用户名: 密码: 验证码:
游离胆固醇过载诱导平滑肌细胞损伤的相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化疾病是现代社会中最为常见的心血管疾病之一,其发病机理复杂,是一种多致病因素的高发病率疾病。在动脉粥样硬化的病理过程中,泡沫化细胞的出现和动脉粥样硬化斑块的形成被认为是动脉粥样硬化的病理特征。在病交后期,动脉粥样硬化斑块区域内过量的平滑肌细胞损伤及死亡直接影响了斑块区域结构的完整性,降低斑块稳定性,最终导致斑块破裂并形成血栓,造成血管堵塞,因此平滑肌细胞的死亡在动脉粥样硬化发病过程中起了重要作用。
     在体内,泡沫化细胞的来源主要是巨噬细胞和平滑肌细胞。在以往的实验中,泡沫化细胞的研究主要集中于巨噬细胞的泡沫化模型,对于平滑肌细胞来源的泡沫化细胞模型研究较少。最近的研究发现,细胞内过量的游离胆固醇可能是造成巨噬细胞源泡沫化细胞死亡的原因之一。游离胆固醇可能通过激活线粒体凋亡通路和内质网凋亡通路导致巨噬细胞源泡沫化细胞的凋亡。但细胞内过量游离胆固醇和平滑肌细胞死亡之间的联系还未见报道。
     本论文采用大鼠胸/腹主动脉平滑肌细胞和水溶性胆固醇(CHOL:MβCD)共孵育的方法建立起平滑肌来源的泡沫化细胞模型,并结合细胞内酰基辅酶A:胆固醇酰基转移酶(ACAT)的特异性阻断剂Sandoz58035,建立起游离胆固醇过载的平滑肌细胞模型。通过对病变平滑肌细胞内的钙离子、线粒体钙、活性氧(ROS)浓度、线粒体形态结构、线粒体膜电位等观察分析以及线粒体和内质网凋亡通路上相关蛋白的表达情况的测定对游离胆固醇造成的平滑肌细胞早期损伤和细胞凋亡坏死机制作出了初步的研究。本论文还通过观察自噬小体的形成以及自噬特异性标志蛋白LC3含量变化的测定检测了平滑肌细胞在游离胆固醇刺激下自噬的激活情况。结合药物干扰自噬在平滑肌细胞内的激活,从细胞和分子水平研究了游离胆固醇激活平滑肌细胞内自噬产生的发生机制。本论文对游离胆固醇过载情况下平滑肌细胞内一系列生理病理的变化进行了模拟,对相关细胞机制进行了分析,为深入理解动脉粥样硬化的发病机理和发病过程提供了理论基础。
     本论文得到的主要研究成果有:
     1.利用平滑肌细胞和水溶性胆固醇共孵育建立起平滑肌细胞源的泡沫化细胞模型。同时利用ACAT酶特异性阻断剂Sandoz58035作用于平滑肌源的泡沫化模型建立游离胆固醇过载的细胞模型,模拟了动脉粥样硬化中后期平滑肌细胞的病变过程。
     2.利用泡沫化模型和游离胆固醇过载模型,比较两类细胞模型内钙离子,线粒体钙离子以及细胞内ROS含量水平的变化。实验发现在游离胆固醇载入过程中细胞内钙离子和线粒体钙离子浓度出现明显下降,而ROS含量随孵育时间的增加而上升。在正常细胞和泡沫化平滑肌细胞中这三种物质浓度基本维持在稳定的水平,验证了细胞内多余的游离胆固醇影响了平滑肌细胞内环境的稳态。
     3.对平滑肌细胞的线粒体进行荧光标记和线粒体形态结构动力学的实时观察、记录、分析。发现在游离胆固醇过载的平滑肌细胞中,线粒体在游离胆固醇载入后4-8小时内发生断裂,由正常状态下的网状转变为碎点状。
     4.从线粒体介导的细胞凋亡通路以及内质网介导的细胞凋亡通路对游离胆固醇造成的平滑肌细胞凋亡坏死进行进一步的分析。实验发现游离胆固醇的载入可以导致线粒体膜电位的崩解,改变细胞内bcl-2、bax蛋白含量并导致线粒体内cyto c的释放。同时内质网压力蛋白KDEL表达量在游离胆固醇的刺激下大大上升并激活UPR反应过程中CHOP蛋白的表达。说明游离胆固醇通过线粒体凋亡通路和内质网凋亡通路的激活造成细胞死亡。
     5.对游离胆固醇过载的平滑肌细胞内自噬的水平进行了研究。发现游离胆固醇的载入可以导致平滑肌细胞内发生自噬。同时发现自噬的程度和游离胆固醇载入的浓度和时间均有关系。利用自噬的阻断剂3-MA和增强剂rapamycin说明自噬的产生减轻了游离胆固醇造成的平滑肌细胞损伤。进一步的实验还发现自噬通过清除损伤的细胞器如线粒体来实现对游离胆固醇造成的平滑肌损伤的保护作用,但同时过量的自噬也有可能直接导致平滑肌细胞出现自噬样坏死。
     细胞内过量的游离胆固醇对线粒体、内质网等细胞器的功能结构造成损伤。轻度损伤的细胞器可以通过激活自噬的发生得以清除,从而减轻细胞器损伤带来的细胞压力。过量的细胞器损伤则可以激活细胞内凋亡信号通路,造成平滑肌细胞的死亡。同时细胞内过量的自噬也可能直接造成平滑肌出现自噬样死亡。因此,游离胆固醇造成的平滑肌细胞损伤是一个由细胞凋亡,自噬和细胞坏死等多种机制调控的复杂细胞死亡事件。
     本论文的创新点主要有以下几点:
     1.利用水溶性胆固醇和ACAT酶的抑制剂和平滑肌细胞共孵育来建立泡沫化和游离胆固醇过载的平滑肌细胞模型在国内研究中还较少见,很好的解决了平滑肌来源的泡沫化细胞模型稳定性、重复性差的问题。两类细胞模型分别模拟了动脉粥样硬化发病过程中平滑肌细胞可能出现的病理变化,实现了体外建立起平滑肌细胞泡沫化病变的病理模型。
     2.本研究从线粒体形态结构的动力学变化着手,结合线粒体凋亡通路上多个作用靶点的深入研究,提出线粒体是游离胆固醇造成的平滑肌损伤的重要作用靶点。同时通过对内质网结构功能的研究也验证了游离胆固醇可以直接作用于内质网上并和线粒体通路一样对平滑肌细胞的功能状态有着直接的影响,并且这两条信号通路相互之间是协同作用的。通过多条细胞内信号通路的研究比较完整的解释游离胆固醇造成平滑肌细胞损伤的细胞机制。
     3.本研究利用多种技术手段验证了自噬在游离胆固醇过载的平滑肌细胞中的激活。结合自噬特异性的抑制剂和激动剂等方法,对自噬在游离胆固醇造成的平滑肌损伤过程中可能的细胞机制做出了解释。通过实验验证了自噬在游离胆固醇造成的平滑肌细胞损伤过程中起到了一定的保护作用,并且这一作用是通过保护线粒体、内质网等细胞器的功能来实现的。
     综合上述的各个方面,本研究通过建立起稳定的平滑肌细胞源泡沫化细胞模型,从细胞凋亡和自噬发生两方面对游离胆固醇造成的平滑肌细胞损伤的细胞机制作出了完整的解释,为预防动脉粥样硬化疾病和药物研究提供相应的理论基础。
Atherosclerosis is one of the most common cardiovascular diseases in the modern society. Several important environmental and genetic risk factors have been associated with atherosclerosis, including hypertension, high blood cholesterol, diabetes, obesity, gender and unhealthy lifestyles. The appearance of cholesterol and cholesteryl esters-laden foam cells in advanced atherosclerotic lesions is a hallmark of atherosclerosis. In the advanced plaques, excessive death of smooth muscle cells (SMCs) may compromise plaque integrity, weaken the stability of fibrous cap, lead to plaque rupture and finally trigger thrombosis and vessel occlusion.
     The original of foam cell was identified both from macrophages and SMCs. Most research works of the foam cell was focused on macrophage-original cell models. Recent studies have found that excess intracellular free cholesterol (FC) is the reason of macrophage-derived foam cell death. FC-overloading activated both endoplasmic reticulum-(ER) and mitochondrial-dependent apoptosis pathway and induced macrophage apoptosis. However, little is known about the relationship between excessive cytoplasmic cholesterol and SMCs death.
     In present study, rat smooth muscle cells were loaded with cholesterol:methyl-β-cyclodextrin (CHOL:MPCD) complexes accompanied with the ACAT inhibitor Sandoz58035. The potential impairment of the cellular calcium concentration, mitochondrial calcium concentration, ROS concentration and the dynamic change of the mitochondrial morphology and mitochondrial membrane potential were analyzed. We also estimated the cytotoxicity of excess FC and detected the activation of related mitochondrial-and ER-dependent cell apoptosis proteins. In order to evaluate the activation of autophagy in FC-overloading SMCs, we observed the conversion of microtubule-associated protein-1 light chain 3-I (LC3-I) to a phosphatidylethanolamine-conjugated form (LC3-II) and the formation of autophagic vacuoles (AVs). Combined with pharmacology experiments, we further explained the cellular and molecular mechanism of the activation of autophagy in SMCs. In conclusion, our experiments simulated the physiological and pathological changes of the SMCs under the FC-overloading condition and demonstrated that FC-overloading SMCs underwent a complex mode of cell death, including cell apoptosis and autophagy.
     The major results of our study were:
     1. Using CHOL:MβCD to establish the SMC-derived foam cell model. The FC-overloading cell model was then established with CHOL:MPCD accompanied with the ACAT inhibitor Sandoz58035.
     2. Compared with foam cell model, we found that the intracellular calcium concentration and mitochondrial calcium concentration were down-regulated while the ROS concentration was up-regulated in the FC-overloading cell model.
     3. After incubated with CHOL.MβCD plus 58035 for 4-8 h, the normal tubular mitochondrial network was completely converted to a punctual conformation.
     4. Our experiments herein revealed a decrease of mitochondrial membrane potential in FC-overloading SMCs. After a widespread mitochondrial dysfunction, FC-overloading caused an increase of cellular Bax accompanied with a decrease of Bcl-2 and finally caused the release of cytochrome C. Our experiments also showed that treatment with excess FC induced ER stress and caused UPR-mediated SMCs death, as demonstrated by upregulation of KDEL and inducing of CHOP, respectively.
     5. The excess intracellular FC led to a large-scale cellular organelles damage which further activated formation of AVs and LC3 processing. Enhanced autophagy played as a prosurvival mechanism that prevented cell death in FC-overloading SMCs.
     In this paper, the usage of water-soluble cholesterol and ACAT inhibitor to create SMC-original foam cell model and FC-overloading cell model were more stable and repeatable. Our experiments explained the cellular mechanism of FC-overloading induced SMCs damage through multiple intracellular signaling pathways. And the concept of autophagy was introduced into these cell models for the first time which is also an innovative point in this study.
引文
1. Lusis, A.J., Atherosclerosis. Nature,2000.407(6801):p.233-41.
    2.杨永宗,et al.,动脉粥样硬化心血管病基础与临床.2004.
    3. Kockx, M.M., et al., Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation,1998.97(23):p.2307-15.
    4. Kockx, M.M. and A.G. Herman, Apoptosis in atherosclerosis:beneficial or detrimental? Cardiovasc Res,2000.45(3):p.736-46.
    5. Libby, P., Atherosclerosis:the new view. Sci Am,2002.286(5):p.46-55.
    6. Tabas, I., Apoptosis and plaque destabilization in atherosclerosis:the role of macrophage apoptosis induced by cholesterol. Cell Death Differ,2004.11 Suppl 1:p. S12-6.
    7. Devries-Seimon, T., et al., Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol,2005.171(1):p.61-73.
    8. Yao, P.M. and I. Tabas, Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem,2001.276(45):p.42468-76.
    9. Suzuki, L.A., et al., Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis:lack of direct growth-promoting effects of high glucose levels. Diabetes,2001.50(4):p.851-60.
    10. Stary, H.C., et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol,1995.15(9):p.1512-31.
    11. Davies, M.J., Stability and instability:two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation,1996.94(8):p.2013-20.
    12. Ross, R., et al., Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery. Am J Pathol,1984. 114(1):p.79-93.
    13. Geng, YJ. arid P. Libby, Progression of atheroma:a struggle between death and procreation. Arterioscler Thromb Vasc Biol,2002.22(9):p.1370-80.
    14. Assmann, G, et al., Coronary heart disease:reducing the risk:the scientific background to primary and secondary prevention of coronary heart disease. A worldwide view. International Task force for the Prevention of Coronary Heart disease. Arterioscler Thromb Vasc Biol,1999.19(8):p.1819-24.
    15. Luft, F.C., Molecular genetics of human hypertension. J Hypertens,1998. 16(12 Pt 2):p.1871-8.
    16. Kronenberg, F., et al., Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis:prospective results from the Bruneck study. Circulation,1999. 100(11):p.1154-60.
    17. Beckman, J.A., M.A. Creager, and P. Libby, Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA,2002.287(19):p. 2570-81.
    18. Semenkovich, C.F., Insulin resistance and atherosclerosis. J Clin Invest,2006. 116(7):p.1813-22.
    19. Nathan, L. and G Chaudhuri, Estrogens and atherosclerosis. Annu Rev Pharmacol Toxicol,1997.37:p.477-515.
    20. Goldbourt, U. and H.N. Neufeld, Genetic aspects of arteriosclerosis. Arteriosclerosis,1986.6(4):p.357-77.
    21. Martinet, W. and M.M. Kockx, Apoptosis in atherosclerosis:focus on oxidized lipids and inflammation. Curr Opin Lipidol,2001.12(5):p.535-41.
    22. Tell, GS., J.R. Crouse, and C.D. Furberg, Relation between blood lipids, lipoproteins, and cerebrovascular atherosclerosis. A review. Stroke,1988. 19(4):p.423.
    23. Hirsch, E.F. and S. Weinhouse, The role of the lipids in atherosclerosis. Physiological Reviews,1943.23(3):p.185.
    24. Martin, M.J., et al., Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men. Lancet,1986.2(8513):p.933-6.
    25. Griendling, K.K. and GA. FitzGerald, Oxidative stress and cardiovascular injury:Part I:basic mechanisms and in vivo monitoring of ROS. Circulation, 2003.108(16):p.1912-6.
    26. Mertens, A. and P. Holvoet, Oxidized LDL and HDL:antagonists in atherothrombosis. FASEB J,2001.15(12):p.2073-84.
    27. Nicholson, A.C., et al., CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann N Y Acad Sci,2000.902:p.128-31; discussion 131-3.
    28. Boullier, A., et al., Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci,2001.947:p.214-22; discussion 222-3.
    29. Itabe, H., Oxidized low-density lipoproteins:what is understood and what remains to be clarified. Biol Pharm Bull,2003.26(1):p.1-9.
    30. Jackson, C., et al., Animal Models of Atherosclerosis. Advances in Vascular Medicine:p.77-91.
    31. Clarkson, T.B., et al. Animal models of atherosclerosis.1970:National Academies.
    32. Owens, G.K. and S.M. Schwartz, Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circulation Research,1982.51(3):p.280.
    33. Nakashima, Y., et al., ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis, Thrombosis, and Vascular Biology,1994.14(1):p.133.
    34. Isnikawa, K., et al., Heme oxygenase-1 inhibits atherosclerotic lesion formation in LDL-receptor knockout mice. Circulation Research,2001.88(5): p.506.
    35. Kawashima, S. and M. Yokoyama, Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol,2004.24(6):p. 998-1005.
    36. Shaul, P.W., Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol,2003.547(Pt 1):p.21-33.
    37. Wolfbauer, G, et al., Development of the smooth muscle foam cell:uptake of macrophage lipid inclusions. Proc Natl Acad Sci U S A,1986.83(20):p. 7760-4.
    38. Deng, T.L., et al., Intracellular-free calcium dynamics and F-actin alteration in the formation of macrophage foam cells. Biochem Biophys Res Commun, 2005.338(2):p.748-56.
    39. Silverstein, R.L. and M. Febbraio, CD36 and atherosclerosis. Curr Opin Lipidol,2000.11(5):p.483-91.
    40. Massaeli, H., J.A. Austria, and GN. Pierce, Chronic exposure of smooth muscle cells to minimally oxidized LDL results in depressed inositol 1,4,5-trisphosphate receptor density and Ca(2+) transients. Circ Res,1999. 85(6):p.515-23.
    41. Klouche, M., et al., Enzymatically degraded, nonoxidized LDL induces human vascular smooth muscle cell activation, foam cell transformation, and proliferation. Circulation,2000.101(15):p.1799-805.
    42. Wada, Y, et al., Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions. Arterioscler Thromb Vasc Biol,2002.22(10):p.1712-9.
    43. Hengartner, M.O., The biochemistry of apoptosis. Nature,2000.407(6805):p. 770-6.
    44. Irmler, M., et al., Inhibition of death receptor signals by cellular FLIP. Nature, 1997.388(6638):p.190-5.
    45. Adrain, C. and S.J. Martin, The mitochondrial apoptosome:a killer unleashed by the cytochrome seas. Trends Biochem Sci,2001.26(6):p.390-7.
    46. Creagh, E.M., H. Conroy, and S.J. Martin, Caspase-activation pathways in apoptosis and immunity. Immunol Rev,2003.193:p.10-21.
    47. Ott, M., et al., Mitochondria, oxidative stress and cell death. Apoptosis,2007. 12(5):p.913-22.
    48. Kroemer, G, L. Galluzzi, and C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiol Rev,2007.87(1):p.99-163.
    49. Collins, T.J., et al., Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J,2002.21(7):p.1616-27.
    50. Karbowski, M. and R.J. Youle, Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ,2003.10(8):p.870-80.
    51. Benard, G, et al., Mitochondrial bioenergetics and structural network organization. J Cell Sci,2007.120(Pt 5):p.838-48.
    52. Chan, D.C., Mitochondrial dynamics in disease. N Engl J Med,2007.356(17): p.1707-9.
    53. Rube, D.A. and A.M. van der Bliek, Mitochondrial morphology is dynamic andvaried. Mol Cell Biochem,2004.256-257(1-2):p.331-9.
    54. Skulachev, V.P., Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci,2001.26(1):p.23-9.
    55. Rizzuto, R., et al., Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature,1992.358(6384):p. 325-7.
    56. Rizzuto, R., et al., Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science,1998.280(5370):p. 1763-6.
    57. Pletjushkina, O.Y., et al., Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim Biophys Acta,2006.1757(5-6):p.518-24.
    58. Smirnova, E., et al., Dynamin-related protein Drpl is required for mitochondrial division in mammalian cells. Mol Biol Cell,2001.12(8):p. 2245-56.
    59. Karbowski, M., et al., Spatial and temporal association of Bax with mitochondrial fission sites, Drpl, and Mfn2 during apoptosis. J Cell Biol, 2002.159(6):p.931-8.
    60. Lee, Y.J., et al., Roles of the mammalian mitochondrial fission and fusion mediators Fisl, Drpl, and Opal in apoptosis. Mol Biol Cell,2004.15(11):p. 5001-11.
    61. Santel, A., et al., Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci,2003.116(Pt 13):p. 2763-74.
    62. Guo, X., et al., Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res,2007.101(11):p.1113-22.
    63. Cipolat, S., et al., OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A,2004.101(45):p.15927-32.
    64. Okamoto, K. and J.M. Shaw, Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet,2005.39:p.503-36.
    65. Mancini, M., et al., Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol,1997.138(2):p.449-69.
    66. Frank, S., et al., The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell,2001.1(4):p.515-25.
    67. Wolter, K.G., et al., Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol,1997.139(5):p.1281-92.
    68. Nechushtan, A., et al., Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. Journal of Cell Biology, 2001.153(6):p.1265.
    69. Karbowski, M., et al., Spatial and temporal association of Bax with mitochondrial fission sites, Drpl, and Mfn2 during apoptosis. Journal of Cell Biology,2002.159(6):p.931.
    70. Rapizzi, E., et al., Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. Journal of Cell Biology,2002.159(4):p.613.
    71. Duncan, C.J., et al., Experimental production of "septa" and apparent subdivision of muscle mitochondria. Journal of Bioenergetics and Biomembranes,1980.12(1):p.13-33.
    72. Pinton, P., et al., The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis:significance for the molecular mechanism of Bcl-2 action. Science's STKE,2001.20(11):p.2690.
    73. Green, D.R. and J.C. Reed, Mitochondria and apoptosis. Science,1998. 281(5381):p.1309-12.
    74. Kelekar, A. and C.B. Thompson, Bcl-2-family proteins:the role of the BH3 domain in apoptosis. Trends Cell Biol,1998.8(8):p.324-30.
    75. Harris, M.H. and C.B. Thompson, The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ, 2000.7(12):p.1182-91.
    76. Adams, J.M. and S. Cory, Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci,2001.26(1):p.61-6.
    77. Boraer, C., The Bcl-2 protein family:sensors and checkpoints for life-or-death decisions. Mol Immunol,2003.39(11):p.615-47.
    78. Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell,1996.86(1):p.147-57.
    79. Du, C., et al., Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell,2000. 102(1):p.33-42.
    80. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature,1999.397(6718):p.441-6.
    81. Baliga, B. and S. Kumar, Apaf-1/cytochrome c apoptosome:an essential initiator of caspase activation or just a sideshow? Cell Death Differ,2003. 10(1):p.16-8.
    82. Nicotera, P. and S. Orrenius, The role of calcium in apoptosis. Cell Calcium, 1998.23(2-3):p.173-80.
    83. Giacomello, M., et al., Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ,2007.14(7):p.1267-74.
    84. Hajnoczky, G, et al., Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium,2006.40(5-6):p.553-60.
    85. Kaufman, R.J., Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev, 1999.13(10):p.1211-33.
    86. Gething, M.J. and J. Sambrook, Protein folding in the cell. Nature,1992. 355(6355):p.33-45.
    87. Dorner, A.J., et al., The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J Biol Chem,1990.265(35):p.22029-34.
    88. Hosokawa, N., et al., A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep,2001.2(5):p.415-22.
    89. Yoshida, H., et al., Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem,1998.273(50):p.33741-9.
    90. Yoshida, H., et al., XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 2001.107(7):p.881-91.
    91. Yoshida, H., et al., ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol,2000.20(18):p.6755-67.
    92. Wang, X.Z., et al., Cloning of mammalian Irel reveals diversity in the ER stress responses. EMBO J,1998.17(19):p.5708-17.
    93. Calfon, M., et al., IRE1 couples endoplasmic reticululum load to secretory capacity by processing the XBP-1 mRNA. Nature,2002.415(6867):p.92-6.
    94. Bertolotti, A., et al., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol,2000.2(6):p.326-32.
    95. Harding, H.P., et al., Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell,2000.5(5):p. 897-904.
    96. Scheuner, D., et al., Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell,2001.7(6):p.1165-76.
    97. Wang, X.Z., et al., Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol,1996.16(8):p. 4273-80.
    98. Friedman, A.D., GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res,1996.56(14):p.3250-6.
    99. Wang, X.Z. and D. Ron, Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science,1996. 272(5266):p.1347-9.
    100. McCullough, K.D., et al., Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol,2001.21(4):p.1249-59.
    101. Paschen, W., Role of calcium in neuronal cell injury:which subcellular compartment is involved? Brain Res Bull,2000.53(4):p.409-13.
    102. Mattson, M.P., et al., Calcium signaling in the ER:its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci,2000.23(5):p. 222-9.
    103. Nakagawa, T., et al., Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature,2000.403(6765):p. 98-103.
    104. Nakagawa, T. and J. Yuan, Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol,2000.150(4):p. 887-94.
    105. Dimmeler, S., et al., Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases. A mechanistic clue to the'response to injury' hypothesis. Circulation,1997.95(7):p.1760-3.
    106. Libby, P., et al., Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol,1996.7(5):p.330-5.
    107. van der Wal, A.C. and A.E. Becker, Atherosclerotic plaque rupture-pathologic basis of plaque stability and instability. Cardiovasc Res,1999.41(2):p. 334-44.
    108. Schwartz, S.M., Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest,1997.100(11 Suppl):p. S87-9.
    109. Rekhter, M.D., Collagen synthesis in atherosclerosis:too much and not enough. Cardiovasc Res,1999.41(2):p.376-84.
    110. Auge, N., et al., Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways. Arterioscler Thromb Vase Biol,2002.22(12):p.1990-5.
    111. Yang, C.M., et al., Mitogenic effect of oxidized low-density lipoprotein on vascular smooth muscle cells mediated by activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol,2001.132(7):p.1531-41.
    112. Lyle, A.N. and K.K. Griendling, Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology (Bethesda),2006.21:p. 269-80.
    113. Seye, C.I., et al.,7-Ketocholesterol induces reversible cytochrome c release in smooth muscle cells in absence of mitochondrial swelling. Cardiovasc Res, 2004.64(1):p.144-53.
    114. Rong, J.X., et al., Acyl-coenzymeA (CoA):cholesterol acyltransferase inhibition in rat and human aortic smooth muscle cells is nontoxic and retards foam cell formation. Arterioscler Thromb Vase Biol,2005.25(1):p.122-7.
    115. Ikonen, E., Mechanisms for cellular cholesterol transport:defects and human disease. Physiol Rev,2006.86(4):p.1237-61.
    116. Sakashita, N., et al., Localization of human acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues. Am J Pathol,2000.156(1):p.227-36.
    117. Kovacs, W.J. and S. Krisans, Cholesterol biosynthesis and regulation:role of peroxisomes. Adv Exp Med Biol,2003.544:p.315-27.
    118. Kunjathoor, V.V., et al., Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem,2002. 277(51):p.49982-8.
    119. Yokoyama, S., Assembly of high density lipoprotein by the ABCAl/apolipoprotein pathway. Curr Opin Lipidol,2005.16(3):p.269-79.
    120. Soccio, R.E. and J.L. Breslow, Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol,2004.24(7):p.1150-60.
    121. Maxfield, F.R. and D. Wustner, Intracellular cholesterol transport. J Clin Invest,2002.110(7):p.891-8.
    122. Hao, M., et al., Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem,2002.277(1):p.609-17.
    123. Stocco, D.M., StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol,2001.63:p.193-213.
    124. Strauss, J.F.,3rd, et al., The steroidogenic acute regulatory protein (StAR):a window into the complexities of intracellular cholesterol trafficking. Recent Prog Horm Res,1999.54:p.369-94; discussion 394-5.
    125. Soccio, R.E., et al., The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci U S A,2002.99(10):p.6943-8.
    126. Alpy, F., et al., The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem,2001.276(6):p. 4261-9.
    127. Ladinsky, M.S., et al., Golgi structure in three dimensions:functional insights from the normal rat kidney cell. J Cell Biol,1999.144(6):p.1135-49.
    128. Khelef, N., et al., Enrichment of acyl coenzyme A.cholesterol O-acyltransferase near trans-golgi network and endocytic recycling compartment. Arterioscler Thromb Vasc Biol,2000.20(7):p.1769-76.
    129. Liscum, L. and N.J. Munn, Intracellular cholesterol transport. Biochim Biophys Acta,1999.1438(1):p.19-37.
    130. Heino, S., et al., Dissecting the role of the golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci U S A,2000.97(15):p.8375-80.
    131. Sparrow, S.M., et al.U18666A inhibits intracellular cholesterol transport and neurotransmitter release in human neuroblastoma cells. Neurochem Res,1999. 24(1):p.69-77.
    132. Okuda, K.I., Liver mitochondrial P450 involved in cholesterol catabolism and vitamin D activation. J Lipid Res,1994.35(3):p.361-72.
    133. Zhang, M., et al., MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. J Biol Chem,2002.277(36):p.33300-10.
    134. Shen, W.J., et al., Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein:facilitation of cholesterol transfer in adrenal. J Biol Chem,2003.278(44):p.43870-6.
    135. Rudel, L.L., R.G Lee, and P. Parini, ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia. Arterioscler Thromb Vasc Biol,2005.25(6):p.1112-8.
    136. Tardif, J.C., et al., Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation,2004. 110(21):p.3372-7.
    137. Nissen, S.E., et al., Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med,2006.354(12):p.1253-63.
    138. Nissen, S.E., et al., Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med,2007.356(13):p.1304-16.
    139. Fazio, S. and M. Linton, Failure of ACAT inhibition to retard atherosclerosis. N Engl J Med,2006.354(12):p.1307-9.
    140. Feng, B., et al., The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol,2003.5(9):p.781-92.
    141. Edinger, A.L. and C.B. Thompson, Death by design:apoptosis, necrosis and autophagy. Curr Opin Cell Biol,2004.16(6):p.663-9.
    142. Proskuryakov, S.Y., A.G Konoplyannikov, and V.L. Gabai, Necrosis:α specific form of programmed cell death? Exp Cell Res,2003.283(1):p.1-16.
    143. Debnath, J., E.H. Baehrecke, and G. Kroemer, Does autophagy contribute to cell death? Autophagy,2005.1(2):p.66-74.
    144. Levine, B. and J. Yuan, Autophagy in cell death:an innocent convict? J Clin Invest,2005.115(10):p.2679-88.
    145. Mizushima, N., Y. Ohsumi, and T. Yoshimori, Autophagosome formation in mammalian cells. Cell Struct Funct,2002.27(6):p.421-9.
    146. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy,2008.4(2):p.151-75.
    147. Rubinsztein, D.C., et al., Potential therapeutic applications of autophagy. Nat Rev Drug Discov,2007.6(4):p.304-12.
    148. Klionsky, D.J. and S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science,2000.290(5497):p.1717-21.
    149. Klionsky, D.J., et al., A unified nomenclature for yeast autophagy-related genes. Dev Cell,2003.5(4):p.539-45.
    150. Reggiori, F. and D.J. Klionsky, Autophagy in the eukaryotic cell. Eukaryot Cell,2002.1(1):p.11-21.
    151. Nair, U. and D.J. Klionsky, Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem,2005.280(51):p. 41785-8.
    152. Kihara, A., et al., Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep,2001.2(4):p.330-5.
    153. Maiuri, M.C., et al., Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol,2007.8(9):p.741-52.
    154. Kamada, Y., et al., Tor-mediated induction of autophagy via an Apgl protein kinase complex. J Cell Biol,2000.150(6):p.1507-13.
    155. Klionsky, D.J., A.J. Meijer, and P. Codogno, Autophagy and p70S6 kinase. Autophagy,2005.1(1):p.59-60; discussion 60-1.
    156. Bjornsti, M.A. and P.J. Houghton, The TOR pathway:a target for cancer therapy. Nat Rev Cancer,2004.4(5):p.335-48.
    157. Sarkar, S., et al., Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol,2005.170(7):p.1101-11.
    158. Toogood, P.L., Inhibition of protein-protein association by small molecules: approaches and progress. J Med Chem,2002.45(8):p.1543-58.
    159. Hay, N. and N. Sonenberg, Upstream and downstream of mTOR. Genes Dev, 2004.18(16):p.1926-45.
    160. Yamamoto, A., et al., Bafilomycin Al prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-Ⅱ-E cells. Cell Struct Funct,1998.23(1):p.33-42.
    161. Baehrecke, E.H., Autophagy:dual roles in life and death? Nat Rev Mol Cell Biol,2005.6(6):p.505-10.
    162. Hara, T., et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature,2006.441(7095):p.885-9.
    163. Ravikumar, B., et al., Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet,2004.36(6):p.585-95.
    164. Ravikumar, B., et al., Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet,2006.15(7):p.1209-16.
    165. Rodriguez-Enriquez, S., et al., Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy,2006.2(1):p.39-46.
    166. Lum, J. J., et al., Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell,2005.120(2):p.237-48.
    167. Espert, L., et al., Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest,2006.116(8):p.2161-72.
    168. Kiffin, R., U. Bandyopadhyay, and A.M. Cuervo, Oxidative stress and autophagy. Antioxid Redox Signal,2006.8(1-2):p.152-62.
    169. Hoyer-Hansen, M., et al., Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell,2007.25(2):p. 193-205.
    170. Yousefi, S., et al., Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol,2006.8(10):p.1124-32.
    171. Feng, Z., et al., The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A,2005.102(23):p.8204-9.
    172. Bialik, S. and A. Kimchi, The death-associated protein kinases:structure, function, and beyond. Annu Rev Biochem,2006.75:p.189-210.
    173. Yorimitsu, T., et al., Endoplasmic reticulum stress triggers autophagy. J Biol Chem,2006.281(40):p.30299-304.
    174. Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature,2008.451(7182):p.1069-75.
    175. Shintani, T. and D.J. Klionsky, Autophagy in health and disease:a double-edged sword. Science,2004.306(5698):p.990-5.
    176. Levine, B. and G Kroemer, Autophagy in the pathogenesis of disease. Cell, 2008.132(1):p.27-42.
    177. Rubinsztein, D.C., The roles of intracellular protein-degradation pathways in neurodegeneration. Nature,2006.443(7113):p.780-6.
    178. Rubinsztein, D.C., et al., Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy,2005.1(1):p.11-22.
    179. Venkatraman, P., et al., Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell,2004.14(1):p.95-104.
    180. Yu, W.H., et al., Macroautophagy-a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol,2005.171(1):p.87-98.
    181. Mathew, R., V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nat Rev Cancer,2007.7(12):p.961-7.
    182. Gozuacik, D. and A. Kimchi, Autophagy as a cell death and tumor suppressor mechanism. Oncogene,2004.23(16):p.2891-906.
    183. Cuervo, A.M., Autophagy:in sickness and in health. Trends Cell Biol,2004. 14(2):p.70-7.
    184. Arico, S., et al., The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem,2001.276(38):p.35243-6.
    185. Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature,2001. 411(6835):p.355-65.
    186. Crighton, D., et al., DRAM, α p53-induced modulator of autophagy, is critical for apoptosis. Cell,2006.126(1):p.121-34.
    187. Pattingre, S., et al., Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell,2005.122(6):p.927-39.
    188. Martinet, W. and G.R. De Meyer, Autophagy in atherosclerosis:a cell survival and death phenomenon with therapeutic potential. Circ Res,2009.104(3):p. 304-17.
    189. Kockx, M.M., et al., Cell composition, replication, and apoptosis in atherosclerotic plaques after 6 months of cholesterol withdrawal. Circ Res, 1998.83(4):p.378-87.
    190. Martinet, W., et al.,7-ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol,2004.24(12):p.2296-301.
    191. Martinet, W., et al., In situ detection of starvation-induced autophagy. J Histochem Cytochem,2006.54(1):p.85-96.
    192. Martinet, W., et al., Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol,2008. 154(6):p.1236-46.
    193. Gustafsson, A.B. and R.A. Gottlieb, Autophagy in ischemic heart disease. Circ Res,2009.104(2):p.150-8.
    194. Hill, B.G., et al., Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J,2008.410(3):p. 525-34.
    195. Scherz-Shouval, R., et al., Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J,2007.26(7):p. 1749-60.
    196. Kouroku, Y., et al., ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ,2007.14(2):p.230-9.
    197. Ogata, M., et al., Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol,2006.26(24):p.9220-31.
    198. Li, J., et al., The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ,2008.15(9):p.1460-71.
    199. Jia, G, G. Cheng, and D.K. Agrawal, Autophagy of vascular smooth muscle cells in atherosclerotic lesions. Autophagy,2007.3(1):p.63-4.
    200. Schrijvers, D.M., et al., Phagocytosis in atherosclerosis:Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res,2007.73(3):p.470-80.
    201. Verheye, S., et al., Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol,2007.49(6):p.706-15.
    202. Martin, K.A., et al., The mTOR/p70 S6KI pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Physiol,2004.286(3):p. C507-17.
    203. Martinet, W., S. Verheye, and GR. De Meyer, Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy. Autophagy,2007.3(3):p.241-4.
    204. Rong, J.X., et al., Transdifferentiation of mouse aortic smooth muscle cells to
    a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A, 2003.100(23):p.13531-6.
    205. Christian, A.E., et al., Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res,1997.38(11):p.2264-72.
    206. Borradaile, N.M., et al., A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death. Mol Biol Cell,2006.17(2):p.770-8.
    207. Kharroubi, I., et al., Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms:role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology,2004.145(11):p.5087-96.
    208. Borradaile, N.M., et al., Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res,2006.47(12):p.2726-37.
    209. Wei, Y, et al., Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab,2006.291(2):p. E275-81.
    210. Batetta, B., et al., Role of cholesterol ester pathway in the control of cell cycle in human aortic smooth muscle cells. FASEB J,2003.17(6):p.746-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700