用户名: 密码: 验证码:
烫伤大鼠骨骼肌AMPK的活化对蛋白分解的作用及其信号转导机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:严重烧伤后骨骼肌蛋白代谢以高分解代谢和负氮平衡为特点,我所以往研究发现泛素蛋白酶体途径是骨骼肌蛋白分解的主要机制,其中肌肉萎缩盒F蛋白(MAFbx)和肌肉特异性环指蛋白1(MuRF1)是骨骼肌蛋白分解的关键酶,胰岛素能够抑制骨骼肌蛋白分解。但目前对于烧伤后骨骼肌MAFbx和MuRF1表达变化及其调节机制的研究尚不完善。
     已知泛素蛋白酶体参与的蛋白分解过程需要ATP提供能量,骨骼肌的能量状态可能影响着蛋白分解代谢。单磷酸腺苷激活的蛋白激酶(AMPK)是调节三磷酸腺苷(ATP)生成的关键分子,近年来又发现AMPK的活化抑制蛋白合成,然而,迄今为止对于骨骼肌能量状态及AMPK对骨骼肌蛋白分解代谢影响和机制的报道甚少。为进一步阐明烧伤后骨骼肌蛋白分解代谢的机制,指导临床治疗,本课题试图通过动物实验和细胞培养实验探讨:(1)烫伤大鼠骨骼肌蛋白分解、能荷和AMPK的变化;(2)烫伤大鼠血清对L6肌管蛋白分解、能荷和AMPK的影响;(3)L6肌管AMPK对蛋白分解的调节作用,及其与胰岛素信号通路相互作用的机制。
     方法:1.动物实验:雄性Wistar大鼠100只(180-220g),随机分为两组:(1)对照组(n=50);(2)烫伤组(n=50),背部置于94℃热水12s致30%总体表面积(TBSA)Ⅲ度烫伤。分别于伤后6h、1d、3d、5d和7d(n=10)麻醉处死大鼠,解剖分离双侧胫骨前肌、趾长伸肌(EDL)和比目鱼肌。实验过程中每日称量体重,实验结束时称量肌肉重量。Western blotting检测胫骨前肌AMPK表达和活性,实时定量PCR(Q-PCR)检测胫骨前肌AMPKα、丝氨酸/苏氨酸激酶11(LKB1)、MAFbx及MuRF1的mRNA表达水平,高效液相色谱法(HPLC)测定胫骨前肌核苷酸水平,计算AMP(单磷酸腺苷)/ATP比值和细胞能荷(EC)。
     2.细胞培养实验A:采用上述烫伤动物模型,雄性Wistar大鼠40只(200-250g),随机分为两组:对照组(n=20)和烫伤组(n=20),伤后12h无菌抽取大鼠腹主动脉血液,制备血清。10%胎牛血清(FBS)预处理低血清分化的L6肌管12h后,分别采用含10%假伤大鼠血清的DMEM(10%SS组)、或含10%烫伤大鼠血清的DMEM(10%BS组)孵育肌管不同时间(0、10min、1h、6h、24h)。L6肌管蛋白、mRNA和核苷酸水平的测定同方法1。
     3.细胞培养实验B:低血清分化的L6肌管于无血清DMEM中预处理12h后,分别于不同浓度或不同时间条件下,用含AMPK活化剂(AICAR,5-咪唑-4-酰胺-1-β-D-呋喃糖核苷)或含胰岛素的DMEM处理L6肌管,部分实验中采用PI3K抑制剂(wortmannin)、Akt抑制剂(Akt InhibitorⅣ)或AMPK抑制剂(Compound C)预处理肌管1h。Western blotting检测L6肌管AMPK、Akt、糖原合成酶激酶(GSK)3-β和乙酰辅酶A羧化酶(ACC)的表达及其活性,mRNA和核苷酸水平的检测同方法1。
     结果:1.(1)大鼠烫伤后体重较对照组下降,于伤后3d最为显著(p<0.05)。大鼠EDL重量和EDL重量/体重比值于伤后1~3d显著低于对照组(p<0.01)。(2)与对照组比较,烫伤后6h胫骨前肌MAFbx mRNA表达明显上调(p<0.01),烫伤后6h和1d,胫骨前肌MuRF1 mRNA表达明显上调(p<0.01),于5d和7d明显下降(p<0.01或p<0.05)。(3)烫伤后6h,大鼠胫骨前肌AMPKα(Thr172)磷酸化水平高于对照组(p<0.05),其后逐渐下降,于3d显著低于对照组(p<0.01),以后又升高。烫伤对胫骨前肌AMPKα蛋白表达无影响(p<0.05)。(4)烫伤后1d,AMPKα2mRNA表达明显低于对照组(p<0.01)。(5)烫伤后6h,LKB1 mRNA水平较对照组上调(p<0.01),其后下降,于3d和5d明显低于对照组(p<0.01),7d有所回升。(6)烫伤后6h、1d、5d和7d,AMP/ATP比值较对照组升高(p<0.01),而EC较对照组降低(p<0.01或p<0.05)。
     2.(1)烫伤大鼠血清孵育L6肌管24h显著上调MAFbx和MuRF1的mRNA表达(p<0.05)。(2)与10%SSs组比较,10%BS组L6肌管AMPKα蛋白表达显著下降(30min、1h、6h,p<0.01),而AMPKα磷酸化水平升高(1h、6h,p<0.05;24h,p<0.01)。(3)10%BS组L6肌管AMPKα1 mRNA表达于24h较10%SS组降低(p<0.01),AMPKα2 mRNA表达于1h、6h和24h均较10%SS组降低(p<0.05)。(4)10%BS组L6肌管LKB1 mRNA表达于24h较10%SS组升高(p<0.01),然而,烫伤大鼠血清对L6肌管AMP/ATP比值和EC无影响(p>0.05)。
     3.(1)AMPK活化剂AICAR以剂量依赖方式抑制MAFbx和MuRF1 mRNA表达,Compound C预处理可抑制AICAR对MuRF1基因表达的上调作用(p<0.01)。(2) AICAR以剂量依赖方式上调Akt (Ser473)和GSK3-β(Ser9)的磷酸化水平,与激活PI3K有关。(3)胰岛素以剂量依赖的方式下调MAFbx和MuRF1 mRNA表达,AICAR能够逆转胰岛素对MAFbx和MuRF1 mRNA表达的抑制作用(p<0.01)。(4)胰岛素以剂量依赖方式去磷酸化抑制AMPK,其机制为通过激活Akt实现。(5)胰岛素以剂量依赖方式抑制肌管LKB1 mRNA表达,而对AMP/ATP和EC无显著影响(p>0.05)。
     结论:烫伤大鼠骨骼肌能量状态的下降激活AMPK, AMPK的活化上调骨骼肌泛素E3连接酶的基因表达,蛋白分解增强。AMPK与蛋白代谢密切相关的胰岛素信号通路相互作用,AMPK激活Akt,而胰岛素抑制AMPK,胰岛素下调蛋白分解代谢的可能机制之一为抑制AMPK。因此,烫伤后骨骼肌AMPK的活化可促进蛋白分解代谢,针对AMPK的治疗措施可能是抑制烧伤后蛋白高分解的新靶点。
Objective:The protein metabolism in skeletal muscle post severe burn is characterized by hyperproteolysis and negative nitrogen balance. Our previous studies have deduced that ubiquitin-proteasome played a key role in skeletal muscle proteolysis. Especially, muscle atrophy F-box (MAFbx) and muscle-specific RING finger protein 1 (MuRF1) are key enzymes in regulating muscle proteolysis. Furthermore, the enhanced proteolysis can be inhibited by administration of intensive insulin therapy. However, the changes and molecular mechanisms in expression of skeletal muscle MAFbx and MuRF1 post-burn are still obscure.
     Adenosine triphosphate (ATP) supplies energy to ubiquitin-proteasome pathway of proteolysis. Energy status may affect proteolysis in skeletal muscles. It is well known that AMP-activated protein kinase (AMPK), the'Energy Gauge', regulates production of ATP. Recently, several studies revealed the inhibitory effects of AMPK activation on protein synthesis. However, little has been studied on the effects of energy status and AMPK activity on skeletal muscle proteolysis and its mechanisms. In order to further elucidate the mechanisms of proteolysis in skeletal muscles post-burn, and to guide clinical treatment, this project was aimed to explore:(1) changes of energy status, AMPK and proteolysis in skeletal muscles of scalded rats, (2) changes of energy status, AMPK and proteolysis in L6 myotubes treated with serum from scalded rats, (3) molecular mechanisms of interaction among AMPK, proteolysis and insulin signaling pathway in L6 myotubes.
     Methods:1. Animal experiments:One hundred male Wistar rats (180-220g) were randomly divided into two groups:(1) control group (n=50), (2) scald group (n=50). In scald group, rats were inflicted on with 94℃water for 12s to create full-thickness burns, 30% total body surface area (TBSA). The rats were anesthetized 6h, Id,3d,5d, or 7d after injury and sacrificed for collecting muscles:tibialis anterior, extensor digitorum longus (EDL), and soleus. Rats and muscles were weighed. Then, protein levels and activity of AMPK were determined by Western blotting. Quantitative real time PCR (Q-PCR) was used to measure mRNA levels of AMPKa, serine/threonine kinase 11 (LKB1), MAFbx and MuRF1. Furthermore, adenosine monophosphate (AMP)/ATP ratio and energy charge (EC) were measured by high performance liquid chromatography (HPLC).
     2. Cell culture experiment A:Forty male Wistar rats were randomly divided into sham scald group (n=20) and scald group (n=20). Scald animal model was established according to aforementioned method 1. Rats were sacrificed to harvest serum 12h post-injury. Furthermore, after pre-incubation with DMEM plus 10% FBS for 12h, the differentiated L6 myotubes were cultured with DMEM containing 10% sham scald rat serum (10%SS) or 10% scald rat serum (10% BS) for different durations of time (0, 10min, 1h,6h,24h). The levels of protein, mRNA and nucleotides were measured according to method 1.
     3. Cell culture experiment B:The L6 myotubes were pre-incubated with DMEM for 12h, followed by replacement with DMEM plus different doses of AMPK activator (AICAR,5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) or insulin for various time durations. In some groups, PI3K inhibitor (wortmannin), protein kinases B (PKB, Akt) inhibitor (Akt Inhibitor IV) or AMPK inhibitor (Compound C) was applied as pretreatment for 1h. Protein levels and activity of AMPK, acetyl-CoA carboxylase (ACC), Akt, and glycogen synthase kinase (GSK) 3-βwere determined by Western blotting, mRNA levels of AMPKa, LKB1, MAFbx and MuRF1 by Q-PCR, nucleotides levels by HPLC.
     Results:1. Scald reduced body weight of rats, especially on 3d post-injury (p<0.05). Meanwhile, muscle mass of EDL, and EDL to body weight ratio were decreased from Id through 3d in scald group compared with that in control group (p<0.01). Further, compared with control group, the mRNA level of MAFbx in tibialis anterior was-increased 6h post-injury (p<0.01), the mRNA level of MuRF1 increased both at 6h and on 1d post-injury (p<0.01), followed by a decrease from 5d to 7d in scald group (p<0.01 or p<0.05). Compared with control group, phosphorylation level of tibialis anterior AMPKa (Thr172) in scald group was increased at 6h (p<0.05), then was decreased to the lowest level on 3d (p<0.01), and finally was increased on 7d (p<0.05). But there were no differences in protein levels of AMPKa between the two groups (p>0.05). The mRNA level of AMPKa2 subtype decreased on 1d in scald group (p<0.01). The gene expression of LKB1 in scald group was upregulated at 6h (p<0.01), then reduced significantly 3d and 5d (p<0.01), followed by an increase on 7d. Interestingly, tibialis anterior AMP/ATP ratio was higher in scald group, except on 3d, than that in control group (p<0.01), while changes of EC was contrary to changes of AMP/ATP ratio (p<0.01 or p<0.05).
     2. Scald rat serum caused upregulation of MAFbx and MuRF1 mRNA expression in L6 myotubes at 24h (p<0.05). Compared with 10%SS group, the protein level of AMPKa was decreased in 10%BS group (30min, 1h and 6h, p<0.01), while pAMPKa level was increased in 10%BS group (1h and 6h,p<0.05; 24h,p<0.01). In 10%BS group, the mRNA level of AMPKα1 were reduced at 24h (p<0.01), and the mRNA level of AMPKa2 were reduced at 1h,6h and 24h (p<0.05), and the mRNA level of LKB1 was increased at 24h (p<0.01), as compared to that in 10%SS group. But the AMP/ATP ratio and EC showed no significant differences between the two groups (p>0.05).
     3. In L6 myotubes, AMPK activator, AICAR, downregulated mRNA expression of MAFbx and MuRF1 in a dose dependent pattern. Howerver, pretreatment with Compound C inhibited the upregulation of MuRF1 level caused by AICAR (p<0.01). Furthermore, AICAR enhanced both pAkt (Ser473) and pGSK3-β(Ser9) levels, relating to activating PI3K. On the other hand, insulin reduced both MAFbx and MuRF1 mRNA levels dose-dependently. This inhibitory effect could be blocked by administration of AICAR (p<0.01). Concomitantly, insulin inhibited AMPKa through activation of Akt, and downregulated mRNA level of LKB1 dose-dependently. Moreover, insulin had no effects on AMP/ATP ratio and EC (p>0.05).
     Conclusion:A lower energy status activates AMPK, which then enhancing expression of ubiquitin E3 ligases and skeletal muscle proteolysis in scalded rats. There are tight connections between AMPK and insulin signaling pathway. AMPK phosphorylates Akt, while insulin inhibits AMPK, which might be one of signaling pathways counting for downregulating proteolysis. Thus, enhanced proteolysis in skeletal muscle could be caused by activated AMPK after burns. It could be implied that targeting AMPK would be a new strategy to inhibit skeletal muscle proteolysis after burns.
引文
[1]柴家科,申传安,盛志勇.严重烧伤脓毒症患者骨骼肌蛋白分解代谢的临床研究.中华医学杂志.2005,85(41):2895-2898.
    [3]Chai J, Wu Y, Sheng Z. The relationship between skeletal muscle proteolysis and ubiquitin-proteasome proteolytic pathway in burned rats. Burns.2002,28(6): 527-533.
    [3]Duan H, Chai J, Sheng Z, et al. Effect of burn injury on apoptosis and expression of apoptosis-related genes/proteins in skeletal muscles of rats. Apoptosis.2009,14(1): 52-65.
    [4]Balasubramaniam A, Joshi R, Su C, et al. Ghrelin inhibits skeletal muscle protein breakdown in rats with thermal injury through normalizing elevated expression of E3 ubiquitin ligases MuRF1 and MAFbx. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R893-901.
    [5]Krawiec BJ, Nystrom GJ, Frost RA, et al. AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. Am J Physiol Endocrinol Metab.2007,292(6):E1555-1567.
    [6]Yin HN, Chai JK, Yu YM, et al. Regulation of signaling pathways downstream of IGF-I/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma.2009,66(4):1083-1090.
    [7]McCrimmon RJ, Fan X, Cheng H, et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes.2006,55(6): 1755-1760.
    [8]Puthanveetil P, Wang F, Kewalramani G, et al. Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. Am J Physiol Heart Circ Physiol.2008, 295(4):H1753-H1762.
    [9]Hasseigren PO, James JH, Benson DW, et al. Total and myofibrillar protein breakdown in different types of rat skeletal muscle:effeets of sepsis and regulation by insulin. Metabolism.1989,38(7):634-640.
    [10]柴家科,吴焱秋,盛志勇.脓毒症对不同类型骨骼肌蛋白降解率的影响及其机制初探.中国危重病急救医学.2001,13(5):272-274.
    [11]Fang CH, Li BG, Tiao G, et al. The molecular regulation of protein breakdown following burn injury is different in fast-and slow-twitch skeletal muscle. Int J Mol Med.1998,1(1):163-169.
    [12]Hall-Angeras M, Hasselgren PO, Dimlich RV, et al. Myofibrillar proteinase, cathepsin B, and protein breakdown rates in skeletal muscle from septic rats. Metabolism.1991,40(3):302-306.
    [13]Lowell BB, Ruderman NB, Goodman MN. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J.1986, 234(1):237-240.
    [14]Goll DE, Dayton WR, Singh I, et al. Studies of the alpha-actinin/actin interaction in the Z-disk by using calpain. J Biol Chem.1991,266(13):8501-8510.
    [15]Goll DE, Thompson VF, Taylor RG, et al. Role of the calpain system in muscle growth. Biochimie.1992,74(3):225-237.
    [16]Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest.2004,113(1): 115-123.
    [17]Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev.2002,82(2):373-428.
    [18]Lecker SH, Solomon V, Mitch WE, et al. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr.1999, 129(1S Suppl):227S-237S.
    [19]Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science.2001,294(5547):1704-1708.
    [20]Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A.2001,98(25): 14440-14445.
    [21]Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J.2004,18(1): 39-51.
    [22]Lang CH. Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-Ⅰ. Am J Physiol Regul Integr Comp Physiol.2007,292:R328-R336.
    [23]Dehoux MJ, van Beneden RP, Fernandez-Celemin L, et al. Induction of MAFbx and MuRF1 ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett.2003,544(1-3):214-217.
    [24]尹会男,柴家科.泛素-蛋白酶体途径研究进展.医学分子生物学杂志.2004,1(1):47-50.
    [25]Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science.2001,294(5547):1704-1708.
    [26]Wray CJ, Mammen JM, Hershko DD, et al. Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol.2003,35(5): 698-705.
    [27]Dehoux MJ, van Beneden RP, Femandez-Celemin L, et al. Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett. 2003,544(1-3):214-217.
    [28]Dehoux M, Van Beneden R, PaskoN, et al. Role of the insulin-like growth factor 1 decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endoerinology.2004,145(11):4806-4812.
    [29]Arya R, Kedar V, Hwang JR, et al. Muscle ring finger Protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol.2004, 167(6):1147-1159.
    [30]Zhao W, Wu Y, Zhao J, et al. Structure and function of the upstream promotor of the human Mafbx gene:the proximal upstream promotor modulates tissue-specificity. J Cell Biochem.2005;96(1):209-219.
    [31]Jackson PK, Eldridge AG. The SCF ubiquitin ligase:an extended look. Mol Cell. 2002,9(5):923-925.
    [32]Borden KL, Freemont PS. The RING finger domain:a recent example of a sequence-structure family. Curr Opin Struct Biol.1996,6(3):395-401.
    [33]Pizon V, Iakovenko A, Van Der Ven PF, et al. Transient association of titin and myosin with microtubules in nascent myofibrils direeted by the MURF2 RTNG-finger protein. J Cell Sci.2002,115(Pt23):4469-4482.
    [34]Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase:ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab.2005, 1(1):15-25.
    [35]Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest.2006,116(7):1776-1783.
    [36]Hardie DG. AMPK:a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond).2008,32 (S4):S7-12.
    [37]Hardie DG, Carling D, Sim ATR. The AMP-activated protein kinase:a multisubstrate regulator of lipid metabolism. Trends Biochem Sci.1989,14:20-23.
    [38]Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem.1996,271(2):611-614.
    [39]Woods A, Munday MR, Scott J, et al. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem.1994,269(30):19509-19515.
    [40]Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J.2000,345(Pt 3):437-443.
    [41]Holmes BF, Sparling DP, Olson AL, et al. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab.2005,289(6):E1071-1076.
    [42]Zheng D, MacLean PS, Pohnert SC, et al. Regulation of muscle GLUT-4 transcription by AMPactivated protein kinase. J Appl Physiol.2001,91(3): 1073-1083.
    [43]Berasi SP, Huard C, Li D, et al. Inhibition of gluconeogenesis through transcriptional activation of EGR1 and DUSP4 by AMP-activated kinase. J Biol Chem.2006, 281(37):27167-27177.
    [44]Stoppani J, Hildebrandt AL, Sakamoto K, et al. AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. Am J Physiol Endocrinol Metab.2002,283(6):E1239-1248.
    [45]Woods A, Azzout-Marniche D, Foretz M, et al. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000,20(18):6704-6711.
    [46]Yoon MJ, Lee GY, Chung JJ, et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes.2006,55(9):2562-2570.
    [47]Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A.2002,99(25):15983-15987.
    [48]Hardie DG. The AMP-activated protein kinase pathway-new players upstream and downstream. J Cell Sci.2004,117(Pt 23):5479-5487.
    [49]Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase:ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab.2005, 1(1):15-25.
    [50]Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest.2006,116(7):1776-1783.
    [51]Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006,126(5):955-968.
    [52]Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell.2005,18(3):283-293.
    [53]Dagon Y, Avraham Y, Magen I, et al. Nutritional status, cognition, and survival:a new role for leptin and AMP kinase. J Biol Chem.2005,280(51):42142-42148.
    [54]Mu J, Brozinick JT Jr, Valladares O, et al. A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001,7(5):1085-1094.
    [55]Sato R, Goldstein JL, Brown MS. Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc Natl Acad Sci U S A.1993,90(20):9261-9265.
    [56]Corton JM, Gillespie JG, Hardie DG. Role of the AMP-activated protein kinase in the cellular stress response. Current Biol.1994,4(4):315-324.
    [57]Hawley SA, Gadalla AE, Olsen GS, et al. The anti-diabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes.2002,51(8):2420-2425.
    [58]Witters LA, Nordlund AC, Marshall Lc. Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5'-AMP-activated protein kinase. Biochem Biophys Res Commun.1991,181(3):1486-1492.
    [59]Kudo N, Barr AJ, Barr RL, D et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem.1995,270(29):17513-17520.
    [60]Marsin AS, Bertrand L, Rider MH, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biol.2000,10(20):1247-1255.
    [61]Fujii N, Hayashi T, Hirshman MF, et al. Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun.2000,273(3):1150-1155.
    [62]da Silva Xavier G, Leclerc Ⅰ, et al. Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci U S A. 2000,97(8):4023-4028.
    [63]Tamas P, Hawley SA, Clarke RG, et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+in T lymphocytes. J Exp Med.2006,203(7):1665-1670.
    [64]Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature.2002,415(6869):339-343.
    [65]Padfield KE, Astrakas LG, Zhang Q, et al. Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc Natl Acad Sci U S A.2005,102(15):5368-5373.
    [66]Norbury WB, Jeschke MG, Herndon DN. Metabolic changes following major burn injury:how to improve outcome. Yearbook of Intensive Care and Emergency Medicine.2006,12:514-524.
    [67]Berasi SP, Huard C, Li D, et al. Inhibition of gluconeogenesis through transcriptional activation of EGR1 and DUSP4 by AMP-activated kinase. J Biol Chem.2006, 281(37):27167-27177.
    [68]Lee-Young RS, Griffee SR, Lynes SE, et al. Skeletal muscle amp-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem.2009, 284(36):23925-23934.
    [69]Kobayashi YM, Rader EP, Crawford RW, et al. Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature.2008,456(7221):511-515.
    [70]Meley D, Bauvy C, Houben-Weerts JH, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem.2006,281(46):34870-34879.
    [71]Yoon H, Oh YT, Lee JY, et al. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells. Biochem Biophys Res Commun.2008, 371(3):495-500.
    [1]Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA.1968,61(2):477-483.
    [2]Huang Y, Zheng J, Fan P, et al. Transfection of antisense p38a gene ameliorates myocardial cell injury mediated by hypoxia and burn serum. burns.2007,33: 599-605.
    [3]柴家科,申传安,姚咏明,等.严重烧伤脓毒症病人骨骼肌蛋白降解变化及其机制探讨.解放军医学杂志.2002,27(9):774-776.
    [4]Puthanveetil P, Wang F, Kewalramani G, et al. Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. Am J Physiol Heart Circ Physiol.2008, 295(4):H1753-1762.
    [1]申传安,柴家科,盛志勇,等.胰岛素对体外培养兔骨骼肌肌管蛋白降解的调节作用.中华烧伤杂志.2006,22(4):262-265.
    [2]申传安,柴家科,姚咏明,等.胰岛素治疗对烫伤脓毒症骨骼肌蛋白高降解的影响.中华烧伤杂志.2007,23(1):66-69.
    [3]Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA. 2003,100(20):11285-11290.
    [4]Corton JM, Gillespie JG, Hawley SA, et al.5-Aminoimidazole-4-carboxamide ribonucleoside:a specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem.1995,229(2):558-565.
    [5]Jager S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-la. Proc Natl Acad Sci U S A.2007,104(29):12017-12022.
    [6]Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science.2005, 310(5754):1642-1646.
    [7]Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest.2001,108(8):1167-1174.
    [8]Bain J, Plater L, Elliott M, et al. The selectivity of protein kinase inhibitors:a further update. Biochem J.2007,408:297-315.
    [9]Carling D, Hardie DG. The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta.1989,1012(1):81-86.
    [10]Marsin AS, Bouzin C, Bertrand L, et al. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem.2002,277(34): 30778-30783.
    [11]Daval M, Diot-Dupuy F, Bazin R, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem.2005,280(26):25250-25257.
    [12]Garton AJ, Campbell DG, Carling D, et al. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur J Biochem.1989,179(1):249-254.
    [13]Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5'AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes.1998,47(8):1369-1373.
    [14]Winder WW, Wilson HA, Hardie DG, et al. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and cAMP-dependent protein kinase. J App Physiol.1997,82(1):219-225.
    [15]Davies SP, Carling D, Munday MR, et al. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur J Biochem. 1992,203(3):615-623.
    [16]Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett.1987,223(2):217-222.
    [17]Davies SP, Sim AT, Hardie DG. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem.1990,187(1):183-190.
    [18]Chen ZP, Mitchelhill KI, Michell BJ, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett.1999,443(3):285-289.
    [19]Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell.2003,115(5):577-590.
    [20]Jakobsen SN, Hardie DG, Morrice N, et al.5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem.2001,276(50): 46912-46916.
    [21]Treebak JT, Glund S, Deshmukh A, et al. AMPK-mediated AS 160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes.2006,55(7):2051-2058.
    [22]Hallows KR, Kobinger GP, Wilson JM, et al. Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am J Physiol Cell Physiol.2003,284(5):C1297-1308.
    [23]Matsakas A, Patel K. Intracellular signaling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes. Histol Histopathol.2009, 24(2):209-222.
    [24]Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell.2003,115(5):577-590.
    [25]Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem.2002,277(27):23977-23980.
    [26]Reiter AK, Bolster DR, Crozier SJ, et al. Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab.2005,288(5): E980-E988.
    [27]Kimura N, Tokunaga C, Dalal S, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells.2003,8(1):65-79.
    [28]Du M, Shen QW, Zhu MJ, et al. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase. J Anim Sci.2007,85(4):919-927.
    [29]Pruznak AM, Kazi AA, Frost RA, et al. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-l-beta-D-ribonucleoside prevents leucine-stimulated protein synthesis in rat skeletal muscle. J Nutr.2008, 138(10):1887-1894.
    [30]Horman S, Browne G, Krause U, et al. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol.2002,12(16):1419-1423.
    [31]Browne GJ, Finn SG, Proud CG. Stimulation of the AMPactivated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem.2004,279(13): 12220-12231.
    [32]Meley D, Bauvy C, Houben-Weerts JH, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem.2006,281(46): 34870-34879.
    [33]Yoon H,Oh YT, Lee JY, et al. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells. Biochem Biophys Res Commun.2008,371(3):495-500.
    [34]Krawiec BJ, Nystrom GJ, Frost RA, et al. AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. Am J Physiol Endocrinol Metab.2007, 292(6):E1555-1567.
    [35]申传安,柴家科,姚咏明,等.胰岛素强化治疗对烫伤脓毒症兔骨骼肌蛋白高降解的调节及其机制.中国危重病急救医学.2006,18(3):139-142.
    [36]段红杰,柴家科,盛志勇,等.胰岛素强化治疗对严重烧伤大鼠凋亡配体的作用.中华烧伤杂志.2009,25(1):42-45.
    [37]Van den Berghe GH. Role of intravenous insulin therapy in critically ill patients. Endocrinol Pract 2004,10 Suppl 2:17-20.
    [38]Jeschke MG, Einspanier R, Klein D, et al. Insulin attenuates the systemic inflammatory response to thermal trauma. Mol Med 2002,8(8):443-450.
    [39]Ferrando AA, Wolfe RR. Restoration of hormonal action and muscle protein. Crit Care Med.2007,35(9 Suppl):S630-634.
    [40]Solomon V, Madihally S, Yarmush M, et al. Insulin suppresses the increased activities of lysosomal cathepsins and ubiquitin conjugation system in burn-injured rats. J Surg Res.2000,93(1):120-126.
    [41]King TD, Song L, Jope RS. AMP-activated protein kinase (AMPK) activating agents cause dephosphorylation of Akt and glycogen synthase kinase-3. Biochem Pharmacol.2006,71(11):1637-1647.
    [42]Longnus SL, Segalen C, Giudicelli J, et al. Insulin signalling downstream of protein kinase B is potentiated by 5'AMP-activated protein kinase in rat hearts in vivo. Diabetologia.2005,48(12):2591-2601.
    [43]Horike N, Sakoda H, Kushiyama A, et al. AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver. J Biol Chem.2008,283(49):33902-33910.
    [44]Tao R, Gong J, Luo X, et al. AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal.2010,5(1):1.
    [45]Gamble J, Lopaschuk GD. Insulin inhibition of 5'adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism.1997,46(11): 1270-1274.
    [46]Beauloye C, Marsin AS, Bertrand L, et al. Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett.2001,505(3):348-352.
    [47]Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell.2004,14(3):395-403.
    [1]Koenig W. Insulin resistance, heart disease, and inflammation. Identifying the "at-risk" patient:The earlier the better? The role of inflammatory markers. Int J Clin Pract Suppl.2002, (132):23-30.
    [2]Read JL, Cheng EY. Intensive insulin therapy for acute hyperglycemia. AACN Adv Crit Care.2007,18(2):200-212.
    [3]Chai JK, Sheng ZY, Lu JY, et al.Characteristics of and strategies for patients with severe burn-blast combined injury. Chin Med J (Engl).2007,120(20):1783-1787.
    [4]Groeneveld AB, Beishuizen A, Visser FC. Insulin:a wonder drug in the critically ill? Crit Care.2002,6(2):102-105.
    [5]Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med.2001,345(19):1359-1367.
    [6]Van den Berghe G, Wouters PJ, Bouillon R, et al. Outcome benefit of intensive insulin therapy in the critically ill:insulin dose versus glycemic control. Crit Care Med.2003,31(2):359-366.
    [7]Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med.2006,354(5):449-61.
    [8]Ellger B, Westphal M, Stubbe HD, et al. Glycemic control in sepsis and septic shock: friend or foe? Anaesthesist.2008,57(1):43-48.
    [9]Vlasselaers D, Milants I, Desmet L, et al. Intensive insulin therapy for patients in paediatric intensive care:a prospective, randomised controlled study. Lancet.2009, 373(9663):547-556.
    [10]Griesdale DE, de Souza RJ, van Dam RM, et al. Intensive insulin therapy and mortality among critically ill patients:a meta-analysis including NICE-SUGAR study data. CMAJ.2009,180(8):821-827.
    [11]Bilotta F, Caramia R, Paoloni FP, et al. Safety and efficacy of intensive insulin therapy in critical neurosurgical patients. Anesthesiology.2009,110(3):611-619.
    [12]Shen CA, Chai JK, Yao YM, et al. Effect of insulin intensive treatment on hyperproteolysis of skeletal muscle in scalded rabbit with sepsis. Chin Crit Care Med.2006,18(3):139-142.
    [13]Jeschke MG, Einspanier R, Klein D, et al. Insulin attenuates the systemic inflammatory response to thermal trauma. Mol Med.2002,8(8):443-450.
    [14]Van den Berghe G. Insulin therapy for the critically ill patient. Clin Cornerstone. 2003,5(2):56-63.
    [15]Jeschke MG, Klein D, Herndon DN. Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg.2004,239(4):553-560.
    [16]Jeschke MG, Klein D, Bolder U, et al. Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology.2004,145(9):4084-4093.
    [17]Van den Berghe GH. Role of intravenous insulin therapy in critically ill patients. Endocrinol Pract.2004,10(Suppl2):17-20.
    [18]Jeschke MG, Rensing H, Klein D, et al. Insulin prevents liver damage and preserves liver function in lipopolysaccharide-induced endotoxemic rats. J Hepatol.2005, 42(6):870-879.
    [19]Pidcoke HF, Wade CE, Wolf SE. Insulin and the burned patient. Crit Care Med. 2007,35(9 Suppl):S524-530.
    [20]Sakurai Y, Aarsland A, Herndon DN, et al. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients Ann Surg.1995,222(3): 283-297.
    [21]Coppack SW, Jensen MD, Miles JM. In vivo regulation of lipolysis in humans. J Lipid Res.1994,35(2):177-193.
    [22]Calder PC, Dimitriadis G, Newsholme P. Glucose metabolism in lymphoid and inflammatory cells and tissues. Curr Opin Clin Nutr Metab Care.2007,10(4): 531-540.
    [23]Esper RJ, Vilarino JO, Machado RA, et al. Endothelial dysfunction in normal and abnormal glucose metabolism. Adv Cardiol.2008,45:17-43.
    [24]Schetz M, Vanhorebeek I, Wouters PJ, et al. Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol.2008,19(3):571-578.
    [25]Ellger B, Debaveye Y, Vanhorebeek I, et al. Survival Benefits of Intensive Insulin Therapy in Critical Illness:impact of maintaining normoglycemia versus glycemia-independent actions of insulin. Diabetes.2006,55(4):1096-1105.
    [26]Mesotten D, Swinnen JV, Vanderhoydonc F, et al. Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endo & Metab.2004,89:219-226.
    [27]Krogh-Madsen R, Moller K, Dela F, et al. Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Anesthesiology.2004,100:861-870.
    [28]Brix-Christensen V, Andersen SK, Andersen R, et al. Acute hyperinsulinemia restrains endotoxin-induced systemic inflammatory response. Anesthesiology.2004, 100:861-870.
    [29]Finnerty CC, Herndon DN, Przkora R, et al. Cytokine expression profile over time in severely burned pediatric patients. Shock.2006,26(1):13-19.
    [30]Wang YC, Gao F, Jia CY, Zhang WF, Tang CW, Hu DH. Regulating efects of diferent doses of insulin on serum IL-113 and IL-10 in early stage in severely scalded rats. J Fourth Mil Med Univ.2006,27(22):2043-2046.
    [31]Hansen TK, Thiel S, Wouters PJ, et al. Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab.2003,88(3): 1082-1088.
    [32]Takebayashi K, Aso Y, Inukai T. Initiation of insulin therapy reduces serum concentrations of high-sensitivity C-reactive protein in patients with type 2 diabetes. Metabolism.2004,53(6):693-699.
    [33]Zhao XD, Yao YM, Ma JX, et al. Effects of intensive insulin therapy on serum immunoglobulin, complement levels and phagocytosis of monocytes in patients with severe trauma. Chin Crit Care Med.2007,19(5):279-282.
    [34]Hartell NA, Archer HE, Bailey CJ. Insulin-stimulated endothelial nitric oxide release is calcium independent and mediated via protein kinase B. Biochem Pharmacol. 2005,69(5):781-790.
    [35]Zhao XD, Meng HD, Yao YM, et al. Effect of intensive insulin therapy on serum proinflammatory cytokine levels in patients with severe trauma. Chin Crit Care Med. 2005,17(7):406-408.
    [36]Wang Y, Xu GG, Wu JH, et al. Effect of intensive insulin therapy on serum proinflammatory cytokine levels in patients with systemic inflammatory response syndrome. Clinical education of general practice.2007,5(1):36-38.
    [37]Zhao XD, Liu B, Yao YM, et al. Effects of intensive insulin therapy at the early stage on IFN-y and IL-18 in serum for severe trauma patients. Chin J Crit Care Med.2007,27(1):1-3.
    [38]Wang ZK, Xu LS, Wang SL, et al. Influence of glucose-insulin-potassium on the levels of inflammatory cytokines and prognosis of MODS in the scalded rats. Chin J Burns.2005,21(6):422-425.
    [39]Luo ZZ, Peng SL, Lu GF. Effect of intensive insulin therapy on prognosis and serum inflammatory cytokine levels in patients with sepsis. Med J West China.2007,19(3): 392-394.
    [40]Klein D, Schubert T, Horch RE, et al. Insulin treatment improves hepatic morphology and function through modulation of hepatic signals after severe trauma. Ann Surg.2004,240(2):340-349.
    [41]Jeschke MG, Boehning DF, Finnerty CC, et al. Effect of insulin on the inflammatory and acute phase response after burn injury. Crit Care Med.2007,35(9 Suppl): S519-523.
    [42]Weekers F, Giulietti AP, Michalaki M, et al. Metabolic, endocrine, and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. Endocrinology.2003,144(12):5329-5338.
    [43]Langouche L, Vanhorebeek I, Vlasselaers D, et al. Intensive isullin therapy protects the endothelium of critically ill patients. J Clin Invest.2005,115:2277-2285.
    [44]Aljada A, Saadeh R, Assian E, et al. Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab.2000,85(7):2572-2575.
    [45]Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin:a new paradigm. Diabetologia.2002,45(6): 924-930.
    [46]Froon AHM, Bemetmans MHA, Greve JW. Increasd plasma concentrations of STNFRs in sepsis syndrome correlation with plasma creatinine values. Crit Care Med.1994.22:803-809.
    [47]Magnotti LJ, Deitch EA. Burns, bacterial translocation, gut barrier function, and failure. J Burn Care Rehabil.2005,26:383-391.
    [48]Saadia R, Schein M, MacFarlane C, et al. Gut barrier function and the surgeon. Br J Surg.1990,77:487-492.
    [49]Wang X, Wang B, Wu J, et al. Beneficial effects of growth hormone onbacterial translocation during the course of acute necrotizing pancreatitis in rats. Pancreas. 2001,23:148-156.
    [50]Scopa CD, Koureleas S, Tsamandas AC, et al. Beneficial effects of growth hormone and insulin-like growth factor I on intestinal bacterial translocation, endotoxemia, and apoptosis in experimentally jaundiced rats. J Am Coll Surg.2000,190:423-431.
    [51]Ortega M, Gomez-de-Segura IA, Vazquez I, et al. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines. Acta Oncol.2001, 40:615-621.
    [52]Kouris GJ, Liu Q, Rossi H, et al. The effect of glucagon-like peptide 2 on intestinal permeability and bacterial translocation in acute necrotizing pancreatitis. Am J Surg. 2001,181:571-575.
    [53]Huang KF, Chung DH, Herndon DN. Insulinlike growth factor 1 (IGF-1) reduces gut atrophy and bacterial translocation after severe burn injury. Arch Surg.1993,128: 47-53, discussion 53-54.
    [54]Yadavalli GK, Auletta JJ, Gould MP, et al. Deactivation of the innate cellular response following endotoxic and surgical injury. Exp Mol Pathol.2001,71(3): 209-221.
    [55]Iida KT, Suzuki H, Sone H, et al. Insulin inhibits apoptosis of macrophage cell line, THP-1 cells, via phosphatidylinositol-3-kinase-dependent pathway. Arterioscler Thromb Vasc Biol.2002,22(3):380-386.
    [56]Leffler M, Hrach T, Stuerzl M, et al. Insulin Attenuates Apoptosis and exerts anti-inflammatory effects in endotoxemic human macrophages. J Surg Res.2007, 143(2):398-406.
    [57]Hermann C, Assmus B, Urbich C, et al. Insulin-mediated stimulation of protein kinase Akt:A potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol.2000,20(2):402-409.
    [58]Conejo R, Lorenzo M. Insulin signaling leading to proliferation, survival, and membrane ruffling in C2C12 myoblasts. J Cell Physiol.2001(1),187:96-108.
    [59]Liu JJ, Hu S, Dong N, et al. Changes in the percentage of human leukocyte antigen DR in CD(+)(14) monocytes in burned patients. Chin Crit Care Med.2003,15(1): 23-25.
    [60]Yang HM, Yu Y, Chai JK, et al. Low HLA-DR expression on CD14(+) monocytes of burn victims with sepsis, and the effect of carbachol in vitro. Burns.2008,34(8): 1158-1162.
    [61]Zhao XD, Meng HP, Liang HP, et al. Influence of intensive insulin therapy on rate of CD14+and expression of CD14+monocyte human leukocyte antigen DR in severe trauma patients. Chin J Crit Care Med.2006,26(17):481-484.
    [62]Yoshida S. Monocyte HLA-DR expression as predictors of clinical outcome for patients with sepsis. Nippon Rinsho.2004,62 (12):2281-2284.
    [63]Yang HM, Yu Y, Chai JK, et al. Study on the relationship between the human leucocyte antigen-DR expression on CD14+monocytes and sepsis. Zhonghua Shao Shang Za Zhi.2007,23(4):272-275.
    [64]Yu WK, Li WQ, Wang XD, et al. Influence and mechanism of a tight control of blood glucose by intensive insulin therapy on human sepsis. Chin J Surg.2005, 43(1):29-32.
    [65]Yu WK, Li WQ, Li N, et al. Efects of insulin on monocytic cvtokines production and expression of HLA-DR in human sepsis. Chin J Gen Surg.2006,21(3):218-220.
    [66]Esmann V. The polymorphonuclear leukocyte in diabetes mellitus. J Clin Chem Clin Biochem.1983,21(9):561-567.
    [67]Walrand S, Guillet C, Bo irie Y, et al. In vivo evidences that insulin regulates human polymorphonuclear neutrophil functions. J Leukoc Biol.2004,76(6):1104-1110.
    [68]Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature.1996,383(6603):787-793.
    [69]Dong N, Yao YM, Cao YJ, et al. The clinical significance of changes in immunological function of T lymphocyte in severe burn patients with sepsis. Chin J Burns.2007,23(2):84-88.
    [70]Miller AC, Rashid RM, Elamin EM. The "T" in trauma:the helper T-cell response and the role of immunomodulation in trauma and burn patients. J Trauma.2007, 63(6):1407-1417.
    [71]Viardot A, Grey ST, Mackay F, et al. Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology.2007,148(1):346-353.
    [72]Stentz FB, Kitabchi AE. De novo emergence of growth factor receptors in activated human CD4+and CD8+T lymphocytes. Metabolism.2004,53(1):117-122.
    [73]Koffler M, Raskin P, Womble D, et al. Immunobiological consequence of regulation of insulin receptor on alloactivated lymphocytes innormal and obese subjects. Diabetes.1991,40(3):364-370.
    [74]Desbois-Mouthon C, Blivet-Van Eggelpoel MJ, Auclair M, et al. Insulin differentially regulates SAPKs/JNKs and ERKs in CHO cells overexpressing human insulin receptors. Biochem Biophys Res Commun.1998,243(3):765-70.
    [75]Huang H, Paul WE. Impaired interleukin 4 signaling in T helper type 1 cells. J Exp Med.1998,187(8):1305-1313.
    [76]Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700