用户名: 密码: 验证码:
野生大豆基础生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以野生大豆(山东垦利)和栽培大豆(7518和鲁豆2号)为材料,测定了盐处理条件下种子发芽期的发芽势、发芽率、盐害指数和幼苗期的耐盐系数、生长状况和耐盐阈值,比较了两个种类的耐盐性差异。结果表明,盐生野大豆在幼苗期和种子发芽期均表现较强的耐盐性,栽培大豆在种子发芽期和幼苗期均表现较弱的耐盐性。
     通过观测野生大豆茎叶表面附着物的形态分布和腺毛的超微结构,测定盐处理条件下叶片分泌物中和叶片内部Na~+、Cl~-含量变化,并对腺毛的三个细胞以及表皮细胞和叶肉细胞内的Na~+、K~+、Cl~-等离子相对含量变化进行X-射线微区分析,结果发现:野生大豆茎叶表皮上有一种毛状腺体,其形态类似于禾本科植物中的一些盐腺,在叶片上它着生在叶脉上;其内部结构具有一般盐腺的特点,如有大液泡,稠密的细胞质,大量线粒体、叶绿体、胞间连丝以及较厚的细胞壁等;它具有泌盐功能,加入泌盐抑制剂后,其泌盐作用停止;在不同盐度下的这一毛状腺体的三个细胞以及表皮细胞和叶肉细胞内的Na~+、K~+、Cl~-等离子相对含量结果说明,盐生野大豆叶片的这一毛状腺体的细胞有较强的积累Na~+、Cl~-的能力,通过它对Na~+、Cl~-等离子的积累并泌出,使野生大豆叶片的表皮细胞和叶肉细胞保持了较低的Na~+、Cl~-离子含量。综合分析认为,盐生野生大豆的这种毛状腺体就是具有泌盐功能的盐腺,没有发现陆静梅等发现的所谓的“盐腺”(盐囊泡)存在;与其它泌盐盐生植物的盐腺一样,野生大豆的这种盐腺的生理作用也是调节植株体内的含盐量,使植株的功能部位在盐渍条件下保持正常的生理功能。
     以山东本地栽培大豆(鲁豆2号)为参照,对不同盐度处理条件下盐生野大豆(山东垦利县)植株含水量、渗透势和渗透调节物质(包括无机离子Na~+、K~+和Cl~-,有机渗透调节物质可溶性糖、游离氨基酸和有机酸)的变化进行了测定。结果表明:(1)野生大豆在盐渍条件下具有较强的渗透调节能力,叶片维持了较高的含水量;栽培大豆在相同盐度的盐渍条件下渗透调节能力较差,叶片含水量降幅较大。(2)在盐渍条件下,野生大豆的叶片Na~+/K~+比值较小,在高盐度下为1左右,在低盐度下更小;栽培大豆的Na~+/K~+比值较大,且随处理盐度的增大进一步加大。(3)在低盐度下野生大豆的无机渗调剂以K~+为主,而栽培大豆则是Na~+就取代了K~+成为主要的无机渗调剂,在高盐度下野生大豆与栽培大豆相比仍能维持相对较高的K~+含量进行渗透调节。(4)野生大豆的有机渗调剂以游离氨基酸和有机酸在渗透调节中的贡献较大,栽培大豆则以可溶性糖在渗透调节中的贡献较大。结果说明野生大豆在渗透调节方面比栽培大豆更能适应盐渍环境。
     以栽培大豆为参照材料,对盐生野大豆施以低盐(100mmol/L NaCl)和高盐(300mmol/L NaCl)处理,一方面测定幼苗体内的质膜透性、活性氧水平和MDA含量的变化,另一方面测定活性氧消除系统中的超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)等酶活性的变化。结果表明:(1)在低盐度条件下,盐生野大豆根和叶中的质膜透性、活性氧水平和MDA含量皆没有明显变化,在高盐度条件下,质膜透性、活性氧水平和MDA含量上升但上升幅度不大;栽培品种表现不同,在低盐度条件下,根和叶中的质膜透性、活性氧水平和MDA含量就有所上升,在高盐度条件下,质膜透性、活性氧水平和MDA含量明显上升,且叶较根中更明显。(2)在无盐对照条件下,盐生野大豆幼苗根和叶中SOD活性与栽培大豆相比相对较高,在低盐度条件下,盐生野
    
     大豆根和叶中的SOD活性没有明显升高,在高盐度条件下,SOD活性上升,其
     中叶片表现明显。栽培大豆SOD活性则表现为在低盐度条件下上升而在高盐度
     条件下下降。(3)在非盐处理和盐处理条件下,野生大豆和栽培大豆幼苗的POD
     活性都有一特点,即根中POD活性明显高于叶。在低盐度条件下,野生大豆和
     栽培大豆幼苗的POD活性变化都不明显。在高盐度条件下,野生大豆POD活性
     变化在根和叶都不下降;栽培大豆在高盐度条件下的POD活性在根和叶都是降
     低的。(4)野生大豆和栽培大豆叶片的 APX活性在低盐度盐处理条件下较对照
     都没有明显变化,但在高盐度处理条件下表现出不同,即野生大豆叶片的APX
     活性升高,而栽培大豆的APX活性降低。
     通过测定野生大豆在盐渍条件下的光合速率、叶绿素含量、RuBPCase活性
     和PEPCase活性,并将野生大豆和栽培大豆光合特性作了比较。结果表明:在
     无盐对照条件下,野生大豆光合速率比栽培大豆低;野生大豆单位叶片鲜重叶绿
     素含量高于栽培大豆,但其单位叶面积叶绿素含量低于栽培大豆,野生大豆Chla
     /Cblb比值小于栽培大豆;野生大豆RuBPCase活性与栽培大豆相似,野生大豆
     PEPCase活性略高于栽培大豆,野生大豆RuBPCase活性/PEPCase活性比值小于
     栽培大豆。在一定浓?
The difference of salt tolerance between G. soja and G. max was compared. The results showed that the salt tolerance of G. soja was higher than G. max both in the seed germinating stage and in the seedling stage.
    Glycine soja plants were treated with different salinity conditions. The shape and distribution of the attachments on the surface of stalk and leaf of G. soja plants were observed by SEM, and among which the ultrastructure of glandular hairs was observed by TEM; The Na+ and Cl" content in the secretion of the leaf surface and inside the leaf of G. soja plants under different treatments were determined; The Na+, K+, Cl" relative content in glandular cells, epidermal cells and mesophyllous cells of leaf of G. soja plants under different salinity were determined by X-ray microanalysis. Results show: There are only glandular hairs and epidermal hairs among the surface attachments of leaves and stalks of G. soja plants. The glandular hairs of G. soja plants were similar in shape to some salt glands of Gramineae halophytes, and they attached to the vein on the leaf surface of G. soja plants; and the cell structure of the glandular hairs took on the characteristics of common salt glands, such as big vacuoles, dense cytoplasm, a great deal of mitochondria, chloroplast, plasmodesmi and thicker cell walls etc; The results of Na+ and Cl" content in the leaf secretion and inside leaf show that the glandular hairs of G. soja plants executed a salt-secretion function, and when treated with a salt gland inhibitor its salt-secretion was inhibited and meanwhile Na+ and Cl" accumulated inside the leaf of G. soja plants; The results of Na+, K+, Cl" relative content by X-ray microanalysis under different salinity proved that the three cells of the glandular hairs of G. soja plants possessed strong competence of Na+, Cl" accumulation, and by the Na+, Cl" accumulation and secretion of the leaf glandular hairs, lower Na+, Cl" and higher K+ relative content were maintained in the epidermal cells and mesophyllous cells of leaf. In all, the glandular hairs were the salt gland of G. soja plants, and no the kind of "salt glands" of G. soja plants as Lu et al reported were found. The physiological function of the salt gland of G. soja was also to regulate the salt content in plant, and to keep natural function not to be affected by salt.
    In contrast with the G. max (Ludou2 from Shandong), the water content, osmotic potential, osmotica (including organic and inorganic osmotica) of G. soja plants under different salinity were determined. The results were shown as follows: (1) under salinity condition, G. soja plants could maintain higher osmotic adjust ability than G. max plants, and the leaf water content of G. soja plants was also higher than that of G. max plants. (2) under conditions of the same NaCl concentration, the Na*/K+ ratio of G. soja plant leaves was smaller than that of G. max. (3) under lower salinity condition, K+ was the main inorganic osmotica of G. soja, but Na+ was the main inorganic osmotica of G. max; under higher salinity condition, K+ was still the important parts in the osmotic adjustment of G. soja, but K+ was replaced completely by Na+ as the main inorganic osmotica of G. max. (4) compared with the different organic osmotica content under salinity condition, the contributions of amino acids and organic acids of G. soja to the osmotic adjustment was bigger than G. max; the
    IV
    
    
    
    contributions of soluble sugar of G. max to the osmotic adjustment was bigger than G. soja. The above results indicated that G. soja could adapt to salinity condition by osmotic adjustment better than G. max.
    The seedlings of G. soja and G. max were treated with 100 mmol/L NaCl and 300 mmol/L NaCl for 72h, and the plasma membrane permeability of leaves, O2 and MDA content of leaves and roots were determined, and the activities of SOD, POD, APX were also determined. The results were shown as follows: (1) Under light salt stress condition, the plasma membrane permeability, O2 and MDA content of G. soja did not change distinctly
引文
1 上海植物生理学会编.现代植物生理学实验指南.北京:科学出版社,1999
    2 上海植物生理学会编.植物生理学实验手册.上海:上海科技出版社,1991,138~139
    3 马淑时,王伟.大豆品种资源的抗盐碱性鉴定.吉林农业科学,1994,4:69-71
    4 比尤利,布莱克著(何泽英等译).种子萌发的生理生化 第二卷.南京:东南大学出版社,1990
    5 王纯波,李振国.Ca~(2+)参与乙烯消减NaCl对苜蓿种子萌发的抑制.应用与环境生物学报,1998,4(1):1-5
    6 王宝山,赵可夫.小麦叶片中Na、K提取方法的比较.植物生理学通讯,1995,31(1):50-52.
    7 王建华等.SOD在植物逆境和衰老中的作用。植物生理学通讯,1989,(1):1-7
    8 王增兰.盐胁迫下野生和栽培大豆某些生理特性的比较.山东师大学报(自然科学版),1996,11(2):72~75
    9 王金陵,孟庆禧,祝其昌.中国南北地区野生大豆光照生态类型分析.遗传学通讯,1973,3:1~8
    10 王金陵,武镛祥,吴和礼,孙善澄.中国南北地区大豆光照生态类型分析.农业学报,1956,7(2):169~180
    11 王洪新,胡志昂,钟敏等.盐渍条件下野大豆群体的遗传分化和生理适应:同工酶和随机扩增多态DNA研究.植物学报,1997,39(1):39-42
    12 王娟,李德全,2001,逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,18(4):459-465
    13 王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1999,26(6):55—57
    14 王爱国等.大豆下胚轴线粒体产生超氧物自由基的效率.植物生理学报,1986,12(2):148-153
    15 付永彩,等.野生、半野生及栽培大豆的几个主要光合特性的研究.大豆科学,1993,12(3):255~258
    16 冯文新,张宝红.钙处理对盐胁迫下大豆种子萌发及其生理生化指标的影响.大豆科学,1997,16(1):48—53
    17 白素兰,谢中稳,刘永胜,孙敬三.植物的成花逆转.植物生理学通讯,2000,36(3):252~257
    18 全国野生大豆考察组:中国野生大豆资源考察报告.农业科学,1983,6:69~75
    19 刘宁,高玉葆,贾彩霞,任安芝。渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化.植物生理学通讯,2000,36(1):11~14
    20 孙永吉,等.野生大豆抗花叶病毒研究.大豆科学,1991,10(3):212~216
    21 庄炳昌 主编(1999).中国野生大豆生物学研究.北京:科学出版社
    22 庄炳昌,等.东北大豆种质资源拓宽与改良.哈尔滨:黑龙江科技出版社
    23 庄炳昌.中国野生大豆研究二十年.吉林农业科学,1999,24(5):3~10
    24 朱长甫,等.中国同一纬度不同进化类型大豆固氮特性的研究.大豆科学,1996,12(2):86~89
    25 朱长甫,等.野生大豆植株中酰脲分布和嘌呤降解酶活性.大豆科学,1993,12(2):159~164
    
    
    26 朱长甫,等.野生大豆植株中酰脲含量与根瘤固氮活力的关系.植物生理学报,1995,21(3):307~312
    27 朱祝军.不同光强和不同形态氮素对烟草叶片中抗坏血酸过氧化物酶活性和百草枯抗性的影响.植物生理学通讯,1997,33(5):330~332
    28 朱新广,张其德.NaCl对光合作用影响的研究进展。植物学通报,1999,16(4):332-338
    29 全国野生大豆考察组:野生大豆考察手册,1979,1~2
    30 西北农业大学植物生理生化教研室编.植物生理学实验指导.西安:陕西科学技术出版社,1986,122~123
    31 许守民,不同大豆品种硝酸还原酶活性的研究.吉林农业科学,1987,(3):89~93
    32 许丽明,孙晓燕,文江祁.水扬酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用.植物生理学通讯,2000,36(1):35~36
    33 张士功,高吉寅,宋景芝.水扬酸和阿斯匹林对盐胁迫下小麦种子萌发的作用.植物生理学通讯,1999,35(1):29-32
    34 张志良主编.植物生理学实验指导。北京:高等教育出版社,1990,Pp154-155
    35 张明春,等.大豆不同类型叶绿素—蛋白复合体比较研究.大豆科学,1988(4):277~283
    36 张振清.植物材料中可溶性糖的测定.上海植物生理学会编.植物生理学实验手册.上海:上海科技出版社,1985 134~138
    37 张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56—61
    38 西北农业大学主编,基础生物化学实验指导.西安:陕西科学技术出版社,1985,51~53
    39 彻里 JH.植物分子生物学实验指导.科学出版社,1979,78
    40 李卫华,郝乃斌,戈巧英,张其德.C_3植物中C_4途径的研究进展.植物学通报,1999,16(2):97~106
    41 李庆国.火焰光度法和原子吸收分光光度法.上海植物生理学会编.植物生理学实验手册.上海:上海科技出版社,1983,502~507
    42 李星华,陈宛妹,李增禄.山东大豆种质资源耐盐性鉴定.山东农业科学,1996,(4):11-13
    43 李振国,倪君蒂,余叔文.乙烯消减盐渍胁迫对苜蓿种子萌发的抑制作用.植物生理学报,1995,21(1):50-56
    44 李振国,倪君蒂.乙烯消减盐抑制苜蓿种子萌发的机理研究.应用与环境生物学报,2001,7(1):24-28
    45 李振国.植物细胞质膜透性的测定。见:中国科学院上海植物生理研究所,上海植物生理学会编,现代植物生理学实验指南。北京:科学出版社,1999,302-303
    46 李福山,王衍桐.野生大豆分布与环境条件.大豆科学,1989,8(3):245~251
    47 李福山,常汝镇,舒世珍.栽培、野生、半野生大豆蛋白质含量及氨基酸组成的初步分析.大豆科学,1986,5(1):65-71
    48 李福山.中国野生大豆资源的地理分布及生态分化研究.中国农业科学,1993,26(2):47~55
    
    
    49 李德耀,叶济宇.薄膜氧电极的制作与呼吸或光合控制的测定,植物生理学通讯,1980,1:35-40
    50 杨文杰,等.野生大豆和栽培大豆光合作用特性的比较研究.大豆科学,1983,2(2):83~92
    51 杨光宇,纪锋.中国野生大豆资源的研究与利用综述。Ⅰ.地理分布、化学品质性状及在育种中的利用,吉林农业科学,1999
    52 杨光宇,等.克服种间杂种蔓生、小粒等不良性状技术的初步研究.大豆科学,1993,12(4):275~282
    53 杨淑慎,高俊凤,2001.活性氧、自由基与植物的衰老.西北植物学报,21(2):215-220
    54 沈文飚等。抗坏血酸过氧化物酶活性测定的探讨。植物生理学通讯,1996,32(3):203~205
    55 沈全光 刘存德,张家远,阎田,阎隆飞,汤佩松.腺苷酸库及能荷变化与白菜种子萌发的关系.植物学报,1982,24(6):531~538
    56 邵桂花,宋景芝,刘惠令.大豆种质资源耐盐性鉴定初报.中国农业科学,1986,(6):30~35
    57 邵桂花,常汝镇,陈一舞,闫淑荣.大豆耐盐性遗传的研究.作物学报,1994,20(6):721-726
    58 邵桂花,常汝镇,陈一舞.大豆耐盐性研究进展.大豆科学,1993,12(3):244-248
    59 陆静梅,刘友良,胡波,庄炳昌.中国野生大豆盐腺的发现.科学通报,1998,43(19):2074-2078
    60 陈一舞,邵桂花,常汝镇。盐胁迫对大麦幼苗子叶各细胞器超氧化物歧化酶(SOD)的影响。作物学报,1997,23(2):214—219
    61 陈长平,王文卿,林鹏.盐度对无瓣海桑幼苗的生长和某些生理生态特性的影响.植物学通报,2000,17(5):457~461
    62 陈永宁.未来植物开花研究之管见.植物生理学通讯,1995,31(5):375~384
    63 岳德荣,等.野生大豆抗蚜研究1:抗源筛选.吉林农业科学,1988(3):15~19
    64 於丙军,刘友良.大豆耐盐性研究进展.大豆科学,2000,19(2):154-159
    65 波钦诺克著,荆家海等译.植物生物化学分析方法.北京:科技出版社,1981
    66 罗广华,王爱国。植物体内氧自由基测定和清除。见:汤章城主编,现代植物生理学实验指南。北京:科学出版社,1999,P308-309
    67 苗以农,等.大豆叶绿素含量研究简报.吉林农业科学,1982,(4):30~31
    68 秋田重诚,等.作物的光合作用与物质生产(户义次主编,薛德榕译),北京:科学出版,1973
    69 胡友纪,王世杰,张正福.大豆种子萌发过程中线粒体的发生和发育.植物生理学报,1983,9(2):117~122
    70 赵世杰,许长成,邹琦等。植物中丙二醛测定方法的改进。植物生理学通讯,1994,30(3):207—210
    71 赵世杰,李德全。丙二醛的测定。见:汤章城主编,现代植物生理学实验指南。北京:科学出版社,1999,P.305—306
    72 赵世杰。抗坏血酸含量及抗坏血酸过氧化物酶活性的测定。见:汤章城主编,现代植物生理学实验指南。北京:科学出版社,1999,P315-316
    73 赵可夫,冯立田,范海.盐生植物种子的休眠,休眠解除及萌发的特点.植物学通报.1999,16(6):677-685
    
    
    74 赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999
    75 赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993
    76 郝乃斌,戈巧英,杜维广.大豆高光效育种光合生理研究进展.植物学通报,1991,8(2):13~20
    77 郝乃斌,谭克辉,那松青,贾志旺,戈巧英,张玉竹.C_3植物绿色器官PEP羧化酶活性的比较研究.植物学报,1991,33(9):692~697
    78 徐云岭,余叔文.植物适应盐逆境过程中的能量消耗.植物生理学通讯,1990,6:70-78
    79 徐本美,顾增辉.用虫荧光素酶测定油料种子的ATP含量.中国油料,1983(1):73~76
    80 徐本美,顾增辉,萌动过程中种子ATP含量的变化.植物生理学通讯,1984,3:39-40
    81 徐豹,路琴华.大豆生态研究Ⅰ.中国不同纬度野生大豆的光温生态分析.大豆科学,1983,2(3):155~168
    82 徐豹,路琴华.大豆生态研究Ⅲ.野生大豆和栽培大豆光周期效应的比较研究.大豆科学,1988,7(4):270~275
    83 徐豹,等.中国野生大豆脂肪及脂肪酸组成的研究.吉林农业科学,1993,2:1~6
    84 徐豹,等.野生大豆的高含硫氨基酸种质.大豆科学,1993,12(3):256~266
    85 徐豹.中国野生大豆研究十年.吉林农业科学,1989(1):1-9
    86 徐豹等.大豆起源地的三个新论据.大豆科学,1986,5(2):123-130
    87 徐豹等.中国大豆的蛋白资源.大豆科学,1984,3(4):327-331
    88 顾增辉,徐本美.种子吸胀及萌发阶段ATP水平测定方法的探讨.植物生理学通讯,1983(5):55-60
    89 常汝镇,陈一舞,邵桂花,万超文.盐对大豆农艺性状及籽粒品质的影响.大豆科学,1994,13(2):101-105
    90 黄卓烈,李名启。氯化钠对高等植物光呼吸作用的影响。植物生理学通讯,1993,29(3):214-218
    91 傅永福,孟繁静.植物的成花决定.植物生理学通讯,1997,33(2):81~87
    92 傅永福,孟繁静.植物成花转变过程中的基因调控,植物生理学通讯,1997,33(5):393~400
    93 傅家瑞著.种子生理.北京:科学出版社,1985
    94 韩天富,王金陵,邹继军,杨庆凯.大豆开花后阶段对开花前不同光照处理的反应.大豆科学,1995,14(4):283~289
    95 韩天富,王金陵.中国大豆不同生态类型开花至成熟期对光周期的反应.作物学报,1996,22(1):20~26
    96 韩天富,盖钧镒,邱家驯.中国大豆不同生态类型代表品种开花前、开花后光周期反应的比较研究.大豆科学,1998,17(2):129~134
    97 雍伟东,种康,许智宏,谭克辉,朱至清.高等植物开花时间决定的基因调控研究.科学通报,2000,45(5):455~466
    98 廖祥儒,朱新产。活性氧代谢和植物抗盐性。生命的化学,1996,16(6):19-22
    99 谭常,杨惠东,余叔文.植物细胞质膜差别透性的测定.植物生理实验手册.
    
    上海:上海科技出版社,1980, 67-70
    100 Abeles FB.& J.Lonski.Stimulation of lettuce seed germination by ethylene.Plant Physiol 1969,44:277-280
    101 Abeles FB.Ethlene in plant biology.Academic Press.New York,1973,103
    102 Abeles FB.Role of ethylene in Lactuca sativa cv 'Grand Rapids' seed germination.Plant Physiol.1986,81:780-787
    103 Arisz WH,Camphuis IJ,Heikens H,Vantooren AJ.The secretion of the salt glands of Limonium latifolium Ktze.Acta Bot.Neerl,1955,4:322-338
    104 Aro Eva-Mari,Stephanie Mccaffery and Jan M.Anderson.Photoinhibition and D1 protien degradation in peas acclimated to different growth irradiances.Plant Physiol.1993,103: 835-843
    105 Atkinson MR,et al.Salt regulation in the mangroves Rhizphora muoroneta Lam.and Aegialitis anniata R.Br.Australian J.Biol.Sci.,1967(20) : 589-599
    106 Barkla BJ,Pantoja O.Physiology of ion transport across the tonoplast of higher plants.Ann.Rev.Plant Physiol.Plant Mol.Biol 1996,47:127-57
    107 Battey NH,Lydon RF (1990) .Reversion of flowering.Bot Rev,52(2) : 162-189
    108 Begum F,Karhnoker JL,Fattah QA et al.The effect of salinity on germination and its correlation with K+,Na+,Cl-accumulation in germinating seeds of Triticam aestivum L.cv Akbar.Plant Cell Physiol.1992,33:1009-1074
    109 Bernier G (1988) ..The control of floral evocation and morphogenesis.Annu Rev Plant Physiol Plant Mol Biol,39:175-219
    110 Bernier G,Havelange A,Houssa C,Petitjean A,LeJeune P (1993) .Physiological signals that induce flowering.Plant Cell,5:1147~1155
    111 Bernier G,Kinet JM,Sachs RM (1981) .The Physiology of Flowering,(Vol II). Boca Raton: CRC .
    112 Berry J A,Downton W J S.Environmental Regulation of Photosynthesis.In Govind J.(ed) Photosynthesis vol (2) ,Academic Press,New York,1982,263-343
    113 Berry,W.L.Characteristics of salts secreted by Tamarix aphylla.Am.J.Botany 1970,57:1226-1230
    114 Bradford MM.A rapid and sensitive method for the quantification of microgram quantities in protein utilizing the principle of protein-dye binding.Anal.Biochem.,1976,72: 248-259
    115 Breckle SW. How do halophytes overcome salinity? Biology of Salt-tolerant Plants,eds MA.Khan and IA.Ungar, Michigan USA.1995,284~293
    116 Chailakhyan MH (1937) .Concerning the hormonal nature of plant development process,C.R.(DokL).Acad Sci URSS,16:227-230
    117 Chance B, Maehly AC. Assay of catalase and peroxidase.In: Colowick SP, Kapalan NO.(eds.) Methods of Enzymology,Vol.II.New York: Academic Press,1955, PP 764
    118 Ching TM & Ching KK.Content of adenosine phosphates and adenylate energy charge in germinating Ponderosa Pine seeds.Plant Physiol.1972,50:536-540
    119Ching TM.Adenosine triphosphate content and seed vigor.Plant Physiol.1973,51:400-402
    120Ching TM.Metabolism of germinating seeds.In:Kozlowski TT ed.Seed
    
    Biology.Vol2. New York:Academic Press,1972,103
    121 Drennan PM,Berjak P,Lawton JR,Pammenter NW.Ultrastructure of the salt glands of the mangrove,Avicennia marina(Forssk.) Vierh.,as indicated by the use of selective membrane staining.,Planta 1987,172:176-183
    122 E.Fritz.X-ray microanalysis of diffusible elements in plant cells after freeze-drying: pressure infiltration with ether and embedding in plastic.Scanning Microscopy,1989,3:517-526
    123 Evans LT (1971) .Flower induction and the florigen concept.Annu Rev Plant Physiol Plant Mol Biol,22:365-394
    124 Flowers TJ,Troke PF,Yeo AR.The mechanism of salt tolerance in halophytes. Ann.Rev.Plant Physiol.1977,28:89-121
    125 Gosset DR.,Millhollon EP and Lucas MC.Antioxidant response to NaCl in salt-tolerant and salt-sensitive cultivars of cotton.Crop Science,1994(34) : 706-714
    126 Greenway H and Munns R.Mechanism of salt-tolerance in nonhalophytes.Ann.Rev.Plant Physiol.1980,31: 149-190
    127 Griffin HW,Maurices SKS and Gerald E.Catalytic activity of maize leaf: phosphoenolpyrivate carboxylase in relation to oligomerization.Plant Physiol.,1986,80: 848-955
    128 Guri A.Variation in glutathione and ascorbic acid content among selected cultivars.of Phaseolus vulgaris prior to and after exposure to ozone. Can.J.Plant Sci.1983, 63: 733-737
    129 Gutschick VP.A functional biology of crop plants.1987,PP1-36 Croom Helm London & Sydney
    130 Haberlandt,G.Physiological plant anatomy,PP777,London: MacMillan and Co.,Ltd.1914.
    131 Hasegawa PM,Bressan RA,Zhu JK,Bohnert HJ.Plant cellular and molecular responses to high salinity.Ann.Rev.Plant Physiol.Plant Mol.Biol.2000,51: 463-99
    132 Hu ZA and Wang HX.Salt tolerance of wild soybean (Glycine soja) in natural populations evaluated by a new method.Soybean Genetics Newsletter,1997(24) : 79-80
    133 Jann RC,Amen RD.In: The physiology and biochemistry of seed dormancy and germination,AA.Khan(ed),p.7-28,Elsevier/North Holland Biomedical Press.
    134 Keys RD,OE Smith,J Kumamoto,JL Lyon.Effect of gibberellic acid,kinetin, and ethylene plus carbon dioxide on the thermodormancy of Lettuce seed (Lactuca sativa L.cv.Mesa 659) .Plant Physiol.1975,56:826-829
    135 Khan AA & J Prusinski.Kinetin enhanced 1-aminocyclopropane-l-carboxylic acid utilization during alleviation of high temperatures stress in Lettuce seeds. Plant Physiol.1989,91:733-737
    136 Khan AA,Huang XL.Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-l-carboxylic acid in lettuce seeds exposed to salinity stress.Plant Physiol.1988,87:847-852
    137 Khan AA.Cytokinins:permissive role in seed germination.Science,1971,171:853-859
    138 Koornneef M,Alonso-Blanco C,Peeters AJM,Soppe W (1998) .Genetic control
    
    of flowering time in Arabidopsis.Annu Rev Plant Physiol Plant Mol Biol,49:345-370
    139 Lang A (1965) .Physiology of flower initiation.In: Ruhland W (ed). Encyclopedia of Plant Physiology (Vol X V / I ),Berlin: Springer-Verlag,1379-1536
    140 Larkum A.W.D and A.E Hill.Ion and water transport in Limmonium: V.The ionic status of chloroplasts in the leaf of Limmonium vulgare in relation to the activity of the salt glands.Biochim.Biophys.Acta,1970,203:133-138
    141 Lauchli A.Salt exclusion: An adaptation of legumes for crops and pastures under saline conditions.In: Stapes RC,Toenniessen GT eds.,Salinity Tolerance in Plants. New York: John Wiley and Sons,1984,171-187
    142 Levitt J. Responses of plant to environmental stress.2nd edition. Academic Press.New York, 1980,365-488
    143 Li Qi,and E.Fritz.X-ray microanalysis of ion contents in stem tip meristem and leaves of Populus grown under potassium and phosphurs deficiency.Journal of Plant Physiology.1990,136:61-65
    144 Liphschitz,N.,and Y.Waisel.Adaptation of plants to saline environments: salt excretion and glandular structure.p.197-214. In D.N.Sen and K.S.Rajpurohit(ed) Tasks for Vegetation science.Vol.2. Dr W.Junk Publ,The Hague
    145 Liphschitz,N.,and Y.Waisel.Existence of salt glands in various genera of the Gramineae.New Phytol 1974,507-513
    146 Luttge,V. Structure and function of plant gland.Ann.Rev.Plant Physiol.1971,22:23-49
    147 McDaniel CN (1992) .Determination to Flower in Nicotiana,In: Pederson RA (ed).Current Topics Developmental Biology.New York: Academic Press Inc,132
    148 McDaniel CN,Siger SR,Smith SME (1992) .Development states associated with the floral transition.Dev Biol,153: 59-69
    149 Mozafar A,Goodin JR.Vesiculated hairs: A mechanism for salt tolerance in Atriplex halimus L.Plant Physiol.,1970(45) : 62-65
    150 Pantalone,VR,Kenworthy,WJ.Salt tolerance in glyclne max and perennial glyclne.Soybean Genetics Newsletter,1989,16: 145-146
    151 Paterson BD.,et al.Estimation of hydrogen peroxide in plant extracts using titanium (IV).Anal.Biochem.,1984,139: 487-492
    152 Perl M.The effect of ethylene and temperature on ATP accumulation from various substrates in Peanut (Arachis hypogaea L.) seeds.Journal of Experimental Botany.1982,33:456-462
    153 Pollack G.,Waisel Y.Salt secretion in Aeluropus litoralis (Willd) Pad.Ann. Botan.1970(34) : 879-888
    154 Pollak,G.and Waisel.Y.Salt secretion in Aeluropus litoralis(Willd.)Parl.Ann.Bot,1970,34:879-888
    155 Powles SB.Photoinhibition of photosynthesis induced by visible light.Annu Rew Plant Physiol.1984,35: 15-44
    156 Rao VS,N Sankhla,AA Khan.Additive and synergistic effects of kinetin and
    
    ethrel on germination thermodormancy and polyribosome formation in lettuce seeds.Plant Physiol.1975,56:263-266
    157 Ruland,W.Untersuchungen uber die Hautdruen der Plumbaginaceen.Ein Beitrag zur Biologic der Halophyten.J.Wiss.Botan,1915,55: 409-498
    158 Scholander PF,et al.Sap balance in mangroves.Plant Physiol., 1962(37) : 722-729
    159 Scholander PF,et al.Sap concentration in halophytes and some other plants.Plant Physiol.,1966 (41) : 529-532
    160 Soussi M,Ocana A and Liuch C.Effects of salt stress on growth,photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.) Journal of Experimental Botany,1998,49(326) : 1329-1337
    161Steward GR and Lee GA.The role of proline accumulation in halophytes.Planta.1974,120: 279-289
    162Vassilyev,A.E. and Stepanova,A.A. The ultrastructure of ion-secreting and non-secreting salt glands of Limonium platyphyllum,J.Exp.Bot.1990,41(222) : 41-46
    163Weller JL,Reid JB,Taylor SA,Murfet IC (1997) .The genetic control of flower in pea.Trends Plant Sci,2:412-418
    164 Woodstock LW & DF Grabe.Relationships between seed respiration during imbibition and subsequent seedling growth in Zea mays L. Plant Physiol.1967,42:1071-1076
    165 Wyn Jones RG. Salt Tolerance in Physiological Process Limiting Plant Productivity (ed. CE. Johnson).Butter-worths.London,1980
    166 Yang SF,NE Hoffman.Ethylene biosynthesis and its regulation in higher plants.Annu Rev Plant Physiol.l984,33:155-189
    167 Zeevaart JAD (1976) .Physiology of flower formation.Annu Rev Plant Physiol,27:321-348
    168 Zhao Kefu, Fan H, Jiang XY, Zhou S (2002) . Critical day-length and photoinductive cycles for the induction of flowering in halophyte Suaeda salsa.Plant Sci, 162: 27-31
    169 Zhao KF.,Feng LT.,Fan H.,Zhang SQ.Study on the seed germination and its basic physiology in halophytes.Supplement to the Journal of Sun Yatsen University.1997:17
    170 Zhong M.,Hu ZA and Gresshoff PM.Search for molecular markers of salt tolerance of soybean by DNA amplification fingerprinting. Soybean Genetics Newsletter,1997(24) : 81-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700