [109]Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol,2003,62(2):127-136.
    [110]Lalancette-Hebert M, Gowing G, Simard A, et al. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci,2007,27(10):2596-2605.
    [111]Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci,2001,2(10):734-744.
    [112]Simi A, Lerouet D, Pinteaux E, et al. Mechanisms of regulation for interleukin-1beta in neurodegenerative disease. Neuropharmacology, 2007,52(8):1563-1569.
    [113]Berti R, Williams AJ, Moffett JR, et al. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab, 2002,22(9):1068-1079.
    [114]Clark WM, Rinker LG, Lessov NS, et al. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke, 2000,31(7):1715-1720.
    [115]Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke,1997,28(6):1233-1244.
    [116]Gary DS, Bruce-Keller AJ, Kindy MS, et al. Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J Cereb Blood Flow Metab,1998,18(12):1283-1287.
    [117]Minami M, Satoh M. Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci,2003, 74(2-3):321-327.
    [118]Dimitrijevic OB, Stamatovic SM, Keep RF, et al. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke,2007,38(4):1345-1353.
    [119]Tsujimoto Y, Shimizu S. Another way to die:autophagic programmed cell death. Cell Death Differ,2005,12(Suppl 2):1528-1534.
    [120]Eskelinen EL. Doctor Jekyll and Mister Hyde:autophagy can promote both cell survival and cell death. Cell Death Differ,2005,12(Suppl 2):1468-1472.
    [121]Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol,2006,26(24):9220-9231.
    [122]Adhami F, Schloemer A, Kuan CY. The roles of autophagy in cerebral ischemia. Autophagy,2007,3(1):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700