用户名: 密码: 验证码:
近似模型优化体系关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于近似模型的优化方法是求解大规模非线性问题最有希望的方法之一,鉴于其高效性,广泛应用于工程优化领域。如果能够高效建立可靠的近似模型,很多大规模工程问题便可以迎刃而解。近年来,随着研究的深入,研究对象的规模和复杂度也日益增强。目前该领域的研究现状是:对于大规模非线性问题的求解,
     近似模型技术还缺乏有效的手段。因此,虽然目前基于近似模型技术的优化领域非常活跃,基于近似模型技术的优化方法也多种多样,但对于高维非线性的实际工程优化问题,目前的近似模型技术还缺乏快速构建最大限度反映研究对象的特性模型的手段,这也是近似模型技术研究领域面临的最大瓶颈,阻碍了该技术在工业领域的应用和发展。
     近似模型优化技术由三个基本阶段构成:实验设计,近似模型构建,基于近似模型的优化。鉴于工程问题的复杂性和多样性,建立一种通用的近似模型构造体系是非常困难的。因此,目前基于近似模型技术的优化方法都具有一定的针对性,当涉及到不同类型的具体工程优化问题,需要根据问题的特殊性,合理构建可行的优化策略。为此,本文将车辆工程优化设计的难点金属板料成形和车辆耐撞性作为主要实际工程应用研究。以近似模型的精度和效率作为算法的主要评价标准,对近似模型的实验设计和构建这两个方面进行了理论研究。本论文的主要创新点包括以下几个方面:
     (一)智能实验设计方法
     针对目前“离线”实验设计方法的技术瓶颈,建立了两种“在线”实验设计方法。这类布点方法不仅仅是单纯的实验设计方法,实质上也是一个优化过程,通过近似模型的精度和优化结果确定布点的方向,即将布点过程自动化和智能化。其中粒子群智能布点方法是基于粒子群优化理论建立的一种智能布点方法,将修正后的粒子群优化技术用于新样本的定位;而基于边界条件和最优邻域的智能布点方法则是根据初始样本的边界信息以及设计空间中当前样本的邻域内最优样本生成新样本。为了克服初始设计空间的主观因素,建立了相应的设计空间更新和判断机制,使其能够更为客观地确定新样本的位置。此外,为了提高布点效率,提出了并行智能布点方法,通过对初始样本点数目的扩展,达到提高精度,加快速度的目的。随后,将以上研发的算法同主流实验方法进行了性能比较,通过对多维非线性函数的测试来确认算法的可行性。测试数据表明:智能实验设计方法能够控制更新样本空间,优化样本质量,进而提高后续近似模型的精度和构建效率。
     (二)基于概率的最小二乘支持向量回归
     主流近似模型技术多数建立在经验风险最小化准则之上,但经验风险最小并不一定意味着期望风险最小。这类近似模型技术的瓶颈是:试图用十分复杂的模型去拟合有限的样本,导致丧失了推广能力,难以反映研究目标的实质和特性。为此,本文以泛化性能出色的基于统计学习理论的支持向量机技术构造近似模型,建立基于概率的最小二乘支持向量回归算法,通过权系数对误差带的控制实现对模型精度的控制。实质上是通过赋予异常样本较小的加权系数,将噪声样本对模型的性能的影响减少到最小的策略,算法的稳健性取决于建模过程中对异常样本的检测和剔除效果。通过基于最小二乘支持向量机回归方法和基于概率的最小二乘支持向量机回归方法对非线性函数的拟合测试,两种方法的性能都有显著地提高,能够克服噪声对函数精度的影响。因此,基于概率的最小二乘支持向量机回归方法是一种可行的近似模型设计方法。
     (三)基于响应函数的空间映射技术
     作为自成体系的一个优化流派,空间映射技术近年来发展迅猛。空间映射技术的最大瓶颈在于其参数提取技术,即如何确定精细模型的初始解在粗糙空间中对应解。通过对主流的空间映射方法的分析和验证,其关系具有较强的随机性,进而导致优化结果的不准确、甚至不收敛。针对这一问题,本文提出了基于响应函数的空间映射技术,同传统的空间映射相比,其最大特点是建立响应函数间的空间映射,并通过反求算法获得最优设计参数。因此,避免了易造成误差和难以收敛的根本因素——参数提取过程,使空间映射方法更为直接。通过对非线性函数的测试结果表明,本文提出的空间映射技术的精度和收敛性均有大幅度提高。
     (四)基于近似模型技术的优化方法在金属板料成形中的应用
     金属板料成形过程是一种包括几何非线性,材料非线性,边界条件非线性,且变形机制非常复杂的高度非线性问题。利用提出的智能布点方法、近似模型构造技术以及基于响应的空间映射算法,建立了高效精确的板料成形近似模型优化体系,用以提高对板料成形过程的控制能力、板料成形性的优化精度、生产效率及缩短产品开发周期等方面均具有显著的优越性,有积极的现实意义。
     (五)基于时序的近似模型构造体系及其在车辆耐撞性优化中的应用
     基于时序问题的近似模型技术充分考虑时间和空间因素,将设计空间进行拓展,在考虑样本历史信息的前提下构建时空两重性的近似模型。该技术的最大特点在于可控性,通过对设计变量的修正,进而完成研究对象在敏感时间域内的控制,是一种针对过程的可控优化技术。研究目标主要是与时序相关的物理过程,而汽车CAE设计中的车辆耐撞性研究则是非常典型的问题,为此,本章将其应用于该问题的优化,得到了令人满意的结果。
Metamodel-based optimization is one of the most popular and hopeful methods which can solve large scale engineering problems. According to its efficiency, the metamodel-based optimization method is widely applied for engineering optimization problems. Many large scale engineering problems can be done well if the metamodel-based optimization runs efficiently and stable. With the development of in-depth research, the scale and complexity of engineering problems are increasingly improved correspondingly. Although several kinds of metamodeling techniques have been approached, it is still difficult to solve practical engineering problems by current developed metamodeling technologies, especially for large-scale nonlinear problems. The major bottleneck of current developed metamodeling techniques is that how to construct accurate metamodel efficiently and how to balance the relationship between the accuracy and efficiency.
     The metamodel-based optimization frame is composed of three phases: design of experiment (DOE), construction of metamodel and optimization. Due to the complexity and variety of practical engineering problems, it is impossible to develop a general metamodel method. Therefore, existing metamodeling techniques commonly possess special characteristics for different kinds of engineering problems. According to features of an engineering problem, the feasible way is to propose a type-specific strategy.
     According to the metamodel-based optimization, the key factors are the accuracy and efficiency of metamodels. As long as a reliable and accurate metamodel is constructed, the corresponding optimum solution should be easy to achieve. Thus, the emphases of this thesis are DOE, metamodeling technique and time-based metamodeling strategy.
     The major innovative suggestions are summarized as follows Intelligent DOE
     According to the technique of the popular off-line design of experiment, two on-line DOE are suggested. The on-line sampling strategies are not purely DOEs based on statistical theories; these kinds of strategies are learning procedure essentially. The on-line sampling strategies use responses derived from evaluations to generate new samples automatically. Thus, this kind of online sampling strategy is so-called intelligent DOE. One intelligent DOE is particle swarm optimization (PSO)-based intelligent sampling strategy (PSOIS). This scheme is based on the modified PSO method; the other one is to use the boundary and best neighbor samples to generate new samples and so called BBNS (Boundary and best neighbor sampling) strategy. The BBNS cannot only generate new samples automatically but also correct the initial boundary constraints according to responses of evaluations. Furthermore, in order to improve the efficiency of the proposed intelligent sampling strategies, the parallel intelligent sampling strategy is also built. To assess the performance of the proposed strategies, comparisons between the proposed strategies and popular off-line methods are performed. The test results demonstrate that the proposed intelligent sampling strategies can control the initial design space and optimize the quality of the sample, such that the accuracy of the follow-up metamodel should be evaluated accordingly.
     Probability-based least square support regression technique
     In this study, a least square support vector regression-based (LS-SVR) metamodeling technique is proposed. Compared with widely used metamodeling techniques, such as Kriging, RBF, etc., the notable difference of the LS-SVR is to construct metamodel by considering the empirical risk minimization (ERM) and structure risk minimization (SRM). It means that the ERM-based metamodeling techniques try to use a complex model to approximate finite samples and the robustness property of metamodel might be lost. In order to overcome this defect, a probability-based LS-SVR (PLS-SVR) metamodeling is implemented. The advantage of the suggested method is to use probability-based weight function to filter noise and outliers. Therefore, the PLS-SVR can obtain more robust estimates for regression compared with the LS-SVR. According to the results of benchmark tests, the PLS-SVR is shown to be promising for highly nonlinear problems. However, the proposed scheme might lead to long computational time due to neural network (NN)-based training procedure. To improve the efficiency and accuracy of the optimization and make the suggested approach feasible in practice, the proposed intelligent sampling strategy is integrated to generate training samples in PLS-SVR.
     Response-based space mapping method
     Space mapping (SM)-based optimization is a self-contained method and developed rapidly recently. Severe differences between the coarse and fine models and non-uniqueness of the parameter extraction procedure may cause the space mapping algorithm to be trapped in local minima and time consuming. According to this bottleneck, response-based space mapping (RBSM) method is proposed in this study. The distinctive feature of the RBSM is to construct space projection of response space instead of design space. A high dimensional problem can be transferred to lower dimensional problem and the parameter extraction procedure is also avoided. Thus, the RBSM is easy to converge compared with popular SM methods. Additionally, to improve the efficiency of the proposed algorithm, the intelligent sampling is also integrated. The mathematical nonlinear test function demonstrates that the convergence and accuracy of the proposed algorithm are easy to achieve. Application of the proposed metamodeling techniques to sheet forming optimization
     Deformation mechanism of sheet forming procedure is very complicated, which contains geometry, contact, and material nonlinearity. In this study, the proposed intelligent DOE methods, metamodeling techniques and RBSM strategies are integrated to build a sheet forming optimization system. To verify the feasibility of proposed system, the proposed system is applied to optimize the real-world engineering problems. Compared with other popular metamodeling techniques, such as Kriging, RBF, sequential 2nd PR, the efficiency and accuracy of the built system are well improved.
     Time-based metamodeling technique
     A time-based metamodeling technique is suggested for vehicle crashworthiness design. The characteristics of the proposed method are the construction of a time-based objective function and the establishment of a metamodel by the PLS-SVR. Compared with other popular metamodel-based optimization methods, the design space of time-based strategy is extended to time space. Therefore, more time features and information can be extracted by considering time-dependent effect. Because the objective function is based on the time history, the design variables is more convenient to control the objective function in entire simulation procedure and the optimization result is also more useful and feasible in practice. To validate performance of the suggested method, cylinder impacting and full vehicle frontal collision are optimized by the time-based strategy. The results demonstrate the capability and potential of this approach in solving the crashworthiness design of vehicles.
引文
[1] Myers R, Montgomery D, Response surface methodology. New York: John Wiley, 1995.
    [2] Chen W, A Robust Concept exploration method for configuring complex system, [Ph.D. Dissertation Thesis]. Atlanta, GA:Mechanical Engineering, Georgia Institute of Technology, 1995.
    [3] Mitchell T J, An algorithm for the construction of "D-Optimal" experimental designs. Technometrics, 1974,16(2): 203-210.
    [4] Giunta A A, Balabanov V, HaimD, Grossman B, Mason W. H, Watson L T, Haftka R T, Multidisciplinary optimization of a supersonic transport using design of experiments theory and response surface modeling. Aeronautical Journal, 1997,101(1008):347-356.
    [5] Sacks J, Welch W J, Mitchell T J, Wynn H P, Design and analysis of computer experiments. Statistical Science, 1989,4(4): 409-435.
    [6] Jin R, Chen W, Simpson T W, Comparative studies of metamodeling techniques under multiple modeling criteria. Structural and Multidisciplinary Optimization, 2001,23(1):1-13.
    [7] Koehler J R, Owen A, Computer experiments. In: Ghosh, S. and Rao, C. R. (Editors), New York: Handbook of Statistics, Elsevier Science,261-308,1996.
    [8] Currin C, Mitchell, T J, Morris M D, Ylvisaker D, Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. Journal of American Statistical Association, 1991,86(416):953-963.
    [9] Johnson M E, Moore L M, Ylvisaker D, Minimax and maximin distance designs. Journal of Statistical Planning and Inferences, 1990,26(2),131-148.
    [10] Taguchi G, Yokoyama Y, Wu Y, Taguchi methods: design of experiments. American Supplier Institute: Allen Park, Michigan, 1993.
    [11] Owen A, Orthogonal arrays for computer experiments, integration, and visualization. Statistica Sinica, 1992,2:439-452.
    [12] Hedayat A S, Sloane N J A, Stufken J, Orthogonal arrays: theory and applications. New York: Springer, 1999.
    [13] McKay M D, Bechman R J, Conover W J. A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21(2):239-245.
    [14] Iman R. L, Conover W J. Small sensitivity analysis techniques for computer nodels with an application to risk assessment. Communication Statistics - Theory and Methods, 1980, A9 (17):1749-1842.
    [15] Tang, B, Orthogonal Array-based Latin hypercubes. Journal of American Statistical Association, 1993, 88(424):1392-1397.
    [16] Park J S, Optimal Latin-hypercube designs for computer experiments. Journal of Statistical Planning Inference, 1994, 39:95-111.
    [17] Ye K Q, Li W, Sudjianto A, Algorithmic construction of optimal symmetric Latin hypercube designs. Journal of Statistical Planning and Inferences, 2000, 90:145-159.
    [18] Kalagnanam J R, Diwekar U M, An efficient sampling technique for off-Line Quality Control. Technometrics, 1997,39(3):308-319.
    [19] Fang K T, Lin D K J, Winker P, Zhang Y. Uniform design: theory and application, Technometrics, 2000,39(3):237-248.
    [20] Chen, V., C. P., Tsui, K.-L., Barton, R. R., Meckesheimer, M., A review on design, modeling and applications of computer experiments, IIE Transactions, 2006,38:273-291.
    [21] Kalagnanam J R, Diwekar, U M. An efficient sampling technique for off-line quality Control. Technometrics, 1997,39(3):308–319.
    [22] Chen W, Allen J K, Schrage D P, Mistree F. Statistical experimentation methods for achieving affordable concurrent systems design. AIAA Journal, 1997, 35(5):893–900.
    [23] Inci Batmaz a, Semra Tunali. Small response surface designs for metamodel estimation. European Journal of Operational Research 2003, 145:455–470.
    [24] Wujek B A, Renaud J E. New adaptive move-limit management strategy for approximate optimization. Part 1. AIAA Journal, 1998,36(10):1911–1921.
    [25] Alexandrov N, Dennis J E Jr, Lewis R M, Torczon V. A trust region framework for managing the use of approximation models in optimization. Structural Optimization, 1998, 15 (1): 16–23.
    [26] P′erez V M, Renaud J E, Watson L T. Adaptive experimental design for construction of response surface approximations. AIAA Journal, 2002,40(12):2495–2503.
    [27] G. Gary Wang, Timothyw. Simpson. Fuzzy clustering based hierarchical metamodeling for design space reduction and optimization. Engineering Optimization. 2004, 36(3):313-335.
    [28] Wang G. Adaptive Response surface method using inherited Latin hypercube design points. Transactions of the ASME, Journal of Mechanical Design, 2003, 125:210-220.
    [29] Wang G., Shan S. Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 2007,129:370-379.
    [30] Wang L, Shan S, Wang G G. Mode-pursuing sampling method for global optimization on expensive black-box functions. Journal of Engineering Optimization, 2004,36(4):419-438.
    [31] Shan Songqing, Wang G. G. An efficient pareto set identification approach for multiobjective optimization on black-box functions. Journal of Mechanical Design, 2005,127(5):886-895.
    [32] Sacks J, Welch W J. Designs for computer experiments. Technometrics, 1989, 31(1):41-47.
    [33] Cresssie N. Spatial prediction and ordinary Kriging. Mathematical Geology, 1988, 20(4):405-421.35.
    [34] Papadrakakis M, Lagaros M, Tsompanakis Y. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering, 1998,156(1-4):309-333.
    [35] Dyn N, Levin D, Rippa S, Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM Journal of Scientific and Statistical Computing, 1986,7(2):639-659.
    [36] Fang H, Horstemeyer M F. Global response approximation with radial basis functions. Journal of Engineering Optimization, 2006,38(4):407-424.
    [37] Friedman, J. H., Multivariate adaptive regressive splines, The Annals of Statistics, 1991, 19(1):1-67.
    [38] De Boor C, Ron A, On multivariate polynomial interpolation. Constructive approximation, 1990, 6:287-302.
    [39] Langley P, Simon H A, Applications of machine learning and rule induction. Communications of the ACM, 1995, 38(11):55-64.
    [40] Varadarajan S, Chen W, Pelka C J, Robust concept exploration of propulsion systems with enhanced model approximation capabilities. Engineering Optimization, 2000, 32(3), 309-334.
    [41] Chiles J P, Delfiner P. geostatistics, modeling spatial uncertainty, Wiley Series in Probability and statistics, 1999.
    [42] Journel A G, Nonparametric estimation of spatial distributions. Mathematical Geology. 1983,15(3):445-468.
    [43] Carle S F, Fogg G E. Mapping by simple indicator Kriging. Mathematical Geology, 1986, 18(3):335-352.
    [44] Matheron G, A simple substitute for conditional expectation: the disjunctive kriging. In: Advanced Geostatistics in the Mining Industry. Reidel Publishing Company, 1976, 221-36.
    [45] Armstrong M, Matheron G, Disjunctive Kriging revisited: Part I. 1986,18(8):711-728.
    [46] Armstrong M, Matheron G, Disjunctive Kriging revisited: Part II. 1986,18(8): 729-742.
    [47] Rivoirard J, Amstrong M. Introduction to disjunctive Kriging and non-linear Geostatistics. Oxford: Clarendon Press, 1994.
    [48] Goovaerts P, Ordinary cokriging revisited. Mathematical Geology, 1986, 30(1):21-42.
    [49] Sullivan J, Conditional recovery estimation through probability Kriging. theory and practice. Verly, G. (Ed) Proceedings of 2nd Geostatistical Congress, California, NATO ASI series, Reidel, Dordrecht (Holland), 1984,365-384.
    [50] Verly G, The Block Distribution given a Point multivariate normal distribution. Verly, G. (Ed) proceedings of 2nd geostatistical congress, California, NATO ASI series, Reidel, Dordrecht (Holland), 1985, 495-515.
    [51] Verly G, Sullivan J, Multigaussian and probability kriging-application to the Jerritt Canyon deposit. Mining Engineering, 1985, 568-574.
    [52] Vapnik V. The nature of statistical learning theory. New York, NY: Springer-Verlag, 1995.
    [53] David Meyer, Friedrich Leisch, Kurt Hornik. The Support Vector Machine under Test, Neurocomputing, 2003, 55(1-2):169-186.
    [54] Boser B E, Guyon I M, Vapnik V N, A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, Pittsburgh, PA, ACM Press, 1992: 144-152.
    [55] Drucker Harris, Burges Chris J C, Kaufman Linda, Smola Alex. Vapnik Vladimir, Support vector regression machines. Advances in Neural Information Processing Systems 9, NIPS MIT Press, 1996, 155-161.
    [56] Ferris M, Munson T, Interior-point methods for massive support vector machines. SIAM Journal on Optimization 2002; 13:783–804.
    [57] Christopher J C, Burges A. Tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998,2:121–167,
    [58] Stella M, Clarke Jan H, Griebsch Timothy W Simpson. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design, 2005, 127(6):1077-1087.
    [59] Prakasvudhisarn C, Trafalis T B, Raman S, Support vector regression for determination of minimum zone. ASME J. Manuf. Sci. Eng., 2003, 125(4):736–739.
    [60] Malyscheff A M, Trafalis T B, Raman S. From support vector machine learning to the determination of the minimum enclosing zone. Computers and Industrial Engrg, 2002,42:59–74.
    [61] Meckesheimer M, Booker A J, Barton R R, Simpson T W, Computationally inexpensive metamodel assessment strategies, AIAA Journal, 2002;40(10):2053-2060.
    [62] Meckesheimer M. A framework for metamodel-based design: subsystem metamodel assessment and implementation issues. [Ph. D. Dissertation Thesis], Industrial Engineering, The Pennsylvania State University, University Park, 2001.
    [63] Kohavi R/ A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995, 2(12):1137-1143.
    [64] Chang J, Luo Y, Su K. GPSM: a generalized probabilistic semantic model for ambiguity resolution. In Proceedings of the 30th Annual Meeting on Association for Computational Linguistics. Annual Meeting of the ACL. Association for Computational Linguistics, Morristown, NJ, 177-184, 1982.
    [65] Devijver P A, J Kittler, Pattern recognition: a statistical approach. London: Prentice-Hall, 1982.
    [66] Tikhonov A N, Arsenin V A. Solution of Ill-posed Problems. Washington: Winston & Sons, 1977.
    [67] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing. Science. New Series, 1983, 220(4598):671-680.
    [68] Holland John H, Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975.
    [69] Holland J H. Adaptation in natural and artificial systems, Cambridge:MIT Press, 1992.
    [70] Whitley D, A genetic algorithm tutorial. Statistics and Computing, 1994;,4:65–85.
    [71] Ackley D H. Stochastic iterated genetic hill climbing. [Ph.D. dissertation], Dept. Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, 1987.
    [72] Seront G, Bersini H.Simplex GA and hybrid methods. Evolutionary Computation, 1996, Proceedings of IEEE International Conference on Publication Date: 20-22 May 1996, 845-848.
    [73] Kjellstr?m G.On the Efficiency of Gaussian Adaptation.Journal of Optimization Theory and Applications, 1991,71(3): 589–597.
    [74] Falkenauer Emanuel. Genetic Algorithms and Grouping Problems. Chichester, England: John Wiley & Sons Ltd., 1997.
    [75] Wright A H, Implicit parallelism. Proceedings of the Genetic and Evolutionary Computation Conference. 2003.
    [76] Syswerda G. Uniform crossover in genetic algorithms. J. D. Schaffer Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann. 1989
    [77] Fogel D B. Evolutionary computation: towards a new philosophy of Machine Intelligence. New York: IEEE Press. pp. 140, 2000.
    [78] Hill T, Lundgren A, Fredriksson R, Schi?th H B. Genetic algorithm for large-scale maximum parsimony phylogenetic analysis of proteins. Biochimica et Biophysica Acta, 2005,1725:19–29.
    [79] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan. 1995,39-43.
    [80] KennedyJ, Eberhart R C, Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. 1995, 1942-1948
    [81] Eberhart, R C, Simpson, P K, Dobbins R W. Computational Intelligence PC tools. 1st ed. ed. Boston, MA: Academic press professional, 1996.
    [82] Jenigiri S. Comparative study of efficiency of genetic algorithms and particle swarm optimization technique to solve permutation problems. Cybernetics and Systems archive, 2009,40(6):490-507.
    [83] Kennedy J. Minds and cultures: particle swarm implications. Socially Intelligent Agents: Papers from the 1997 AAAI Fall Symposium, Menlo Park, CA.1997,67-72.
    [84] Kennedy J. The particle swarm: social adaptation of knowledge. Proceedings of IEEE International Conference on Evolutionary Computation, Indianapolis, IN. 1997, 303-308.
    [85] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics 1997, Piscataway, NJ. 1997, 4104-4109.
    [86] Salerno J. Using the particle swarm optimization technique to train a recurrent neural model. IEEE International Conference on Tools with Artificial Intelligence, 1997:45-49.
    [87] Eberhart R C, Hu X, Human tremor analysis using particle swarm optimization. Proceedings of the IEEE Congress on evolutionary computation (CEC 1999), Washington D.C., 1999, 1927-1930.
    [88] Fan H Y. A modification to particle swarm optimization algorithm, Engineering Computations, 2002, 19(7-8):970-989.
    [89] Fourie P C, Groenwold A A, The particle swarm optimization algorithm in size and shape optimization. Structural and Multidisciplinary Optimization, 2002, 23(4):259-267.
    [90] Parsopoulos K E, Vrahatis M N, Particle swarm optimizer in nonsmooth problems. Proceedings of the Nonsmooth/Nonconvex Mechanics with Applications in Engineering Conference, Thessaloniki, Greece. 2002.
    [91] Parsopoulos K E, Vrahatis M N, Initializing the particle swarm optimizer using the nonlinear simplex Method. In Grmela, A. and Mastorakis, N. E. (eds.) Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation WSEAS Press, 2002, 216-221.
    [92] Franken N, Engelbrecht A P. Comparing PSO structures to learn the game of checkers from zero knowledge. Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC 2003), Canbella, Australia. 2003, 234-241.
    [93] Gaing Z. L. Particle swarm optimization to solving the economic dispatch considering the generator constraints, IEEE Transactions on Power Systems, 2003,18(3):1187-1195.
    [94] Gies D, Rahmat-Samii Y. Particle swarm optimization for reconfigurable phase-differentiated array design, Microwave and Optical Technology Letters, 2003,38(3):168-175.
    [95] Marciniak Z, Duncan JL, SJ Hu. Mechanics of sheet metal forming, Butterworth-Heinemann, 2002.
    [96] Zhou D, Wagoner R H, Development and application of sheet forming simulation. Journal of Materials Processing Technology, 1995,50(124):1-16.
    [97] Ohata T, Nakamura Y, Katayama T, Development of optimum process design system by numerical simulation. Journal of Materials Processing Technology, 1996,60(124):543-548.
    [98] Hu W., Li G. Y., Zhong Z. H., Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method, J. Mater. Process. Tech., 2008; 197(1-3):77-88.
    [99] Barlet O, Batoz JL, Guo YQ, Mercier F, Naceur H, C. Knopf-Lenoir. The inverse approach and mathematical programming techniques for optimum design of sheet forming parts. In: Third Biennial European Joint Conference on Engineering Systems Design and Analysis, ESDA'96, July 1–4. Montpellier, France, 1996.
    [100] Delameziere A, Naceur H, Breitkopf P, Knopf-Lenoir C, Batoz J.L, Villon P. Feasibility in deep drawing: optimization of material properties using response surface. Mecanique & Industries 2002,3(2):93–8.
    [101] Guo Y Q, Batoz JL, Naceur H, Bouabdallah S, Mercier F, Barlet O. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach. Comput Struct 2000,78(1–3):133–48.
    [102] Naceur H, Guo YQ, Batoz JL, Bouabdallah S., Knopf-Lenoir C, Design of process parameters in deep drawing of thin sheets using the simplified Inverse Approach. Numisheet’99 (1), France, 1999. 517–522.
    [103] Gang Liu, Zhongqin Lin, Youxia Bao. Optimization design of drawbead in drawing tools of autobody cover panel. Journal of Engineering Materials and Technology, 2002,124(2):278-285.
    [104] Nakamura Y, Ohata T, Katayama T. Optimum die design for sheet metal forming process by using finite element and discretized optimization methods. Rotterdam, Netherlands: Simulation of Materials Processing: Theory, Methods and Application, 1998. 787-792.
    [105] Hoon Huh, Se-ho Kim. Optimum process design in sheet metal forming with finite element analysis, Proceedings of the ASME, 2000, 555-561.
    [106] Browne M T, Hillery M T. Optimizing the variables when deep drawing C.R.1 cups, Journal of Materials Processing Technology, 2003,136(123):64-71.
    [107] Ohata T, Nakamura Y, Katayama T, Development of optimum process design system for sheet fabrication using response surface method. Journal of Materials Processing Technology, 2003,(143-144):667-672.
    [108] Breitkopf Piotr, Naceur Hakim, Rassineux Alain. Moving least squares response surface approximation: Formulation and metal forming applications. Computers and Structures, 2005, 83 :( 17-18):1411-1428.
    [109]张峻,柯映林.基于动态序列响应面方法的钣金成形过程参数优化,中国机械工程, 2005,16(4):307-310.
    [110] Jakumeit J, Herdy M, Nitsche M, Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Structural and Multidisciplinary Optimization, 2005,29(6):498-507
    [111] Pietrosanti Costanzo, Luccioni Paolo, Amici Elisabetta, et al. Application of Robust Techniques to Sheet Metal Forming Process. Michigan, USA: Proceedings of the Third International Conference, NUMISHEET’96, 1996, 165-172.
    [112] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, San Diego, USA, 2000,84–88.
    [113] Clerc M, The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, 1999:1951–1957.
    [114] Clerc M., Think locally, act locally: The way of life of cheap-pso, an adaptive pso, Availablefrom , 2001.
    [115] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in amultidimensional complex space. IEEE Transactions on Evolutionary Computation,2000,6(1):58–73.
    [116] Van den Bergh F, Engelbrecht A P. A study of particle swarm optimization particle trajectories. Information Sciences, 2006,176:937–971.
    [117] Bandler J W, Biernacki R. M, Chen S H, Grobelny P A, Hemmers R H. Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech., 1994,4(12):536-544.
    [118] Bandler J W, Biernacki R M, Chen S H, Hemmers RH, Madsen K. Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microwave Theory Tech., 1995,43:2874-2882.
    [119] Bandler JW, Biernacki R M and Chen S H, Fully automated space mapping optimization of 3D structures. IEEE MTT-S Int. Microwave Symp. Dig. (San Francisco, CA), 1996, 753-756.
    [120] Bandler J W, Biernacki R.M., Chen S.H, Huang Y F. Design optimization of interdigital filters using aggressive space mapping and decomposition, IEEE Trans. Microwave Theory Tech., 1997,45:761-769.
    [121] Bandler J W, Biernacki R M, Chen S H, Omeragi? D. Space mapping optimization of waveguide filters using finite element and mode-matching electromagnetic simulators. IEEE MTT-S Int. Microwave Symp. Dig. (Denver, CO), 1997, 635-638.
    [122] Bakr M H, Bandler J W, Georgieva N. An aggressive approach to parameter extraction. IEEE Trans. Microwave Theory Tech., 1999, 47:2428-2439.
    [123] Bakr M H, Bandler J W, Biernack R M, Chen S H, Madsen K, A trust region aggressive space mapping algorithm for EM optimization. IEEE MTT-S Int. Microwave Symp. Dig. (Baltimore, MD), 1998, 1759-1762.
    [124] Bandler J W, Georgieva N, Ismail M A, Rayas-Sánchez J E, Zhang Q J. A generalized space mapping tableau approach to device modeling. Proc. 29th European Microwave Conf. (Munich, Germany), 1999,3:231-234.
    [125] Bakr M H, Bandler J W, Georgieva N., Madsen K. A hybrid aggressive space mapping algorithm for EM optimization. IEEE Trans. Microwave Theory Tech., 1999, 47:2440-2449.
    [126] Bandler J W, Bakr M H, Rayas-Sánchez J E. Accelerated optimization of mixed EM/circuit structures, Proc. Workshop on Advances in Mixed Electromagnetic Field and Circuit Simulation, IEEE MTT-S Int. Microwave Symp. (Anaheim, CA), 1999.
    [127] Bakr M H, Bandler J W, Georgieva N. Modeling of microwave circuits exploiting space derivative mapping. IEEE MTT-S Int. Microwave Symp. Dig. (Anaheim, CA), 1999, 715-718.
    [128] Bandler J W, Georgieva N, Ismail M.A, Rayas-Sánchez J E, Zhang Q. J. A generalized space mapping tableau approach to device modeling. Proc. 29th European Microwave Conf. (Munich, Germany), 1999,3:231-234.
    [129] Bandler J W, Ismail M A, Rayas-Sánchez J E, Zhang Q J, Neuromodeling of microwave circuits exploiting space mapping technology. IEEE MTT-S Int. Microwave Symp. Dig. (Anaheim, CA), 1999, 149-152.
    [130] Bandler J W, Ismail M A, Rayas-Sánchez J E, Zhang Q J. Neuromodeling of microwave circuits exploiting space mapping technology. IEEE Trans. Microwave Theory Tech., 1999,47:2417-2427.
    [131] Bandler J W, Cheng Q S, Dakroury S A, Mohamed A S, Bakr M.H, Madsen K, Sondergaard J. Space mapping: the state of the art, Microwave Theory and Techniques. IEEE Transactions, 2004, 52(1): 337– 361.
    [132] Vapnik V N. Statistical Leaming Theory. New York: Wiley, 1998.
    [133] Filip Mulier. Vapnik-Chervonenkis (VC) Learning Theory and Its Applications [J].IEEE Trans.on Neural Networks.1999, 10(5).
    [134] Vapnik V N,张学工译.统计学习理论的本质.北京:清华大学出版社, 2000.
    [135] Vapnik V N.The Nature of Statistical Learning Theory.New York: Springer Verlag,1995.
    [136] Vapnik V N. An overview of Statistical Learning Theory.IEEE Trand Networks, 1999,10(5):988-999
    [137] Burges C J C.A tutorial on support vector machines for pattern recognition [J].Knowledge Discovery and Data Mining, 1998, 2(2):121-167.
    [138] Smola A.Regression estimation with support vector learning machines:[Master’s Thesis].Munich:Technology University of Mumchen,1996.Available http://www.first.gmd.de/~smola,2004-06-12.
    [139] Smola A, Schōlkopf B.A tutorial on support vector regression.NeuroCOLT,Rep.19,1998.Available
    [140] http://svm.first.gmd.de,2005-06-12.
    [141] Scholkopf B, Smola A J, Willianson R, et al. New support vector algorithms.Neuro COLT2 Technical Report Series, 1998. Available http://www.neurocolt.com.2005-06-12.
    [142] Scholkopf B, Sung K, Burges C,et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers.IEEE Transactions on Signal Processing,1997,45(11).
    [143] Scholkopf B A S, Williamson R C,et al.New support vector algorithms. Neural Computation, 2000; 12:1207-1245.
    [144] Suykens J A K, Vandewale J.Least squares support vector machine classifier.Neural Processing Letters, 1999;9(3):293-300.
    [145]张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习方法[J].计算机学报,2006,29(3):400-406.
    [146] Suykens J A K, Vandevale J.Recurrent least square support vector machines .IEEE Transactions on Circuits and Systems-I, 2000, 47(7):1109-1114.
    [147] De Brabanter J.LS-SVM Regression Modeling and its Applications:[Phd Disssertation].Belgium:Katholieke Universiteit Leuven,2004.http://homes.esat.kuleuven.be/~sistawww/cgi-bin/newsearch.pl?Topic=SVM,2005-06-20
    [148] J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations, Philos. Trans. Roy. Soc. London 1909; 83(559):69-70.
    [149] Barton R R. Metamodels for simulation input-output relations. In Swain, J.J. et al. (eds.) Proc. Winter Simulation Conf., pp. 289–299. IEEE: Arlington, VA, 1992.
    [150] Sacks J, Welch W J, Mitchell T J, Wynn H P. Design and analysis of computer experiments. Statistical Science, 1989, 4: 409–435.
    [151] Hardy R L. Multiquadratic equations of topography and other irregular surfaces. J. Geophys. Res. 1971, 76: 1905–1915.
    [152] Chiu S T. The effect of discretization error on bandwidth selection for kernel density estimation. Biometrika, 1991,78:436–441.
    [153] Hall P. Large sample optimality of least squares cross-validation in density estimation. Annals of Statistics, 1983,11:1156–1174.
    [154] Hall P, Marron J S. Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation. Probability Theory and Related Fields 1987,74:567–581.
    [155] Jones M C, Marron J S, Sheather S J. A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 1996, 91:401–407.
    [156] Loader C R. Bandwidth selection: classical or plug-in Annals of Statistics 1999,27:415–438.
    [157] Marron J S, Wand M P. Exact mean integrated squared error. Annals of Statistics. 1992,20,712–736.
    [158] Ruppert D, Carroll R J, Maca J D. Nonparametric regression in the presence of measurement error. Biometrika, 1999,86, 541–554.
    [159] Mehta H S, Kobayashi S. Finite element analysis and experimental investigation of sheet metal stretching. J. of Applied Mechanics, 1973, 40: 874~880
    [160] Iseki H, Jimma T. Murota T. Finite element method of analysis of hydrostatic bulging of a sheet metal(Part 1), Bulletin of the JSME,1974,12(112):1240~1246
    [161] Wifi A S, An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch. Int. J. of Mechanical Science,1976,18:23~31
    [162] Koistinen D P, Wang N M, Mechanics of sheet metal forming,(Proc. Symposium held at motors Research Laboratories, Oct.17~18,1977), New York: Plenum Press,1978.
    [163] Kobayashi S, Kim J H. Deformation analysis of axisymmetric sheet metal forming processes by rigid-plastic finite element method. In: Koistinen D.P., Wang N.M., Mechanics of Sheet Metal Forming. New York: Plenum Press,1978,341~365
    [164] Wang N M, Wenner M L, Elastic-viscoplastic. Analysis of simple stretching forming processes. In: Koistinen, Mechanics of Sheet Metal Forming. New York: Plenum Press, 1978, 367~391.
    [165] Hallquist John O, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation. 1998,16.61~16.64
    [166]陈文亮.板料成形CAE分析教程.北京:机械工业出版社,2005
    [167]罗亚军,张永清,何丹农.板料成形过程中合理毛坯形状的确定,塑性工程学报,2001,(9): 63-66
    [168]王烨.拉伸筋模型及汽车覆盖件成形工艺CAD/CAE集成系统关键技术研究:博士学位论文.上海:上海交通大学图书馆,2000.
    [169]蒋有谅.非线性有限元法.北京工业学院出版社,1998.
    [170] Chung S Y, Swift H W. A theory of tube sinking. J. Iron Steel Inst. 1952, 170:29.
    [171] Guo Y Q, Batoz J L, Naceur H, Bouabdallah S, MercierF, Barlet O. Recent developments on the analysis and optimum design of sheetmetalforming parts using a simplified inverse approach. Computers and Structures 2000,78(1-3):133-148.
    [172]梁炳文,胡世光.弹塑性稳定理论.北京:国防工业出版社,1983.
    [173] Yang R J, Tseng L, Nagy L, Cheng J. Feasibility Study of Crash Optimization, Proceedings of the American Society of Mechanical Engineers, DETC Vol.69-2, Advances in Design Automation, 1994,549?556.
    [174] Yang R J, Tho C H, Wu C C, Johnson D, Cheng J. A Numerical Study of Crash Optimization, Proceedings of DETC 99, 1999 ASME Design Engineering Technical Conferences, 1999.
    [175] Kurtaran H, Eskandarian A, Marzougui D, Bedewi N E. Crashworthiness design optimization using successive response surface approximations. Computational Mechanics 2002, 29:409–421.
    [176] Koch P N, Yang R J, Gu L. Design for six sigma through robust optimization. Struct Multidisc Optim 2004, 26:235–248.
    [177] Yang RJ, Wang N, Bobineau J P, Wang B P. Metamodeling Development for Vehicle Frontal Impact Simulation. Journal of Mechanical Design, 2005,127: 1014-1020.
    [178] Fang H, Rais-Rohani M, Liu Z, Horstemeyer M.F. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Computers and Structures 2005,83:2121–2136.
    [179] Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization, International Journal of Impact Engineering 2006, 32:759–777.
    [180] Zhang Y, Zhu P, Chen G L, Lin Z Q. Study on Structural Lightweight Design of Automotive Front Side Rail Based on Response Surface Method. Journal of Mechanical Design, 2007, 129:553-557.
    [181] Kok S, Stander N. Optimization of a sheet metal forming process using successive multipoint approximations. Structural Optimization, 1999,18(4): 277–295.
    [182] Ohata T, Nakamura Y, Katayama T, Development of optimum process design system by numerical simulation. Journal of Materials Processing Technology, 1996,60(124):543-548.
    [183] Ga per Gantar, Toma Pepelnjak, Karl Kuzman. Optimization of sheet metal forming processes by the use of numerical simulations. Journal of Materials Processing Technology, 2002, 130-131(20):54-59.
    [184] Naceur H, Gu Y Q, Batoz J L. Blank optimization in sheet metal forming using an evolutionary algorithm. Journal of Materials Processing Technology, 2004, 151(1-3):183-191.
    [185] Naceur H, Ben-Elechi S, Knopf-Lenoir C, Batoz J L. Response Surface Methodology for the Design of Sheet Metal Forming Parameters to Control Springback Effects using the Inverse Approach, Materials Processing and design: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes,AIP Conf. Proc.2004,712:1991-1996.
    [186] Micha Kleiber, Jarosaw Knabel, Jerzy Rojek. Response surface method for probabilistic assessment of metal forming failures,International Journal for Numerical Methods in Engineering,2004;60(1):51-67.
    [187] Sang-Hoon Lee, Heon-Young Kim, Soo-Ik Oh, Cylindrical tube optimization using response surface method based on stochastic process, Journal of Materials Processing Technology, 2002, 130-131(20):490-496.
    [188] Jansson T, Andersson A, Nilsson L. Optimization of draw-in for an automotive sheet metal part: An evaluation using surrogate models and response surfaces. Journal of Materials Processing Technology, 2005,159(3):426-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700